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Abstract—Load balance is essential for high-performance ap-
plications. Unbalanced communication can cause severe per-
formance degradation, even in computation-balanced BSP ap-
plications. Designing communication-balanced applications is
challenging, however, because of the diverse communication
implementations at the underlying runtime system. In this
paper, we address this challenge through an interprocess work-
stealing scheme based on process-memory-sharing techniques.
We present CAB-MPI, an MPI implementation that can iden-
tify idle processes inside MPI and use these idle resources to
dynamically balance communication workload on the node. We
design throughput-optimized strategies to ensure efficient stealing
of the data movement tasks. We demonstrate the benefit of
work stealing through several internal processes in MPI, in-
cluding intranode data transfer, pack/unpack for noncontiguous
communication, and computation in one-sided accumulates. The
implementation is evaluated through a set of microbenchmarks
and proxy applications on Intel Xeon and Xeon Phi platforms.

Index Terms—Work stealing, MPI, load balance, communica-
tion

I. INTRODUCTION

MPI remains the dominant parallel programming model in
high-performance computing (HPC) applications. A primary
goal of MPI applications is to efficiently execute on large-
scale systems while maintaining low communication overhead.
The communication overhead is not only caused by the data
transfer required by application algorithms but may be also
caused by the synchronization between processes that are
handling unbalanced workload. That is, the process that has
finished its local work has to wait for the other busy processes
(e.g., the one that handles heavier work) to complete at a syn-
chronizing point before moving to the next step or iteration in
the application. Such an issue not only degrades performance
but also causes underutilization of hardware resources because
the underlying cores are completely idle during waiting.

Application developers have put significant effort into bal-
ancing computational workload [1]–[4]. However, the balance
of communication workload (e.g., data transfer and internal
processing in MPI) is often not well optimized, resulting in
considerable performance degradation. For instance, the stencil

is a widely studied application pattern and is considered to be
regular and balanced (i.e., bulk synchronous parallelism). As
we show in Figure 1, however, a well-balanced seven-point
three-dimensional stencil program can still present up to 45%
idle time (i.e., the period idly waiting inside MPI) on some
processes, resulting in 18% degradation in the overall per-
formance (based on the estimated “ideal time” with balanced
communication.1) Indeed, such idleness is caused mainly by
the imbalance of communication.
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Fig. 1: Unbalanced communication in 3D 7-point stencil on 4
Broadwell nodes (Intel Xeon E5-2695v4 CPU, 36 processes
per node). The experiment adopted the miniGhost stencil
program [5] with parameters nx=ny=nz=50,nvar=100 and
process grid 4×6×6. The time is measured for processes on
the first node.

Pursuing evenly distributed communication at the applica-
tion level is impractical mainly because the user of MPI cannot
estimate the amount of work involved inside each MPI call.
For instance, intranode communication and internode com-
munication are usually implemented differently. Consequently,
the required workloads are different even if the message size
is the same. Within noncontiguous data transfer, depending
on the data layout the workloads can be significantly different
(e.g., the data transfer of the X-Z plane vs. that of the Y-Z
plane in a 3D halo exchange). Moreover, even with the same
type of data transfer, the amount of work might vary depending
on the location of the communicating processes (e.g., cross-

1We obtained the ideal time by averaging the sum of compute time and
communication time on all 36 processes on the node.
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NUMA data transfer usually takes longer than that inside a
NUMA node).

To address this challenging issue, we believe that a runtime-
level solution is essential. In this paper, we present CAB-
MPI, a communication-auto-balance MPI implementation that
internally balances various communication workloads in MPI.
CAB-MPI is based on the concept of interprocess work
stealing that utilizes idly waiting processes inside the MPI
library to “steal” communication tasks from the other busy
processes located on the same node, consequently achieving
communication balance.

