
Memory-Efficient and Skew-Tolerant
MapReduce Over MPI for Supercomputing

Systems
Tao Gao , Student Member, IEEE, Yanfei Guo ,Member, IEEE, Boyu Zhang,

Pietro Cicotti,Member, IEEE, Yutong Lu,Member, IEEE,

Pavan Balaji, Senior Member, IEEE, and Michela Taufer , Senior Member, IEEE

Abstract—Data analytics has become an integral part of large-scale scientific computing. Among various data analytics frameworks,

MapReduce has gained the most traction. Although some efforts have been made to enable efficient MapReduce for supercomputing

systems, they are often limited to fairly homogeneous workloads where equal partitioning of input data across tasks results in

essentially equal output or temporary data generated on each task. For workloads that are more skewed, however, current

implementations can result in imbalance in memory usage and, consequently, can cause a slowdown in execution time and a loss in

data scalability. To tackle this problem, we enhance a previously published memory-conscious MapReduce over MPI framework called

Mimir. Our enhancements to Mimir include combiner and dynamic repartition optimizations to minimize and balance memory usage

and to achieve close to optimal balance of the memory usage across processes and to reduce the execution time by up to 12 times.

Experimental results show that Mimir can scale to at least 3072 processes on the Tianhe-2 supercomputer on skewed datasets.

Index Terms—Skew mitigation, load balancing, high-performance computing, data analytics, MapReduce, memory efficiency, performance

and scalability

Ç

1 INTRODUCTION

WITH the growth of simulation and scientific data, data
analytics and data-intensive workloads have become

an integral part of large-scale scientific computing. MapRe-
duce [11] is one of the most popular programming models
within the broad data analytics domain.

Most implementations of MapReduce, such as Hadoop [1]
and Spark [37], target Linux-based commodity clusters whose
features are significantly different from supercomputers in
terms of operating systems, networks, and storage features.
First, most large supercomputer installations do not provide
on-node persistent storage (although this situation might
change with chip-integrated NVRAM). Instead, storage is

decoupled into a separate globally accessible parallel file sys-
tem. Second, network architectures on many of the fastest
machines in the world are proprietary. Thus, commodity-net-
work-oriented protocols, such as TCP/IP or RDMA over
Ethernet, do not work well (or work at all) on many of these
networks. Third, system software stacks on these platforms,
including the operating system and computational libraries,
are specialized for scientific computing. For example, super-
computers such as the IBM Blue Gene/Q [2] use specialized
lightweight operating systems that do not provide the same
capabilities as those that a traditional operating system such
as Linux orWindowsmight.

Some efforts have been made to enable efficient MapRe-
duce implementations for supercomputers. These efforts can
be divided into two categories: (1) tuning and deployment of
popular MapReduce frameworks on high-performance com-
puters [8], [23], [29], [36] and (2) design and building of new
implementations of MapReduce on top of MPI (e.g., MapRe-
duce-MPI, or MR-MPI [27] and Mimir [15]). Implementations
of MapReduce over MPI have gained the most traction for
two reasons: (1) they provide C/C++ interfaces that are more
convenient to integrate with existing scientific applications
compared with Java, Scala, or Python interfaces; and (2) they
can make use of the high-speed interconnection network
throughMPI.

Independently from the platform on which they are exe-
cuted, MapReduce jobs constantly flush intermediate data to
node-local storage and read data back as jobs progress when
there is load imbalance and the data cannot be held in the
memory. This is an effective solution for traditional cloud
environments because it is independent of how fast the

� T. Gao is with the Department of Electrical Engineering and Computer
Science, University of Tennessee, Knoxville, TN 37996, and also with the
National University of Defense Technology, Changsha 410073, China.
E-mail: tao.gao.nudt@hotmail.com.

� Y. Guo and P. Balaji are with the Mathematics and Computer Science
Division, Argonne National Laboratory, Lemont, IL 60439.
E-mail: {yguo, balaji}@anl.gov.

� B. Zhang and M. Taufer are with the Department of Electrical Engineering
and Computer Science, University of Tennessee, Knoxville, TN 37996.
E-mail: zhang.boyu84@gmail.com, taufer@utk.edu.

� P. Cicotti is with NVIDIA, San Diego, CA 95051.
E-mail: pcicotti@sdsc.edu.

� Y. Lu is with the National Supercomputing Center in Guangzhou, China,
and also with the Sun Yat-sen University, Guangzhou 510275, China.
E-mail: yutong.lu@nscc-gz.cn.

Manuscript received 9 Jan. 2018; revised 7 May 2019; accepted 16 July 2019.
Date of publication 28 May 2020; date of current version 29 June 2020.
(Corresponding author: Michela Taufer.)
Recommended for acceptance by A. Iamnitchi.
Digital Object Identifier no. 10.1109/TPDS.2019.2932066

2734 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5535-0153
https://orcid.org/0000-0001-5535-0153
https://orcid.org/0000-0001-5535-0153
https://orcid.org/0000-0001-5535-0153
https://orcid.org/0000-0001-5535-0153
https://orcid.org/0000-0002-3731-5423
https://orcid.org/0000-0002-3731-5423
https://orcid.org/0000-0002-3731-5423
https://orcid.org/0000-0002-3731-5423
https://orcid.org/0000-0002-3731-5423
https://orcid.org/0000-0002-0031-6377
https://orcid.org/0000-0002-0031-6377
https://orcid.org/0000-0002-0031-6377
https://orcid.org/0000-0002-0031-6377
https://orcid.org/0000-0002-0031-6377
mailto:tao.gao.nudt@hotmail.com
mailto:yguo@anl.gov
mailto:balaji@anl.gov
mailto:zhang.boyu84@gmail.com
mailto:taufer@utk.edu
mailto:pcicotti@sdsc.edu
mailto:yutong.lu@nscc-gz.cn

network is, what the overall memory capacity of the distrib-
uted system is, andwhat load imbalance issues other processes
are facing. However, when executed on supercomputers
which usually lack on-node persistent storage, these jobs may
suffer from degrading performance because of the extensive
I/O operations to the shared storage file system.

To tackle the problems associated with the loss of perfor-
mance due to memory inefficiency and data skewness, we
enhance a previously published memory-conscious MapRe-
duce over MPI framework called Mimir [15]. The goal of
Mimir is to efficiently process large datasets in memory. In
doing so, however, itmight sacrifice a small amount of perfor-
mance for small datasets compared with MR-MPI. With
Mimir,we have taken a significant first step tomitigate perfor-
mance lost through in-memory processing. Mimir includes
memory-efficient intermediary combiner operations, data
skew strategies based on dynamic repartitions, and superkey
split strategies. The results demonstrate that our approach not
only reduces thememory usage but also significantly balances
thememory usage for skewed datasets.

The contributions of this paper are twofold.

1) We design amemory-efficient and skew-tolerantMap-
Reduce over MPI framework for supercomputing sys-
tems. Our design builds on top of Mimir’s in-memory
workflow and includes (a) a pipeline combiner work-
flow tousememorymore efficiently and balancemem-
ory usage; (b) a new dynamic repartition method that
mitigates data skew onMapReduce applications with-
out obviously increasing their peak memory usage;
and (c) a strategy for splitting single superkeys across
processes and further mitigating the impact of data
skew, by relaxing the MapReduce model constraints
on key partitioning.

2) We evaluate the results of Mimir’s in-memory work-
flow, the combiner workflow, the dynamic reparti-
tion workflow, and the superkey and splitting
approach with respect to memory usage and perfor-
mance (i.e., execution time) on the Tianhe-2 super-
computer for three benchmarks (i.e., word count,
octree clustering, and join) and three different types
of datasets: balanced data, value imbalanced data
(i.e., the imbalance is reflected in the value distribu-
tions), and key-mapping imbalanced data (i.e., the
imbalance is reflected in the unique key distribution
across processes).

The rest of this paper is organized as follows: Section 2 dis-
cusses the status and drawback of the existing MapReduce
implementations in supercomputers; Section 3 summarizes
the original design of Mimir, which works well for balanced
datasets but not for skewed datasets; Section 4 presents the
design of the combiner optimization that helps with data
skew in applications exhibiting associative and commutative
properties such as word count; Section 5 presents the design
of repartitioning methods that are more complex data-driven
optimizations and can help with data skew in applications
such as the octree clustering and join; Section 6 explains the
integration of the proposed optimizations in Mimir; Section 7
presents the evaluation and analysis of the proposed optimi-
zations; Section 8 discusses the related work; and Section 9
briefly summarizes our conclusions.

2 BACKGROUND

In this section, we review the MapReduce programming
model and present MR-MPI’s workflow. MR-MPI is the
MapReduce over MPI framework that more closely matches
the Mimir implementation, and thus we will use it for some
of our performance comparisons.

2.1 MapReduce Programming Model

MapReduce is a programmingmodel intended for data-inten-
sive applications [11] that has proved suitable for a wide vari-
ety of applications. A MapReduce job usually involves three
phases—map, shuffle, and reduce—as shown in Fig. 1. The map
phase processes the input data using a user-defined map call-
back function and generates intermediate hkey; valuei (KV)
pairs. The shuffle phase performs an all-to-all shuffle commu-
nication that distributes the intermediate KVs across all pro-
cesses. In this phase, KVs with the same key are also merged
and stored in hkey;multiplevaluesi (KMV) lists. The reduce
phase processes theKMV listswith a user-defined reduce call-
back function and generates the final output.

2.2 MapReduce-MPI (MR-MPI)

MR-MPI supports the logical map-shuffle-reduce workflow in
four phases: map, aggregate, convert, and reduce. The
map and reduce phases are implemented by using user call-
back functions. The aggregate and convert phases are
fully implemented within MR-MPI but need to be explicitly
invoked by the user. The aggregate phase handles the all-
to-all movement of data between processes. In the aggre-

gate phase, MR-MPI calculates the data and buffer sizes and
exchanges the intermediate KVpairs using MPI_Alltoallv.
After the exchange, the convert phase merges all received
KVpairs based on their keys.

Similar to traditional MapReduce frameworks, MR-MPI
uses a global barrier to synchronize at the end of each phase.
Because of this barrier, the job must hold all the intermediate
data either in memory or on the I/O subsystem until all pro-
cesses have finished the current stage. For large MapReduce
jobs, intermediate data can use considerable memory. Espe-
cially for iterative MapReduce jobs where the same dataset is
repeatedly processed, buffers for intermediate data need to be
repeatedly allocated and freed. To avoid memory fragmenta-
tion, MR-MPI uses a fixed-size buffer structure called page to
store the intermediate data. The coarse-grained memory allo-
cation leads to efficiency problems: not all the allocated pages
are fully utilized.

3 LEVERAGING IN-MEMORY STORAGE

The first design goal of Mimir is to allow for a memory-
efficient MapReduce implementation overMPI that ultimately

Fig. 1.Map, shuffle, and reduce phases of the MapReduce programming
model.

GAO ET AL.: MEMORY-EFFICIENT AND SKEW-TOLERANT MAPREDUCE OVER MPI FOR SUPERCOMPUTING SYSTEMS 2735

allows users to run significantly large-sized data analytics in
memory. To this end, Mimir introduces new objects and
deploys pipelines and interleaves of computation and shuffle
communication within the map phase to minimize unneces-
sarymemory usage.

3.1 Intermediate Data Management

As in MR-MPI [25], Mimir builds on the concepts of KVs and
KMVs. Moreover, it introduces two new objects, called KV
containers (KVCs) and KMV containers (KMVCs), to help
manageKVs andKMVs efficiently.AKVC is an opaque object
that internally manages a collection of KVs in one or more
buffer pages based on the number and sizes of the KVs
inserted. A KVC provides read/write interfaces that Mimir
can use to access the corresponding data buffer. The KVC
tracks the use of each data buffer and controls memory alloca-
tion and deallocation. In order to avoid memory fragmenta-
tion, the data buffers are always allocated in fixed-size units
whose size is configurable by the user.WhenKVs are inserted
into the KVC, it gradually allocates more memory to store the
data.When the data is read (consumed), theKVC frees buffers
that are no longer needed. KMVCs are functionally identical
to KVCs butmanage KMVs instead of KVs.

3.2 Map and Reduce Phases

As in Hadoop [1] and Spark [37], the user of Mimir’s basic
workflow defines the map and reduce operations, which
MPI processes then execute. Different from the master-
worker architecture used in Hadoop[1] and Spark [37],
however, Mimir is designed to be decentralized in order to
increase scalability.

In the map phase shown in Fig. 2, eachMPI process has a
send buffer and a receive buffer. The send buffer is divided
into p equal-sized partitions, where p is the number of pro-
cesses executing a given MapReduce application. In other
words, each partition corresponds to one process. The exe-
cution of the map phase starts with the computation stage.
In this stage, the input data is transformed into KVs by the
user-defined map function executed by each process. The
new KVs are inserted into one of the send buffer partitions
so that KVs with the same key are sent to the same process.
The default partitioning method is based on the hash value
of the key. Users can provide alternative partition algo-
rithms that better suit their needs, but the overall workflow
remains the same. If a partition in the send buffer is full,
Mimir temporarily suspends the computation stage and
switches to the shuffle communication stage. In this stage,
all processes exchange their accumulated intermediate

KVs using MPI_Alltoallv: each process sends the data
in its send buffer partitions to the corresponding destina-
tion processes and receives data from all other processes in
its receive buffer partitions. Once the KVs are in the receive
buffer, each process moves the KVs into a KVC. The KVC
serves as an intermediate holding area between the map
and reduce phases. After the data has been moved to this
KVC, the shuffle communication stage completes, and
the suspended computation phase resumes. In this way,
the computation and shuffle communication stages are
interleaved, allowing them to process large volumes
of input data without correspondingly increasing the
memory usage.

In the reduce phase shown in Fig. 3, the input KVs are
stored in a KVC that is generated by the map phase. The
reduce phase starts with the conversion of KVs to KMV lists.
Mimir adopts a two-pass algorithm to perform the conversion
in memory. In the first pass, the size of the KVs for each
unique key is gathered in a hash bucket and used to calculate
the position of each KMV in the KMV container (KMVC),
described in Section 3.1. In the second pass, the KVs are con-
verted into KMV lists by inserting them into the correspond-
ing position in the KMVC. When all the KVs are converted to
KMV lists, the conversion is complete. Mimir then calls the
user-defined reduce callback function on the KMVs.

3.3 Memory Usage Analysis

In the following, we assume that the lengths of each key and
each value are the same. The Mimir software itself makes no
such assumption; we use it here to simplify our memory
usage analysis. Let us use n to represent the number of KVs
assigned to one process during the shuffle communication
and u to represent the number of unique keys in those KVs.
We note that u is always equal to or smaller than n. In each
process, only the memory usage of the intermediate data buf-
fers (i.e., KVCs and KMVCs) depends on the dataset size. The
spatial complexity of a given KVC is OðnÞ and that of a given
KMVC is OðuÞ þOðnÞ. If u is much smaller than or compara-
ble to n, then the spatial complexity of the KMVC is OðnÞ, the
same as that of KVC. Because the spatial complexity of KVC
andKMVC is linearly dependent on the number of KVs parti-
tioned to them, the memory usage is unbalanced if the inter-
mediate KVs are not partitioned evenly.

4 FUNCTION-DRIVEN OPTIMIZATIONS

In a large number of MapReduce applications the reduction
function is both associative and commutative. From an
implementation point of view these MapReduce applica-
tions support merging KV pairs before the reduce function.
The merging process is called combiner optimization. In
this section, we present combiner optimizations to minimize
and balance the memory usage in Mimir.

Fig. 2. Map workflow in Mimir with its map phase including both compu-
tation and shuffle communication stages.

Fig. 3. Workflow of the reduce phase in Mimir with the two-pass algo-
rithm to perform the KV-KMV conversion in memory.

2736 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

4.1 Combiner Workflow

From an implementation point of view, we extend MapRe-
duce applications by allowing them to set a new combiner
callback function that can be called within the map phase.
The combiner callback takes two values as input and gener-
ates a single value as output. The pipeline combiner work-
flow is shown in Fig. 4. The figure points out how the
combiner callback can be applied both before and after
each shuffle communication stage of the map phase.