The work-stealing approach has been broadly investigated
in multithreading programming [6]–[16]. Such an approach
requires flexible data sharing because the worker (i.e., the
one that steals work) has to access arbitrary data associated
with the stolen task. Such a requirement is naturally met
in multithreaded programs since the worker thread and the
victim thread share the same virtual address space. In process-
based MPI programs, however, a special memory-sharing
technique has to be used because accessing data owned by
a different process is prohibited by the operating system. As
the prerequisite of the proposed interprocess work stealing,
we analyze primary process-memory-sharing techniques that
are available in the HPC community. We then present the
implementation of CAB-MPI based on the process-in-process
address-sharing technique [17].

Unlike traditional work-stealing solutions that are often de-
signed for computational workloads, the work stealing in MPI
specializes in communication. The dominant data-movement-
centric workloads make the stealing tasks memory bandwidth
bound. A performance-efficient work-stealing strategy must
take into account the bandwidth limitation especially when
cross-memory-domain data access is involved. More impor-
tant, stealing a communication task has to involve multiple
processes (e.g., sender, receiver, and worker in MPI point-to-
point communication) and data buffers (i.e., including source,
destination, and any intermediate buffers). Special locality-
aware strategies must be designed for such a multiprocess
multibuffer scenario. These challenges make our work-stealing
design completely different from existing work. To the best of
our knowledge, CAB-MPI is the first work that systemically
explores interprocess work stealing for MPI-like communica-
tion workloads.

We demonstrate the performance benefit of the proposed
approach in several MPI internal processes, including intran-
ode data transfer, pack/unpack in noncontiguous data transfer,
and reduce operations in the RMA accumulate communi-
cation. We also present a thorough experimental evaluation
and analysis on Intel Xeon Broadwell and Knights Landing
(KNL) platforms using a variety of microbenchmarks and
proxy applications.

II. SHARED-MEMORY TECHNIQUE ANALYSIS

Interprocess work stealing requires data sharing between
processes mainly for two kinds of data. The first is a shared
data structure to manage the available tasks on each process

such as the queue structures used in CAB-MPI; the second
kind is the user data associated with each communication task,
which is usually managed by the user program (e.g., the source
and destination buffers specified to the MPI send/receive
calls). Unlike threads, processes cannot arbitrarily access the
data owned by another process, because of limitations by
the operating system (OS). Several process-memory-sharing
techniques are used in the HPC community, but not all of
them provide sufficient support for the required data sharing.
In this section, we give a brief overview of each technique
and discuss its suitability for use in CAB-MPI.

POSIX shared memory [18] allows two processes to col-
lectively allocate a shared-memory segment. However, global
variables or preallocated buffers (e.g., the user data associated
with an MPI call) cannot be shared.

Cross-Memory-Attach (CMA) [19] and KNEM [20] are
two kernel-assisted direct copy techniques. A process can
directly read or write a buffer owned by the other process
by using the system call provided by CMA or KNEM. To
make a third process (e.g., the worker process in work stealing)
perform the copy for two processes, however, it has to copy
the data through a temporary buffer in its own memory space
beforehand. Each data copy has to go through the kernel,
making these approaches expensive.

XPMEM [21] is a Linux kernel module supporting cross-
process memory mapping. A process can attach a remote
memory segment to its local address space through an XP-
MEM system call and cache the segment handle for reuse. The
data copy is performed completely in user space. For every
newly used buffer on a process, however, the worker process
still has to pay an expensive cost to attach the segment. Such
a limitation can result in up to O(p2) attach overhead, where
p is the number of processes on a node.

Process-in-process (PiP) [17] is a user-level address-space-
sharing technique based on position-independent executables
(PIE) and the dlmopen() Glibc function. The PiP environ-
ment allows every execution unit (called a PiP task) to behave
as a normal OS process (i.e., each task owns a privatized
variable set and can execute a different program) but share
the same virtual address space with others located on the
same node. Consequently, it enables arbitrary interprocess data
access without involving additional overhead.