A combiner callback when applied before the communica-
tion stage reduces the communication size. On the other
hand, a combiner callbackwhen applied after the communica-
tion stage reduces the buffer size to store the KVs in the KVC.
We structure the combiner workflow so that it is pipelined.
Before any shuffle communication, KVs generated by the
map callback are inserted into the corresponding partitions of
the send buffer based on the partition function. When we
encounter a KV with a key that is in the send buffer, the com-
biner callback is called. The combiner callback combines the
two KVs (i.e., the new KV and the one already in the send
buffer) into a single KV. The existing KV in the send buffer is
then replaced with the combined version. For example, if in
the word count benchmark execution the new KV is hdog; 1i
and a KV with hdog; 1i is already in the send buffer, the
replacedKV in the send buffer is hdog; 2i.

After completion of a shuffle communication stage, the
received KVs are inserted into the KVC. When a KV with a
key that is already in the KVC occurs, the combiner callback is
called. Similar to the combiner process before the shuffle com-
munication stage, the combiner callback combines the two
KVs into a single KV. The existing KV in the KVC then is
replaced with the combined version. For example, if a process
received a KV from a second processwith hdog; 2i and already
has the hdog; 1i KV, the execution of the callback replaces
hdog; 1iwith hdog; 3i. The combiner callback is called multiple
times—as many times as there are KVs with duplicate keys in
the shuffle communication stages in themap phase.

To efficiently identify duplicate keys in KVs for each pro-
cess, we use a hash bucket to track the position information of
unique KVs in the send buffer and a hash bucket to track the
position information of unique KVs in the KVC. In the case of
the send buffer, we use the process’s hash bucket to quickly
check whether a key is already present in the send buffer. The
hash bucket stores only the position information of the KVs;
the actual KVs are still stored in the send buffer. The hash
bucket of a process’s KVC works in the same fashion. In our

design of the combiner workflow, the two hash buckets
require additional memory to keep track of the unique keys’
positions. The spatial complexity of the two hash buckets is
OðuÞ, where u is the number of unique keys.

4.2 Garbage Management

During the combiner optimization, the length of the combined
KV may be different from that of the original KV in the send
buffer or in the KVC. For example, the value field is a vari-
able-length string. The combined KV can be stored in the
same locationwhere the original KVwas, in caseswhere com-
bining reduces the KV length. Otherwise, when the combined
KV is larger than the original KV, the combined KV must be
stored elsewhere. In either case, we will be left with some
“holes” (i.e., garbage bytes) that do not contain useful data.
We need to maintain a list of such unused spaces so that they
can be reused for new KVs or can be reclaimed through gar-
bage collection.

We introduce a hash bucket for each buffer to track these
unused spaces. Each hole is represented in a hstartaddress;
holelengthi format and is hashed by the start address. There
are two hash buckets in each process for the buffers; one is
used before and the other is used after the shuffle communica-
tion stage. In this way, only Oð1Þ time is needed to query
whether a given address is the beginning of a hole. When
Mimir needs to find a place to store a newly created or com-
bined KV, it first tries to find an unused space that is large
enough to fit the KV. If it is unable to find such space, it
appends the KV to the end of the buffer. This approach allows
us to reduce the total size of the garbage bytes.

Before starting a shuffle communication stage, Mimir may
perform garbage collection to remove any existing holes and
reclaim the space to reduce the data being transmitted during
shuffle. The garbage collection phase scans the hash bucket
and moves the KVs to cover the spaces that were holes. Since
garbage collection is expensive, we perform it only when the
accumulated size of the unused spaces is above a certain
threshold. In the current implementation, we set this thresh-
old to be the size of two pages. This also helps limit the mem-
ory usage of the hash bucket to a constant amount.

4.3 Memory Usage Analysis

To simplify the memory usage analysis, we again assume
that the lengths of each key and each value are the same as
we did in Section 3.3. We again use n to represent the total
number of KVs and use u to represent the number of unique
keys in those KVs. Note that u is always equal to or smaller
than n. We have p processes to execute the MapReduce
tasks. We further assume that the unique keys are parti-
tioned evenly to all processes. The spatial complexity of the
KVC after shuffle communication and the hash buckets to
keep track of the unique keys is OðuÞ. The spatial complex-
ity of the hash buckets to keep track of garbage bytes is
Oð1Þ. Thus, the overall spatial complexity of our pipeline
implementation is Oð3 � uÞ (i.e., a KVC and two hash buck-
ets for each process to keep track of the unique keys).

5 DATA-DRIVEN OPTIMIZATIONS

We present two data-driven optimizations: a dynamic reparti-
tion approach to mitigate the impact of the data skew problem

Fig. 4. Combiner workflow in Mimir with its combiner callbacks applied
before and after each communication stage.

GAO ET AL.: MEMORY-EFFICIENT AND SKEW-TOLERANT MAPREDUCE OVER MPI FOR SUPERCOMPUTING SYSTEMS 2737

and a splitting strategy to deal with datasets in which a few
keys occur significantlymore frequently thando the other keys.

5.1 Dynamic Repartition Workflow

In order to ensure balanced memory usage across processes,
each process should be assigned a similar number of KVs
during the shuffle communication stage. The difficulty of
partitioning KVs evenly is that the distribution of KVs is
unknown before the MapReduce processing starts. Tradi-
tionally, MapReduce frameworks use the hash value of the
key to partition KVs. However, this hash partition cannot
balance the KVs for highly skewed datasets. To overcome
this limitation, we first partition the KVs based on the hash
values of the keys and then dynamically adjust the partition
by repartitioning some keys as the MapReduce framework
gathers more information about the distribution of its KVs.
Note that our repartition method is transparent to the Map-
Reduce application’s execution.

Our dynamic repartitioning is implemented in the map
phase. The workflow is shown in Fig. 5. To record reparti-
tioned keys and keep track of KV counts, we introduce two
new data structures: the repartition table and the bin

table. The repartition table consists of a list of reparti-
tioned bins and the rank of the process owning that bin. The
bin table counts all KVswhose keys are grouped into a bin.
We use the bin as the minimum repartition unit, rather than
the individual keys contained in the bin, in order to further
reduce the amount ofmemory used. In otherwords, wemight
consume enormous amounts of memory if we keep track of
information for each unique key. The bin index for one key is
hashðkeyÞ%ðb � pÞ, in which b is a configurable parameter
called the bin count and p is the number of processes. Both the
repartition table and the bin table are implemented
as hash tables. Thus, the time complexity to get the value from
either table isOð1Þ.

The map phase starts with the computation stage and
generates KVs by the map callback. Once a KV is generated,
the way to compute the target process of the KV is different
from the basic workflow in other implementations of Map-
Reduce over MPI such as the original Mimir [15] and Map-
Reduce-MPI[27]. Specifically, the repartition table is
searched first. If the bin that contains this KV is found, then
the target process rank is obtained from this table. Other-
wise, the target process is computed by ðbinindexÞ%ðpÞ.

After getting the target process, the KV is inserted into the
corresponding partition of the send buffer. If any one parti-
tion is full, the shuffle communication stage starts, and the
KVs are exchanged. When a process receives a set of KVs
from other processes, it gathers the counts of all KVs into its
bin table before saving the information into the KVC. The
load imbalance is assessed at regular shuffle communica-
tion intervals called the check frequency. If no load imbal-
ance is found, the MapReduce workflow resumes the
computation stage. Otherwise, the repartition algorithm is
executed to update the repartition table. We perform
a lazy intermediate data migration strategy; that is, KVs that
belong to repartitioned bins are migrated to new target pro-
cesses after all processes finish the map computation.

Our load-balancing check, repartition algorithm, and
intermediate data migration methods are discussed in the
next three subsections.

5.1.1 Load-Balancing Check

Each process uses a variable to keep track of the number of
received KVs. The load-balancing check is performed by

ðmaxcountÞ=ðmincountÞ > balancefactor;

in which max count and min count are the maximum and
minimum number of KVs received across processes, respec-
tively. The balance factor is a configurable parameter to
determine whether to perform the repartition: the program
performs the repartition if the (max count)/(min count) is
larger than the balance factor. The load-balancing check is
implemented by using two MPI_Allreduce calls to get the
max and min counts separately. Each process executes the
check algorithm independently.

5.1.2 Repartition Algorithm

Once we identify the load imbalance of the KVs, we execute
the repartition algorithm to update the process’s reparti-
tion table. When performing a repartition, we may have
only partial count information of the entire dataset’s KVs
because the MapReduce job may be in progress. To deal
with such partial knowledge, we base our repartition algo-
rithm on the sampling principle in [10]: the frequency distri-
bution of each key in the partial dataset is used to predict
the frequency distribution of the full dataset. For example,
assume that completing the processing of a given input
dataset requires ten communication stages and that we
identify the load imbalance problem at the end of the sec-
ond shuffle communication stage. Under these circumstan-
ces, we execute the repartition algorithm with information
on only approximately 20 percent of the total KVs gener-
ated. In our example, additional load imbalance may occur,
for example, after the sixth shuffle communication stage. In
that case, we perform another repartition in the sixth shuffle
stage to adjust the previous repartition, but this time with
information from about 60 percent of the total KVs. The key
idea here is that as the execution progresses, our repartition-
ing becomes increasingly more accurate. But at the same
time, we may need to migrate more KVs in those later
stages. By performing a repartition each time a load imbal-
ance problem is detected, we aim to reduce the intermediate
data migration overhead in the later stages.

Fig. 5. Repartition workflow with the repartition table to allow
repartitioned bins and bin table to record the KV counts of bins. KVs
are grouped to bins in order to reduce the memory usage. KVs of reparti-
tioned bins are migrated before the end of the map phase.

2738 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

For efficient memory usage, we use bins as the reparti-
tion unit, and a key that belongs to a given bin is always
assigned to the same process. Our repartition algorithm
uses the bin table to predict the distribution of KVs
belonging to different bins. The repartition problem is simi-
lar to the bin-packing problem. Let us assume that we have
b � p bins and that we know the estimated frequency of each
bin. Our goal is to assign the b � p bins to p partitions (where
p is also the number of processes) in as balanced a way as
possible. This problem is NP-complete. We address it by
using a heuristic algorithm with two steps. In the first step,
the total repartition percentages of the different processes
are computed. For example, if we have two processes, Pro-
cess 0 and Process 1, and if Process 0 has received 75 percent
of the KVs and Process 1 has received 25 percent, then we
know that Process 0 needs to forward 25 percent of its KVs
to Process 1. In the second step, each process identifies those
bins that are to be exchanged in the repartition process. In
our example, if Process 0 has three bins with frequencies of
50, 15, and 10 percent, then Process 0 repartitions the bins
with frequencies of 15 and 10 percent to Process 1.

5.1.3 Intermediate Data Migration

Before the end of the map phase, we need to migrate the
KVs of the repartitioned bins that were identified by the
repartition algorithm to the new target processes. If Key s is
partitioned and assigned to Process i before a repartition
and assigned to Process j after a repartition, then no further
KVs with Key s will be sent to Process i. Thus, we need to
migrate all the KVs to Process j before the end of the map
phase to avoid having some KVs with the same key end up
in different processes. Because a bin is our atomic unit of
KVs, for each repartitioned bin we need to migrate the cor-
responding KVs to the new target process. We use a lazy
intermediate data migration strategy.

To integrate our migration methods in Mimir, we extend
the KVC to support a remove interface. The KVs in the KVC
are scanned one by one. If a KV that belongs to a repartitioned
bin is found, then the remove interface is invoked to remove
the specific KV from the KVC. Once a KV is removed, the
bytes of the KV in the KVC are marked as a “hole” (i.e., gar-
bage bytes) which can be reclaimed through the garbage col-
lection process thatwe explained in Section 4.2.

To send theKVs of the repartitioned bins to new target pro-
cesses, we reuse the communication buffers (i.e., send buffer
and receive buffer) in the shuffle communication stages.
Thus, we do not introduce any extra memory usage for
migrating KVs.

5.1.4 Memory Usage Analysis

The extra memory usage for our repartition design includes
the memory for the repartition table and bin table.
The length of the repartition table is x � b � p, where x is
the percentage of repartitioned bins, b is a configurable
parameter, and p is the number of processes. The maximum
length of the bin table in any process is b � p. Since x, b, and
p are much smaller than n for large-scale datasets, the spatial
complexity of the dynamic repartition is still OðnÞ. The extra
memory usage is significantly smaller than thememory usage

of intermediate data, indicating that our approach does not
impact the overallmemory usage ofMapReduce applications.

5.2 Superkeys and Splitting Strategy

The previous repartition design can balance the memory
usage well for most situations. In some situations, however,
some keys appear significantly more frequently than do
other keys. We call these keys superkeys. The standard Map-
Reduce workflow requires that the KVs with the same key
be sent to the same process. Thus, balancing the number of
KVs is impossible when one or two superkeys occur in a
largely diverse dataset. For example, if the KVs with one
key make up 5 percent of all KVs and we use 25 processes
to handle this dataset, then this dataset cannot be balanced
because, in order to be fully balanced, each process cannot
have more than 4 percent of the KVs. Moreover, as we
use more and more processes, a more serious load imbal-
ance problem arises when superkeys are present. For our
example, if we use 1,536 processes, then for perfect load
balancing the average percentage of keys in each process
is 0.065 percent. If we assign one superkey with a frequency
of 5 percent to one process and balance all the other KVs
evenly among the remaining processes, then each of the
other processes is assigned about 0.061 percent of the KVs,
which is nearly 82 times smaller than the number of KVs on
the process to which the superkey was assigned.

To solve this problem, we devise a split method that
enables theMimir workflow to deal with superkeys. Our split
method provides three features: (1) it ensures that the number
of split keys is small; (2) it provides the capability to get the
split key list; and (3) it balances the KVs with the split key
among all processes. These features are important for split-tol-
erant algorithms to handle the KVs with split keys. Key split-
ting is an extension to the standard MapReduce workflow;
thus the application needs to enable it using a runtime option.
By making key splitting optional, we allow applications that
have potential superkeys to benefit from it while avoiding
such overheadwhen key splitting is not needed.

First, we extend the repartition workflow described in
Section 5.1 to support splitting. Our split workflow is shown
in Fig. 6. We add a split table to record split keys. Note
that we record the hash value of the split key instead of the
key itself so that we can further reduce the overhead involved

Fig. 6. Split workflow with bin table to record the KV counts of bins,
repartition table to record repartitioned bins, and split table

to record superkeys. KVs of superkeys are distributed to all processes.

GAO ET AL.: MEMORY-EFFICIENT AND SKEW-TOLERANT MAPREDUCE OVER MPI FOR SUPERCOMPUTING SYSTEMS 2739

in searching for the keywhen the length of the key is long. The
split table is used when computing the target process. If
the hash value of the key is found in the split table, then
the target process is randomly chosen (i.e., the KVs with split
key are distributed evenly among all processes). Otherwise,
the target process is computed in the same way as the reparti-
tionworkflowdescribed in Section 5.1.

Second, we design the algorithm to get the split keys after
executing the repartition algorithm. The bin table is
scanned to find suspect bins that may contain superkeys, that
is, bins that contain 1=p KVs of the total number of KVs. We
then scan the KVs one by one, recording the KV count of each
key that belongs to the suspect bins. Once we have all KV
counts belonging to suspect bins, the keys that contain at least
a certain proportion of all KVs are added to the split table.
The proportion is set to 0:8=p by default. At the same time, the
split keys are recorded in order to allowMapReduce applica-
tions to access themafter themap phase.

If we assume that there is no hash collision, the maximum
number of split keys is 1:25 � p. Thus, the worst-case spa-
tial complexity of the split table is OðpÞ. Our results in
Section 7 demonstrate the effectiveness of our splitting algo-
rithm with MapReduce applications such as join that tradi-
tionally cannot handle datasetswith superkeys efficiently.