The thread-based MPI implementations allow complete data
sharing across MPI processes. For instance, MPC is a thread-
based language-processing system designed for hybrid MPI
and OpenMP programming [22]. The MPC runtime creates
threads running as MPI processes so that intranode data
transfer can be highly optimized. AMPI over Charm++ [23],
[24] implements MPI ranks over user-level threads in order
to migrate ranks over different physical cores for dynamical
workload balance. Both implementations, however, indicate
several shortcomings of the thread-based model, such as
inconvenient global variable privatization and lack of support
for executing multiple programs.

In summary, PiP is the most suitable memory-sharing tech-
nique to support interprocess work stealing in MPI. Some



other approaches (i.e., POSIX shared memory, XPMEM, or
the thread-based model), however, are also feasible with
limitations in the user program. For instance, if the user agrees
to allocate user data only from shared memory, POSIX shared
memory would be sufficient for interprocess stealing.

In the following sections, we use the PiP-aware MPI [17]
as the baseline implementation. To be specific, we extended
the MPICH implementation of MPI (commit 8cccb4c5 from
the master branch at https://github.com/pmodels/mpich). We
modified the Hydra process launching of MPICH to spawn
MPI processes as PiP tasks. All intranode data transfer routines
were optimized following the 1-copy protocol in the baseline
implementation. Work stealing applies only to communication
with medium-sized and large data; thus, discussion regarding
small data communication is omitted in this paper.

III. DESIGN AND IMPLEMENTATION

In this section, we describe the design of the proposed work-
stealing mechanism in CAB-MPI.

A. Basic Semantics Definition

The core concept of CAB-MPI is to employ idle MPI
processes to steal the communication tasks from the other busy
processes in order to balance workload. We call such an idle
process a valid “worker.” Below we define the semantics of
worker, task, and their locality.

1) Worker Definition: We define that a process becomes
a valid worker of the work-stealing mechanism when it is
idly waiting at an MPI blocking call. A simple example is
the MPI_Barrier call. Once a process arrives at the barrier,
it has to idly wait until the last process in the communica-
tor also arrives at the call. Therefore, the waiting process
becomes a valid worker. When a process makes a call to
MPI_Recv, for example, it becomes a valid worker until
a matching message arrives. In sending calls, the process
can also be a valid worker if it is waiting inside MPI for
available communication resources or for response from the
other process (e.g., in a rendezvous protocol). For nonblocking
calls such as MPI_Isend and MPI_Put, the process returns
immediately after initializing the sending; thus it cannot be a
worker. However, it becomes a valid worker once it arrives
at the blocking synchronization calls such as MPI_Wait and
MPI_Win_flush. For nonblocking synchronization calls such
as MPI_Test, we consider that the user wants to compute after
the call; thus we do not make the process be a worker.

The worker status of a process is time-specific. For instance,
a worker may become invalid after finishing a stealing task if it
detects that its waiting condition is met (e.g., the incoming data
has arrived). In MPICH-derived MPI implementations, this
situation usually occurs when the process polls the progress
engine.

2) Task Definition: MPI provides many types of rou-
tines to which work stealing can bring performance bene-
fits. We summarize them in two categories: data-movement-
centric routines and compute-centric routines. The former
category includes any intranode communication calls such as

MPI_Send|Recv and one-sided operations and any internal
data movements for internode communication (e.g., data pack/
unpack for noncontiguous data). The latter category refers to
the reduce operation involved in some communication calls
such as MPI_Accumulate and MPI_Reduce. We define the
the stealing task as moving or computing a certain amount of
data from the source to the destination buffer.

We note that for intranode data movement or compute
routines, the buffers are usually the same as those of the user-
specified buffers. For internode routines, however, either the
source or the destination buffer is an internal buffer maintained
by MPI. We give a detailed description in Section III-D.

Ownership determination. Task ownership identifies the lo-
cality of tasks and workers, which is a key performance factor
in work stealing. Unlike traditional work-stealing scenarios,
a stealing task in CAB-MPI involves at least a pair of
processes. Thus, special rules must be designed to determine
the ownership of a task. We define two common rules.

Rule 1. A task belongs with the involved process that will likely
consume the result data.
Rule 2. If it is unknown what process will use the result data,
the task belongs with the process that actually performs the
data movement or computation before applying work stealing.