6 INTEGRATION INTO UNIFIED FRAMEWORK

We integrate our dynamic repartition workflow in Section 5.1
into the combiner workflow that supports merging KVs with
the same key in Section 4 to create a unified and powerful
MapReduce over MPI framework. The novelty of our work
lies in the merging of combiner optimizations with methods
for balancing memory usage skew. Contrary to other MapRe-
duce implementations [11], [31], [37], in our implementation
we balance the number of unique keys rather than the total
number of KVs to balance the memory usage. To this end, we
replace the number of KVs in the repartition workflow
described in Section 5.1 with the number of unique keys. Ear-
lier, in Section 4.3, we showed that the spatial complexity of
the combiner workflow is OðuÞ. To check for load imbalance,
we count the number of unique keys assigned to each process.
The bin table is used to keep track of the unique keys
belonging to each bin. We modify the repartition algorithm
described in Section 5.1.2 to use the updated bin table to
partition unique keys evenly. The basic design of the migra-
tion algorithm remains the same as in Section 5.1.3, except
that combinedKVs aremigrated.

7 EVALUATION

In this section, we evaluate the results of Mimir’s in-mem-
ory workflow, the combiner workflow, the dynamic reparti-
tion workflow, and the superkey and splitting approach
with respect to memory usage and performance (i.e., execu-
tion time).

7.1 Platforms, Benchmarks, and Datasets

Our tests are performed on the Tianhe-2 supercomputer.
Tianhe-2 is a high-performance supercomputer located at
the National Supercomputer Center in Guangzhou, China.
Each compute node has two Intel Xeon E2-2692v2 CPUs

(i.e., 12 cores each, 24 cores total) running at 2.2 GHz. Each
node has 64 GB of memory. The nodes are connected with
Tianhe express-2 [22], and the parallel file system is
H2FS [33]. We use MPICH 3.1.3 with a customized GLEX
channel on Tianhe-2 [32]. We perform tests on single nodes
and across nodes of Tianhe-2.

We have presented two classes of optimizations: combiner
optimizations and repartitioning optimizations. We use three
benchmarks that are diverse in terms of datasets and their fea-
tures: word count (WC), octree clustering (OC), and join (Join).
WC is an example application that can benefit from the first
optimization.OC clustering and Join are example applications
that can benefit from the second optimization.

WC is a single-pass MapReduce application. It counts the
number of occurrences of each unique word in given input
files. OC is an iterative MapReduce application with multiple
MapReduce stages. As the application name suggests, OC is
essentially an interactive clustering algorithm (a chain of
MapReduce jobs) for points in a n-dimensional space. We use
the MapReduce algorithm described by Estrada et al. [14] for
classifying points representing ligand metadata from protein-
ligand docking simulations with its 3-D data points. Join is a
single-pass MapReduce application that merges two datasets
into one dataset. Among various join applications, we choose
the log-processing application described in [7], which joins a
larger dataset (a log dataset) and a smaller dataset (a reference
dataset). For the MapReduce implementation, we use the
algorithm called repartition join described in [7]. In the map
phase, the hkey; valuei pairs are generated from the two data-
sets. To identify which dataset a KV pair is from, we add a tag
to the value field to mark the original dataset. All KV pairs
with the same key are then grouped and passed to the same
reduce function. The reduce function buffers the KV pairs
from the smaller dataset and then performs a cross-product
between records in the two datasets. During the evaluation,
the smaller dataset is always eight times smaller than the
larger dataset; we report only the larger dataset in the figures.

We generate both balanced and imbalanced datasets. We
work with synthetic datasets whose elements (words for WC
and Join, and n-D points for OC) are generated following the
Zipf distribution [4]. We choose the Zipf distribution because
it is common in real-world data, such as word counts in the
Wikipedia dataset or city sizes. The Zipf distribution has two
parameters: n and a; n is the number of unique items in the
dataset, and a represents the degree of skew. If a is 0, the dis-
tribution of items (i.e., words and points) is balanced. As a

increases, the degree of skew and the imbalance increase.
When dealing with imbalanced datasets, we consider two
sources: value imbalance (i.e., the imbalance is reflected in the
value distribution) and key-mapping imbalance (i.e., the
imbalance is reflected in the unique key distribution across
processes). An example of value imbalance in the WC bench-
mark is as follows. Suppose we have multiple KV pairs
< k1; v1 > ; < k1; v2 > ; < k2; v3 > and we partition them
between two processes. If the keys are partitioned evenly (i.e.,
k1 to one process and k2 to the another process), then the data-
set is value imbalanced across processes (i.e., < k1; v1 > and
< k1; v2 > to one process and < k2; k3 > to another pro-
cess). On the other hand, an example of key-mapping imbal-
ance for the same benchmark is as follows. Suppose we have
multiple KV pairs < k1; v1 > ; < k1; v2 > ; < k2; v3 > ;

2740 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

and < k2; v4 > and we partition the dataset between two
processes. If the keys are partitioned unevenly (e.g., k1 and k2
all to one process), then the dataset is key-mapping imbal-
anced across processes. This situation is possible when the
hash function used to assign KVs to processes is not able to
balance the keys.

Ourmetrics of success are execution time and peakmemory
usage. For imbalanced datasets, we also track the memory bal-
ance ratio. Execution time is the time from reading the input
data to outputting the final results of a benchmark. The input
data and output data are stored in the parallel file system of
Tianhe-2. Peak memory usage is the maximummemory usage
at any point in time during the benchmark execution. Memory
balance ratio is the maximum peak memory usage across all
processes divided by theminimumpeakmemory usage across
all processes for the execution. Tests are performed three times,
and standard deviations are reported in the figures.

7.2 Balance Versus Imbalance In-Memory Runs

We consider the implementation of Mimir presented in
Section 3 with its in-memory optimizations as our “baseline”
implementation and compare it withMR-MPI in terms of exe-
cution time and peakmemory usage on a single node; we also
measure the weak scalability on multiple nodes. The page
size ofMR-MPI is set to 64MB, the default, and to 256MB, the
maximum size possible for MR-MPI pages on Tianhe-2, so
thatMR-MPI can use all of thememory on the platform.

Fig. 7 shows the execution times and thememory usage for
all three benchmarks running on a single node of Tianhe-2
with balanced datasets (i.e., with skew degree equal to 0.0).
As long as the datasets fit in memory, the execution times of
the two frameworks (i.e., Mimir and MR-MPI) are compara-
ble, with MR-MPI performing slightly better than Mimir for
some of the benchmarks. This result is expected because the
focus of Mimir is on processing more data in memory than
what MR-MPI can. Once a dataset can no longer be hosted in
memory, the performance for the impacted benchmark

degrades substantially (execution times become several
orders of magnitude higher). In our tests, these out-of-mem-
ory execution scenarios are observed for MR-MPI; in our fig-
ures, the degradedMR-MPImeasurements are not reported.

Across the three benchmarks and their different datasets,
Mimir always uses less memory than MR-MPI does: at least
20 percent less memory compared with MR-MPI with page
size 64MB and at least 56 percent lessmemory comparedwith
MR-MPI with page size 256MB. As pointed out in the preced-
ing paragraph, when datasets increase in size, MR-MPI runs
out of memory. Our results for WC indicate that for datasets
larger than 512 MB, MR-MPI with a page size 64 MB runs out
of memory, and for datasets larger than 2 GB, MR-MPI with
page size 512 MB runs out of memory. Mimir, on the other
hand, supports in-memory analysis for up to 16 GB datasets—
8-fold larger than the best case of MR-MPI. This improvement
is due solely to Mimir’s workflow, which uses memory more
efficiently. For OC and Join, Mimir still uses less memory and
supports in-memory computation for larger datasets than
doesMR-MPI. Specifically,Mimir allows execution of datasets
4-fold larger for both OC and Join compared with MR-MPI
with page size 526MB and 16-fold larger for both OC and Join
comparedwithMR-MPIwith page size 64MB.

We perform similar comparisons for the three bench-
marks with skewed datasets, that is, with both value and
key-mapping imbalance. Similar patterns as for the bal-
anced datasets are observed for WC, OC, and Join when
using the imbalanced datasets: (1) Mimir and MR-MPI have
similar execution times; (2) MR-MPI runs out of memory
even for smaller datasets than for the balanced datasets;
and (3) Mimir supports the same large datasets as for the
balanced scenarios. Fig. 8 shows the results for the value-
imbalanced scenarios with degree of skew equal to 1.0. For
WC and Join, MR-MPI with page size 64 MB cannot execute
in memory even for small datasets; for OC, MR-MPI with
page size 64 MB cannot run for datasets larger than 225. The
reason is that the skewness in datasets causes some

Fig. 7. Single-node results with balanced datasets (a ¼ 0:0).

GAO ET AL.: MEMORY-EFFICIENT AND SKEW-TOLERANT MAPREDUCE OVER MPI FOR SUPERCOMPUTING SYSTEMS 2741

processes not to have enough memory for execution. For
WC, OC, and Join, Mimir uses less memory for small data-
sets and allows execution of larger datasets—32-fold larger
for WC, 8-fold for OC, and 16-fold larger for Join compared
with MR-MPI with page size 256 MB. For space constraints
we omit the figures for the key-mapping-imbalanced sce-
narios in which we further observe the shrinking of the
datasets (in terms of their size) supported by MR-MPI with
page size 256 MB. For key-mapping-imbalanced data,
Mimir can process 64-fold larger datasets than MR_MPI can
for WC, and 32-fold larger for OC and Join.

We compare the weak scalability of Mimir versus MR-
MPI for the three benchmarks on 1, 2, 4, 8, 16, 32, 64, and
128 nodes (i.e., 24, 48, 96, 192, 384, 768, 1536, and 3072 cores,
respectively) when using both balanced and imbalanced
datasets.

For the balanced datasets, we run two sets of tests with a
small and a large dataset, respectively. In the first set of tests
we keep the input data size per node to the maximum size
that MR-MPI with page size 256 MB configurations can run
on a single node, as reported in Fig. 7 (i.e., 2 GB for the WC,
227 for OC, and 200 M for Join). In the second set of tests, we
keep the input data size per node to the maximum size
Mimir can support (i.e., 16 GB for WC, 229 for OC, and 800
M for Join). For the imbalanced datasets we still consider
both a small dataset and a large dataset. The small dataset
further shrinks to meet the maximum size that MR-MPI
with page size 256 MB configurations can support on a sin-
gle node with the value-imbalanced datasets (i.e., 512 MB
for the WC, 226 for OC, and 50 M for Join) and with key-
mapping-imbalanced datasets (i.e., 256 MB for the WC, 225

for OC, and 25 M for Join), as defined in the preceding sec-
tion. For the large dataset, we keep the input data size per
node to the maximum size Mimir can support for both
value-imbalanced datasets (i.e., 16 GB for WC, 229 for OC,
and 800 M for Join) and key-mapping-imbalanced datasets
(i.e., 16 GB for WC, 228 for OC, and 400 M for Join).

We observe that Mimir can scale up to the 3,072 cores of
Tianhe-2 independently from the benchmarks when using
small datasets (i.e., for balanced—not shown in the paper
for space constraints, for value imbalance as shown in
Figs. 9a, 9b, 9c, 9d, 9e, and 9f, and for key-mapping imbal-
ance as shown in Figs. 10a, 10b, 10c, 10d, 10e, and 10f).1

While MR-MPI with page size 256 MB can also scale up to
3,072 cores for the same balanced datasets, its scalability is
limited to up to 96 cores for imbalanced datasets as shown
in Figs. 9a, 9b, 9c, 9d, 9e, 9f, and 10a, 10b, 10c, 10d, 10e, 10f.
This loss in scalability is due to some processes having
more intermediate data and thus exceeding the 256 MB
page size and spilling to the I/O subsystem.

When using the large datasets, MR-MPI spills to the I/O
subsystem on a single node (as shown in Figs. 7 and 8) and
therefore does not scale. Mimir scales up to 768 cores for
WC, 384 cores for OC, and 192 cores for Join when using
value-imbalanced data, as shown in Figs. 9g, 9h, 9i, 9j, 9k,
and 9l; it scales up to 48 cores for WC, 96 cores for OC, and
96 cores for Join when using key-mapping-imbalanced data,
as shown in Figs. 10g, 10h, 10i, 10j, 10k, and 10l. Clearly,
Mimir’s scalability outperforms MR-MPI for both small and
large datasets. The optimizations in Sections 4, 5.1, and 5.2
enable the further increase of Mimir’s scalability presented
in the next section.

7.3 Impact of Optimizations

We measure the impact of the workflow optimizations that
we present in Sections 4, 5.1, and 5.2 on scalability and per-
formance of WC, OC, and Join, when using skew datasets
(i.e., both value-imbalanced and key-mapping-imbalanced
datasets). Fig. 11 shows the weak scalability for the value-
imbalanced datasets (i.e., the execution times, the peakmem-
ory performance, and the memory balance ratio) for our

Fig. 8. Single-node results with imbalanced datasets (value imbalance a ¼ 1:0).

1. We note that 3,072 is the maximum number of cores available to
us for our tests.

2742 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

baseline Mimir described in Section 3; Mimir with combiner
optimizations (i.e., Mimir+cb) presented in Section 4; and
Mimir with dynamic reparation (i.e., Mimir+cb+rp) and
with superkey and splitting strategies (Mimir+cb+rp+sp)
presented in Sections 5.1 and 5.2). Fig. 12 shows the weak
scalability for the same optimizations but for key-mapping-
imbalanced datasets.

In the two figures, we observe how different optimiza-
tions are beneficial for different benchmarks and datasets.
In Fig. 11, combiner optimizations can balance the memory
usage, decrease the memory requirement, and consequently
reduce the execution times for WC and OC when using
value-imbalanced datasets. Moreover, the same optimiza-
tions substantially increase the scalability of the two bench-
marks by reducing the amount of data that are moved

across processes in the shuffling phase. Further optimiza-
tions for the two benchmarks, namely, dynamic repartition
and superkey splitting strategies, do not have any further
impact on the two benchmarks.

When considering key-mapping-imbalanced datasets,
one must notice that combiner optimizations depend on the
hash function to distribute the unique keys evenly across
different processes. Hash functions may not distribute
unique keys evenly in cases such as when keys are not uni-
form in the hash space (i.e., for the key-mapping imbal-
ance). This concatenation of facts explains why the same
two benchmark do not present the same performance and
scalability improvements for the key-mapping-imbalanced
data presented in Fig. 12. In other words, for key-mapping-
imbalanced datasets, the default hash function cannot

Fig. 9. Weak-scalability results with imbalanced datasets (value imbalance a ¼ 1:0).

GAO ET AL.: MEMORY-EFFICIENT AND SKEW-TOLERANT MAPREDUCE OVER MPI FOR SUPERCOMPUTING SYSTEMS 2743

distribute the unique keys evenly, whereas the hash func-
tion could balance the unique keys for the value-imbalanced
datasets. Further optimizations are needed for the key-map-
ping-imbalanced datasets such as the dynamic repartitions
that actively redistribute the data across processes. Our
dynamic repartition balances the memory usage well and
improves the performance of the key-mapping-imbalanced
dataset up to 13 times, as shown in Fig. 12. Thus, the results
prove the effectiveness of integrating our repartition with
the combiner in order to solve these abnormal situations
associated with the hash function’s inability to balance
unique keys. Further optimizations for the two benchmark
with superkey strategies do not have any further impact on
the benchmarks’ performance.

Join exhibits different patterns from those of WC and OC.
Join datasets have a log-processing distribution. In Fig. 11, a
severe imbalance due to the long tail of the datasets results
in poor scalability for Join when using a value-imbalanced
dataset. The problem can be resolved for these value-imbal-
anced scenarios only with the splitting strategies defined in
Section 5.2. Our splitting strategies rebalance the KVs,
resulting in memory balance and better performance. The
same behavior is not observed for Join in Fig. 12 when using
key-mapping-imbalanced datasets for which the benchmark
scalability is improved already with the dynamic reparation
optimizations. One can clearly see that while the scalability
improves, the execution times seem to suffer from overhead
associated with the dynamic reparation of data chunks.

Fig. 10. Weak-scalability results with imbalanced datasets (key-mapping imbalance a ¼ 1:0).

2744 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

Table 1 summarizes the maximum number of cores for
which each benchmark scales for both the value-imbalanced
andkey-mapping-imbalanceddatasetswhen the different opti-
mizations are applied. In bold we also outline the best perfor-
mance observed (i.e., execution times) for each type of
optimizations. The table supports our claim that different
benchmarks anddatasets needdifferent types of optimizations.