Based on these two rules, we describe the task ownership for
each MPI communication mode. For intranode send/receive,
the receiver process owns the involved data movement task(s)
because it will likely use the received data (e.g., using it in
a user computation) (Rule 1 is applied). For intranode one-
sided operations, however, the transferred data does not have
a specific “consumer.” Thus, the origin process that performs
the work in the 1-copy protocol owns the involved data move-
ment or computing task(s) (Rule 2 is applied). An internode
operation may involve separate tasks on each node (e.g., an
active-message-based noncontiguous MPI_Accumulate pro-
duces packing task(s) on the origin node and computing task(s)
on the target node). In such a case, each task is owned by the
operating process on each node (Rule 2). Collective operations
are implemented based on active messages by default. Thus,
the task ownership is similar to an internode operation.2

3) Locality Definition: Cross-memory domain (e.g.,
NUMA) work stealing may degrade performance especially
for data movement tasks. The locality of stealing tasks
and workers is an essential property for performance
consideration. The granularity of locality varies on different
hardware architecture and can be hierarchical. In this paper
we consider only a single-level granularity for simplicity
(NUMA node). To be specific, we define that the locality
of a task belongs to the NUMA node to which the owner
process is bound. Moreover, we use the term local stealing to
describe the case where a worker steals a task from the local
NUMA node; otherwise we describe it as remote stealing.

2Shared-memory-based collective optimization [25], [26] is orthogonal to
this work; we leave work stealing for such tasks as future work.



B. Framework Design

We present our basic work-stealing framework in Figure 2.
We separate the procedure into a task allocation flow from
the view of the task owner and a work-stealing flow from
the view of a worker. At the task allocation flow, the owner
logically chunks the buffers and creates a separate task for
each chunk. The task descriptor contains the information of
buffer offset, chunk size, reduce operation (MPI_REPLACE is
set for data movement tasks), and datatypes. A completion flag
is used to determine whether the worker has finished the task.
Each process maintains two queue structures: a first-in, first-
out task queue shared with all potential workers and a private
track queue that is used to track any completed tasks and
reclaim the associated resources. The owner enqueues each
created task into both queues (atomicity is required only for
the shared task queue.3) At the work-stealing flow, a worker
follows the stealing strategies (see Section III-C) to choose the
victim process. The worker dequeues a task from the victim’s
task queue and then processes it. After the task is complete,
the worker marks the completion flag in the task descriptor so
that the owner can notice the completion when traversing its
private track queue and can clean up resources.
Ensuring MPI semantics correctness. For send/receive com-
munication the stealing tasks are created only after message
matching. Thus, the message ordering is not broken by work
stealing. For one-sided accumulate operations, the owner pro-
cess creates the tasks for an operation only after obtaining
permission to update the window (e.g., through a mutex lock
in MPICH) and always waits for the completion of all tasks
before processing the next operation. Hence, the required
atomicity and ordering are ensured.

struct task{
void *src_offset;  /* src addr */
void *dest_offset; /* dest addr */
size_t chunk_size;
MPIR_Op op; /* task operation */
MPIR_Datatype *src_datatype;
MPIR_Datatype *dest_datatype;
volatile int complete_flag;
......

};

task

(3) enqueue 
task queue

(4) enqueue 
track queue

Track queue (private to owner 
process for resource reclaim)

(2) create task
Source

Destination

(1) buffer are logically cut into chunks

Task queue (shared by all 
processes on the node)

Task Allocation Flow

(5) check and dequeue task

(6) process task and 
set complete flag

Stealing Worker

Stealing Strategy (determine 
stealing behaviors)

Work Stealing Flow

Busy Process (7) detect idleness

Fig. 2: High-level queue-based work-stealing framework.

C. Work-Stealing Strategies

In this section, we explore the strategies for victim selection
through three work-stealing strategies.

3Our current implementation simply uses a lock-based single-producer-
multiple-consumer queue. However, the implementation can be further op-
timized based on lock-free algorithms.

1) Localized Work Stealing: The worker can perform only
local stealing based on the fact that intra-NUMA data access
is always faster than that across NUMA nodes. Therefore,
the data is always kept in the local cache, and the stealing
never causes extra cross-NUMA data access. The selection of
a victim from the local NUMA is based on a random protocol
that is simple yet sufficient. If the victim’s task queue is not
empty, the worker dequeues a task and handles it; otherwise,
the worker simply exits. We note that each worker checks
only one victim at a time in order to keep the stealing routine
lightweight. This approach allows the worker to frequently
check whether its waiting condition is met so that it can switch
back to its original work. If the worker status is still valid, it
can re-enter the stealing routine again.

2) Mixed Work Stealing: Mixed work stealing extends the
localized work-stealing version. If a worker cannot find any
task from the selected local victim, it then proceeds to remote
stealing following the same random victim selection method.
All remote victims are maintained in a single pool for random
selection even if the architecture contains multiple NUMA
nodes (e.g., in KNL SNC4 mode). Similar to local stealing,
each worker selects a remote victim only once, to keep the
trial lightweight.
Discussion: localized vs. mixed stealing. For memory-bound
tasks that are dominated by memory operations (e.g., memcpy),
the performance is determined mainly by the achieved data
access throughput. Therefore, localized work stealing should
be the best approach if the number of local workers is
sufficient. When the local workers are not enough to saturate
the memory bandwidth, however, allowing remote stealing can
improve memory throughput. Hence, mixed stealing works
better in such a case. Unfortunately, none of the strategies can
efficiently serve all use cases. Therefore, we further explore
the third strategy based on throughput awareness.

3) Throughput-Aware Work Stealing: Throughput-aware
work stealing is based on the notion that when the memory
bandwidth of a NUMA node is not saturated, increasing
remote stealing can improve overall throughput. When local
stealing is sufficient to saturate the bandwidth, however, we
need to avoid remote stealing in order to ensure high local-
NUMA throughput. To demonstrate such a tradeoff, we use a
simple memcpy microbenchmark to mimic the data movement
tasks in MPI. Each process allocates the source and the
destination buffers from the same NUMA node and performs
memcpy with 64 KB of data 1,000 times. We adjust the number
of processes that simultaneously perform the copy on every
NUMA node and report the overall throughput on the node
by summing the local throughput achieved by each process.
The experimental platform consists of two NUMA nodes. We
call processes on the first NUMA node local processes, and we
call the ones on the other NUMA nodes remote processes. As
shown in Figure 3, if we vary the number of remote processes
for each fixed number of local processes, throughput improves
only when the number of local processes is less than 4. When
more local processes are performing the copy, adding remote
processes significantly degrades overall throughput. Clearly,



we can divide the trend into a bandwidth-unsaturated range
and a bandwidth-saturated range as indicated in the graph.
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Fig. 3: Memcpy throughput with variable number of local and
remote processes on a Broadwell node (two NUMA nodes
each with 18 cores). The results are averaged from ten runs,
and the error is less than 4%.

Based on the throughput analysis, we design the throughput-
aware work-stealing strategy. The local stealing phase remains
unchanged. When local stealing fails, it then tries to perform
remote stealing. Unlike the mixed stealing strategy, it first
checks the bandwidth status of the NUMA node associated
with the selected remote victim. The worker steals a task from
the victim only when the NUMA bandwidth is not saturated.

Precisely quantifying the bandwidth usage of a NUMA
node is difficult because the processes perform a variety of
tasks during runtime. Some of the tasks are generated by MPI
while some others are from the user program; some tasks are
memory-bound while some others are more compute-bound.
Therefore, we make a conservative estimation based on the
number of processes that are “possibly active” on that NUMA
node. That is, we count a process as guaranteed idle only
when it is idly waiting inside MPI; otherwise, we assume it is
active and contributes to the bandwidth usage. We denote the
number of active processes by nactive. We define the threshold
of saturated local workers based on the results from Figure 3
(denoted by Nsaturate. Value is 4 on our platform). Therefore,
a worker checks whether the remote NUMA’s bandwidth is
saturated by comparing nactive ≥ Nsaturate. We emphasize
that this method is conservative because we assume all active
processes are performing memcpy-like tasks. However, such a
method allows us to avoid any performance degradation that
may be caused by remote stealing.