8 RELATED WORK

Most studies of data skew migration in the MapReduce envi-
ronment [10], [16], [17], [19], [20] focus onMapReduce frame-
works designed for cloud and commodity cluster systems.
Different from them, our work is tomitigate the skew inMap-
Reduce for supercomputing systems. For example, in [28],
[30], the authors optimize Hadoop and Spark on commodity
clusters using RDMA techniques.While these techniques take
advantage of modern network capabilities to improve Map-
Reduce, they are fundamentally limited to frameworks such
as Hadoop and Spark that assume a commodity cluster
model, (that is, a model in which each node is equipped with
on-node storage that helps with storing temporary files, as
needed). While this does not entirely avoid the skew problem
and thus requires additional improvements, the general envi-
ronment is different enough that these solutions cannot
directly be applied to supercomputing systems that have no
on-node storage.

In the initial MapReduce implementation of Google [11],
Dean and Ghemawat used speculative execution to mitigate
the time skew. The speculative execution method has been
improved [6], [9], [38]. However, this method cannot handle
the situation in which one reduce task is assigned too much
data because of data skew. Instead, our design handles the
load imbalance problem caused by the data skew.

Other work is based on the static partition method and
aims to find a better partition for the intermediate data. Ske-
wReduce [19] proposes a cost-based partitioning optimiza-
tion that allows the user to provide a cost function instead
of simply partitioning the data evenly. This is useful for
some applications in which the execution time is not line-
arly decided by the data size. However, SkewReduce
depends on a sampling program to get the approximate fre-
quencies of keys. Thus, it introduces extra overhead to run
the sampling program. Shadi et al. [17] propose an algo-
rithm to consider the locality and fairness to reduce the data
movement over network. However, they need to delay the
shuffle communication until all map tasks are done, in order
to gather the frequencies of all keys. TopCluster [16] pro-
poses a method to estimate the frequencies of top-k keys.
This method is useful because getting accurate frequencies
of all keys for large-scale datasets is not scalable. A similar
idea is used by Yanfang et al. [21]. LIBRA [10] is also based
on the sampling method, which the authors improve by

Fig. 11. Weak-scalability results for the different optimizations and with imbalanced datasets (i.e., value imbalance).

GAO ET AL.: MEMORY-EFFICIENT AND SKEW-TOLERANT MAPREDUCE OVER MPI FOR SUPERCOMPUTING SYSTEMS 2745

integrating sampling into a small percentage of the map
tasks. Thus, they avoid the need to run sampling programs
and do not need to delay all shuffle communications. Differ-
ent from these static partition methods, our repartition
design can dynamically adjust the partition. More impor-
tant, we do not delay any shuffle communications or run
any sampling programs.

Other methods use dynamic partitioning. Yanfang et al.
[21] propose an online partition method based on a greedy
strategy that assigns each key to the task with the smallest
load. This method depends on the master-worker design,
however, and is not suitable for the decentralizedMapReduce

design. SkewTune [20] is another system that adjusts the parti-
tion dynamically. The basic idea is to repartition unprocessed
data of straggler tasks. Our dynamic repartition method has
some fundamental differences compared with that idea. First,
our repartition method is based on the sampling principle:
that is, ourmethod tries to use the frequencies of a partial data-
set to estimate the frequencies of the entire dataset. Thus, we
can eliminate the load imbalance problem as early as possible.
Second, SkewTune cannot repartition any assigned keys for
the reduce tasks, whereas our method can reassign keys by
migrating intermediate data.

Some research also has been carried out to handle super-
keys. For example, LIBRA [10] introduces a split design.How-
ever, none of the previous works provides the split key list to
applications. Thus, they do not allow the applications to han-
dle the split key and nonsplit key separately, as in our design.

Data skew has also been studied in the parallel database
area for Join [34], [35], group [3], aggregate [26], and so on.
Recent work [12] about adaptive query processing focuses
on relational operators [12]. Our work is more general, how-
ever, by supporting MapReduce applications.

Data skew or load-balancing problems have also been
studied in scientific simulation communities. As with parallel
database systems, some mature infrastructures run parallel
simulations to handle the skew problem [5], [13], [18], [24].
The primary technique is to perform dynamic repartition

Fig. 12. Weak-scalability results for the different optimizations and with imbalanced datasets (i.e., key-mapping imbalance).

TABLE 1
Maximum Scalability of Mimir in Terms of Number of Processes
for the in-Memory Workflow, the Combiner Workflow (cb), the
Dynamic Repartition Workflow (rp), and Splitting Approach (sp)

Value Key Mapping

WC OC Join WC OC Join

Mimir 798 384 192 48 96 96
Mimir+cb 3072 3072 192 384 3072 96
Mimir+cb+rp 3072 3072 192 3072 3072 3072
Mimir+cb+rp+sp 3072 3072 3072 3072 3072 3072

Numbers in bold represent the configuration with best performance after which
further optimizations do not increase the performance.

2746 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

when a load imbalance problem exists. Our repartition
method borrows some ideas from those systems. Different
from these works, however, we apply the repartition idea to
the MapReduce implementation for supercomputing systems
first.Moreover, we integrate the repartitionwith the combiner
optimizations in theMapReduceworkflow.

9 CONCLUSION

In this paper, we present Mimir, a MapReduce over MPI
framework, including a pipeline combiner workflow, a new
dynamic repartitionmethod, and a strategy for splitting single
superkeys across processes. The three optimizations balance
thememory usage for highly skeweddatasets up to amemory
balance ratio of 1 (i.e., full balancing of data) and reduce the
execution time up to 5 times for a diverse set of case studies
using the word count, octree clustering, and join benchmarks. At
the same time, our framework uses less or equal memory
comparedwith existing state-of-the-art MapReduce over MPI
implementations such as MR-MPI. Mimir is highly scalable,
scaling to at least 3,072 processes on Tianhe-2. To the best of
our knowledge, this is the first work to handle data skew
problems in MapReduce over MPI for large-scale supercom-
puting systems. Our method has been integrated into the
Mimir code, which can be downloaded at https://github.
com/TauferLab/Mimir.git.

ACKNOWLEDGMENTS

Yanfei Guo and Pavan Balaji were supported by the U.S.
Department of Energy,Office of Science, under Contract num-
ber DE-AC02-06CH11357. Boyu Zhang, Pietro Cicotti, Tao
Gao, and Michela Taufer were supported by US National Sci-
ence Foundation Grants #1318445, #1318417, and #1841758.
Tao Gao and Yutong Lu were supported by the National Key
R&D Project in China 2016YFB1000302, the National Natural
Science Foundation of China U1611261 and NSFC61402503,
and the program for Guangdong Introducing Innovative and
Entrepreneurial Teams (2016ZT06D211). Tao Gao was also
supported by the China Scholarship Council. Part of the
research in this article used resources of the National Super-
computer Center in Guangzhou, China. XSEDE resources,
supported by US National Science Foundation grant ACI-
1053575,were used to obtain some other performance data.

REFERENCES

[1] Apahce Hadoop. [Online]. Available: http://hadoop.apache.org/
[2] IBM BG/Q Architecture. [Online]. Available: https://www.alcf.

anl.gov/files/IBM_BGQ_Architecture_0.pdf
[3] S. Acharya, P. B. Gibbons, and V. Poosala, “Congressional sam-

ples for approximate answering of group-by queries,” ACM SIG-
MOD Rec., vol. 29, pp. 487–498, 2000.

[4] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet,”
Glottometrics, vol. 3, no. 1, pp. 143–150, 2002.

[5] M. Agarwal et al., “Automate: Enabling autonomic applications
on the grid,” in Proc. Autonomic Comput. Workshop, 2003, pp. 48–57.

[6] G. Ananthanarayanan et al., “Reining in the outliers in Map-
Reduce clusters using Mantri,” in Proc. 9th USENIX Conf. Operat-
ing Syst. Des. Implementation, vol. 10, 2010, Art. no. 24.

[7] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian,
“A comparison of join algorithms for log processing inMapReduce,”
in Proc. ACMSIGMOD Int. Conf. Manage. Data, 2010, pp. 975–986.

[8] N. Chaimov, A. Malony, S. Canon, C. Iancu, K. Z. Ibrahim, and
J. Srinivasan, “Scaling spark on HPC systems,” in Proc. 25th ACM
Int. Symp. High-Perform. Parallel Distrib. Comput., 2016, pp. 97–110.