To keep the preferred local stealing fast, each process
updates only a local flag. The flag is 1 by default. It becomes
0 only when the process becomes a valid worker and does
not handle any stealing task. The worker that performs remote
stealing checks the flag on each process on the remote NUMA
to count nactive.

D. Work-Stealing Showcase

We exploit three internal aspects in CAB-MPI to showcase
the proposed working-stealing method: intranode contiguous
data transfer, noncontiguous data packing/unpacking, and the
reduce operation in one-sided accumulate. We describe the
task creation for each aspect. The consequent work stealing
follows the generic framework and strategies as described in
the preceding subsections.

1) Intranode Data Transfer: In the baseline PiP-aware MPI,
the receiver process directly copies data from the sender
process on the same node after exchanging the buffer addresses
at handshake. As the simplest task type, we logically chunk
such data copy into multiple chunks and expose each chunk
as a stealing task.

2) Noncontiguous Data Packing: To transfer noncontiguous
data, MPICH internally triggers the pack/unpack routines. For
an intranode message, if both the source and the destination
buffers are noncontiguous, an internal contiguous buffer is
used; for internode messages, the data is first packed into an
internal buffer on the sender process for network transfer and
then unpacked into the destination buffer once it arrive on the
receiving side. A similar approach is used for both send/receive
and one-sided operations. We logically chunk the pack/unpack
task and expose each as a stealing task.

3) Reduce Operation: Several MPI functions carry a reduce
operation (e.g., MPI_SUM, MPI_PROD). Here we optimize the
MPI_Accumulate function as an example. In the baseline
implementation, the computation is performed by the origin
process in an intranode accumulate through PiP’s shared-
memory environment; for any internode accumulate, it is
implemented as an active message (i.e., the target process
receives the data and then computes and updates the window).
In either case, the computation is chunked and posted as
stealing tasks. Each task always handles a separate data range.
We note that a similar optimization can be easily applied
to other MPI functions involving the reduce operation, such
as MPI_Reduce. We omit its description because of space
limitation.

E. Other Optimizations

We propose three techniques to optimize the showcases.
1) Reversed Task Enqueue: The receiver process commonly

will access the data after communication. For large data
transfer (e.g., larger than the last-level cache (LLC) size),
the data at the low address of the destination buffer may
be flushed out from cache when the transfer completes if
the data movement starts from the low address. If the user
later also loads data from the low address, extra cache misses
can occur, and thus the post-communication access becomes
slow. To reduce such cache misses, we propose to reverse
the order of task enqueue. Specifically, we define three access
patterns: from low to high address (lo-to-hi), from high to
low address (hi-to-lo), and random access (random). We
allow the user to provide a hint to MPI to indicate the access
pattern with the info key post_comm_access. The info value
is random by default. If lo-to-hi is specified, we post tasks



in reverse order; otherwise we post tasks from low to high
address. We note that the stealing tasks might be performed
out of order by different workers. Thus, this approach aims
onlyto get a higher chance to keep data in cache.

2) Noncontiguous Task Bundle: In noncontiguous data
transfer, an internal contiguous buffer is used together with
the pack/unpack routines. On modern architectures [27] data
stored in the internal buffer is likely cached when performing
pack and then reused at unpack. If we create stealing tasks
separately for pack and unpack routines, the tasks might be
executed by different workers, resulting in inefficient use of
cache. Consequently, we propose to combine the pack and
the unpack work into a single task. To be specific, each
stealing task carries data from a chunk of the source buffer
to the corresponding chunk in the destination buffer. The
internal buffer is allocated by each worker. In this way, the
data packed into the internal buffer can be reused. We note
that the resulting benefit is highly related to the layout of
the source datatype. That is, if the layout contains a long
stride between data elements, cache waste can be caused by
inappropriate prefetching. In Section IV we demonstrate such
a trend. Nevertheless, the proposed optimization never causes
performance degradation compared with the original approach.