[9] Q. Chen, C. Liu, and Z. Xiao, “Improving MapReduce perfor-
mance using smart speculative execution strategy,” IEEE Trans.
Comput., vol. 63, no. 4, pp. 954–967, Apr. 2014.

[10] Q. Chen, J. Yao, and Z. Xiao, “LIBRA: Lightweight data skewmiti-
gation in MapReduce,” IEEE Trans. Parallel Distrib. Syst., vol. 26,
no. 9, pp. 2520–2533, Sep. 2015.

[11] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,”Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[12] A. Deshpande, Z. Ives, and V. Raman, “Adaptive query proc-
essing,” Found. Trends� Databases, vol. 1, no. 1, pp. 1–140, 2007.

[13] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan,
“Zoltan datamanagement service for parallel dynamic applications,”
Comput. Sci. Eng., vol. 4, no. 2, pp. 90–97, 2002.

[14] T. Estrada, B. Zhang, P. Cicotti, R. S. Armen, and M. Taufer, “A
scalable and accurate method for classifying protein-ligand bind-
ing geometries using a MapReduce approach,” Comput. Biol. Med.,
vol. 42, no. 7, pp. 758–771, 2012.

[15] T. Gao et al., “Mimir: Memory-efficient and scalable MapReduce
for large supercomputing systems,” in Proc. 31th IEEE Int. Parallel
Distrib. Process. Symp., 2017, pp. 1098–1108.

[16] B. Gufler, N. Augsten, A. Reiser, and A. Kemper, “Load balancing
in MapReduce based on scalable cardinality estimates,” in Proc.
IEEE 28th Int. Conf. Data Eng., 2012, pp. 522–533.

[17] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi, “LEEN: Locality/
fairness-aware key partitioning for MapReduce in the cloud,” in
Proc. IEEE 2nd Int. Conf. Cloud Comput. Technol. Sci., 2010, pp. 17–24.

[18] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis, “Mizan: A system for dynamic load balancing in large-
scale graph processing,” in Proc. 8th ACM Eur. Conf. Comput. Syst.,
2013, pp. 169–182.

[19] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skew-resistant
parallel processing of feature-extracting scientific user-defined
functions,” in Proc. 1st ACM Symp. Cloud Comput., 2010, pp. 75–86.

[20] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “SkewTune: Miti-
gating skew in MapReduce applications,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2012, pp. 25–36.

[21] Y. Le, J. Liu, F. Ergun, and D. Wang, “Online load balancing for
MapReduce with skewed data input,” in Proc. IEEE INFOCOM,
2014, pp. 2004–2012.

[22] X.-K. Liao et al., “High performance interconnect network for Tianhe
system,” J. Comput. Sci. Technol., vol. 30, no. 2, pp. 259–272, 2015.

[23] X. Lu, M. W. U. Rahman, N. Islam, D. Shankar, and D. K. Panda,
“Accelerating spark with RDMA for big data processing: Early
experiences,” in Proc. IEEE 22nd Annu. Symp. High-Perform. Inter-
connects, 2014, pp. 9–16.

[24] L. Oliker and R. Biswas, “PLUM: Parallel load balancing for adap-
tive unstructured meshes,” J. Parallel Distrib. Comput., vol. 52, no. 2,
pp. 150–177, 1998.

[25] S. J. Plimpton and K. D. Devine, “MapReduce in MPI for large-scale
graph algorithms,” Parallel Comput., vol. 37, no. 9, pp. 610–632, 2011.

[26] A. Shatdal and J. F. Naughton, “Adaptive parallel aggregation
algorithms,” ACM SIGMOD Rec., vol. 24, pp. 104–114, 1995.

[27] S.-J. Sul andA. Tovchigrechko, “Parallelizing BLAST and SOMalgo-
rithmswithMapReduce-MPI library,” in Proc. IEEE Int. Symp. Paral-
lel Distrib. Process.Workshops Phd Forum, 2011, pp. 481–489.

[28] The Ohio State University. [Online]. Available: http://hibd.cse.
ohio-state.edu/

[29] Y. Wang, R. Goldstone, W. Yu, and T. Wang, “Characterization
and optimization of memory-resident MapReduce on HPC sys-
tems,” in Proc. IEEE 28th Int. Parallel Distrib. Process. Symp., 2014,
pp. 799–808.

[30] M. Wasi-ur Rahman et al., “High-performance RDMA-based design
of hadoopMapReduce over InfiniBand,” in Proc. IEEE 27th Int. Symp.
Parallel Distrib. Process.Workshops PhDForum, 2013, pp. 1908–1917.

[31] T. White, Hadoop: The Definitive Guide. Sebastopol, CA, USA:
O’Reilly Media, Inc., 2012.

[32] M. Xie, Y. Lu, K. Wang, L. Liu, H. Cao, and X. Yang, “Tianhe-1A
interconnect and message-passing services,” IEEE Micro, vol. 32,
no. 1, pp. 8–20, Jan./Feb. 2012.

[33] W. Xu et al., “Hybrid hierarchy storage system inMilkyWay-2 super-
computer,” Front. Comput. Sci., vol. 8, no. 3, pp. 367–377, 2014.

[34] Y. Xu and P. Kostamaa, “Efficient outer join data skew handling in
parallel DBMS,” Proc. VLDB Endowment, vol. 2, no. 2, pp. 1390–1396,
2009.

[35] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen, “Handling data skew
in parallel joins in shared-nothing systems,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2008, pp. 1043–1052.

GAO ET AL.: MEMORY-EFFICIENT AND SKEW-TOLERANT MAPREDUCE OVER MPI FOR SUPERCOMPUTING SYSTEMS 2747

http://hadoop.apache.org/
https://www.alcf.anl.gov/files/IBM_BGQ_Architecture_0.pdf
https://www.alcf.anl.gov/files/IBM_BGQ_Architecture_0.pdf
http://hibd.cse.ohio-state.edu/
http://hibd.cse.ohio-state.edu/

[36] X. Yang, N. Liu, B. Feng, X.-H. Sun, and S. Zhou, “PortHadoop:
Support direct HPC data processing in Hadoop,” in Proc. IEEE
Int. Conf. Big Data, 2015, pp. 223–232.

[37] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” Proc. 2nd USENIX
Conf. Hot Topics CloudComput., 2010, pp. 10–10.

[38] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environ-
ments,” in Proc. 8th USENIX Conf. Operating Syst. Des. Implementa-
tion, 2008, Art. no. 7.

Tao Gao (Student Member, IEEE) is working
toward the PhD degree at the National University
of Defense Technology, Changsha, China and is
a visiting scholar with the University of Delaware.
His research interests include big data process-
ing and high-performance computing.

Yanfei Guo (Member, IEEE) is an assistant com-
puter scientist with Argonne National Laboratory.
His research interests include cloud computing,
big data processing and MapReduce, and high-
performance computing.

Boyu Zhang is a software engineer with Micro-
soft. Her research interests include scalable big
data analytics, clustering and classification meth-
ods, performance analysis and optimization, and
scientific applications.

Pietro Cicotti (Member, IEEE) is a senior architect
withNVIDIA,where he is amember of theTensorRT
Team. His research interests include architecture,
systems design, optimizations, and emerging tech-
nologies for exascale, scientific computing, and
machine learning.

Yutong Lu (Member, IEEE) is the director of the
National Supercomputing Center in Guangzhou,
China. She is also a professor with the School of
Computer Science, Sun Yat-sen University, as well
as with the National University of Defense Technol-
ogy.Her research interests includeparallel operating
systems, high-speed communication, global file sys-
tems, and advanced programming environments.

PavanBalaji (SeniorMember, IEEE) is a computer
scientist with Argonne National Laboratory where
he leads the Programming Models and Runtime
SystemsGroup. His research interests include par-
allel programming models and runtime systems for
communication and I/O on extreme-scale super-
computing systems, modern system architecture,
cloud computing systems, data-intensive comput-
ing, and big data sciences.

Michela Taufer (Senior Member, IEEE) holds the
Jack Dongarra professorship in high performance
computing with the Department of Electrical Engi-
neering and Computer Science, University of Ten-
nessee Knoxville. Her research interests include
high-performance computing, including scientific
applications scientific applications, scheduling and
reproducibility challenges, and big data analytics.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2748 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