3) On-Demand Chunking: A small data chunk size may
benefit performance because it can produce sufficient tasks
for parallelism; however, overly creating tasks also causes
more manipulation overhead, such as the costs required by
task creation, enqueue, and dequeue. Therefore, we propose
to adjust the chunk size “on demand” in order to maintain a
reasonable degree of decomposition. For instance, for contigu-
ous data transfer we set three message ranges and choose a
different chunk size for each range based on profiling results.
The appropriate value for the range thresholds and the chunk
sizes should be tuned for different platforms. Our platform
sets a 16 KB chunk size for small messages (< 96 KB), a 32
KB chunk size for medium messages (96 KB ≤ size < 512
KB), and a 64 KB chunk size for large messages (≥ 512 KB).

IV. EXPERIMENTAL CONFIGURATION

The experiments were executed on a Broadwell cluster and
a KNL cluster. The Broadwell cluster consists of 664 nodes.
Each node contains two Intel Xeon E5-2695v4 processors
with 36 cores in total. Its memory is 128 GB of DDR4
RAM divided into two NUMA nodes. The L1, L2, and L3
cache sizes are 32 KB, 256 KB, and 45 MB, respectively.
The node of the KNL cluster uses a 64-core Intel Xeon
Phi 7230 processor with 32 KB L1 cache, 1 MB L2 cache
shared per 2 cores, 16 GB of MCDRAM, and 96 GB of
DDR4. We set the cache mode with SNC-4 cluster (4 NUMA
nodes) for all tests . All nodes are connected through the Intel
Omni-Path interconnect. We used PiP-aware MPI extended
from MPICH (commit 8cccb4c5 on the master branch) as the
baseline implementation compared against the proposed CAB-
MPI implementation. We used the gcc/gfortran compiler 4.8.5
to compile the MPI implementations and programs and used
PAPI-5.7 for cache miss analysis. We set the N saturate

threshold in the throughput-aware stealing strategy to 4 on
Broadwell nodes and to 12 on KNL nodes based on our
offline profiling by using the memcpy microbenchmark (see
Section III-C3).

V. MICROBENCHMARKS

In this section, we evaluate each showcase in CAB-MPI
with a set of microbenchmarks. We also compare the stealing
strategies and optimizations presented in Sections III-C and
III-E, respectively. Unless specified otherwise, we enabled all
optimizations in the showcase evaluation.

A. Intranode Data Transfer

We first evaluate work stealing for intranode data transfer.
We use the experiments also to analyze the efficiency of
localized, mixed, and throughput-aware work-stealing strate-
gies. We extended the IMB-P2P PingPong test from the
Intel MPI Benchmarks to add more processes waiting at a
barrier so that they can join as stealing workers. Each of
the PingPong processes touches the receive buffer after each
round of data exchange (from low address to high address). We
measure performance for both intra-NUMA and inter-NUMA
PingPong. To isolate the performance of each strategy, we
disabled all optimizations proposed in Section III-E and used
a fixed 64 KB chunk size.

In Fig. 4a, processes 0–35 are placed sequentially from
core 0 to 35; Fig. 4b uses the same approach. In Fig. 4c and
4d, processes 0 and 1 are placed on NUMA node 0 and node
1, respectively, to perform inter-NUMA pingpong. We first
fill NUMA node 0 with processes and then fill other NUMA
nodes sequentially.

A common trend observed from Figs. 4a and 4b is that
speedup increases with increasing message size. The reason
is that speedup is limited by the number of available tasks
at small messages with fixed chunk size. In Fig. 4a, mixed
work stealing always performs worse than the other strategies.
The reason is that the workers from the local NUMA are
already sufficient to saturate memory bandwidth. Thus, en-
abling remote stealing degrades performance. A comparison of
localized and throughput-aware strategies shows that the latter
have observable overhead at small messages mainly due to the
bandwidth status checking. Figure 4b does not indicate such
clear gaps on KNL because the high bandwidth of MCDRAM
enables room for remote stealing. On the downside, however,
remote stealing also forces the data of the destination buffer
to be cached in different NUMA nodes, consequently causing
extra overhead when the receiver touches the data. Similarly,
we observe high deviation of the KNL results. Specifically, the
data block (64 B) can be cached in different tiles after stealing.
Consequently, the post-communication data touch suffers from
varying access time subject to the location of the cached block.

In regard to inter-NUMA results (see Figs. 4c and 4d), we
fix the message size to 8 MB and gradually add more processes
starting from the first NUMA node. The PingPong processes
are bound to the first two NUMA nodes, respectively. Before
processes fill out the first NUMA node, the tasks generated



on the second NUMA node cannot be stolen in the localized
strategy. Therefore, its performance is significantly worse than
that of the other two. When more processes are added and
the bandwidth becomes saturated, mixed stealing degrades
performance because of inefficient remote stealing.

In conclusion, localized strategy can maximize memory
throughput but lose remote stealing chances; mixed strategy
can utilize remote stealing chances but may cause extra over-
head when memory is saturated; throughput-aware strategy on
average performs better than localized and mixed strategies
and delivers close-to-optimal performance in all experiments.
Nevertheless, they always significantly outperform the base-
line. In the reminder of the evaluation, we use the throughput-
aware strategy for all experiments.

B. Noncontiguous Data Transfer

We extended the PingPong test for noncontiguous data
transfer. We used a 3D matrix of double, with the X dimension
as the leading dimension and a fixed volume at 1 GB. We
exchanged the X-Z plane in our experiments. The data layout
is defined as a vector datatype. We increased the Z dimension
with fixed Y dimension size at 2 doubles (the X dimension
decreases).

1) Intranode Transfer: We compared two communication
patterns, noncontiguous to contiguous (pack) and noncontigu-
ous to noncontiguous (pack-unpack), on both Broadwell and
KNL nodes. With increasing numbers of processes, we observe
consistent speedup with all Z dimension sizes (see Fig. 5). We
find up to 4x and 6.7x speedup in the pack tests on Broadwell
and KNL, respectively. The speedup in the pack-unpack tests
is close to 3.7x on Broadwell and 6.1x on KNL. We note
that the speedup on KNL suddenly slows after the number
of processes becomes more than 16 because remote stealing
was not enabled in the throughput-aware strategy. Thus only
16 processes performed the work even when more processes
were added on the remote NUMA nodes (each KNL NUMA
node contains 16 processes).

2) Internode Transfer: To demonstrate the benefits of work
stealing in internode communication, we performed the same
pack-unpack PingPong test with the X-Z plane datatype on
two Broadwell nodes. We expect that the internal packing on
the sender and the unpacking on the receiver can be improved
by work stealing. We fixed the Z dimension size at 256 count
of doubles and gradually increased the number of idly waiting
processes (i.e., workers) on each node. As shown in Fig. 6,
the performance with stealing significantly outperforms that of
the baseline and achieves up to 46% improvement. When the
number of processes on each node is greater than 9, adding
more workers does not help performance further because the
memory bandwidth has been saturated. This trend matches our
observation in the intranode experiments (Figure 5).

C. Accumulate Operation

We then evaluated the accumulate operation. To isolate the
speedup in compute-centric reducing tasks, we used contigu-
ous data with the double datatype in our experiments. We

extended the IMB-RMA Accumulate test from the Intel MPI
Benchmarks by replacing the lock-flush-unlock synchroniza-
tion with fence. Thus, the other non-communicating processes
can wait inside MPI and perform stealing. In the intra-NUMA
experiments, both rank 0 and rank 1 were on the same NUMA
node; all processes waiting at the fence call could steal the
exposed reducing tasks. In the internode experiments, rank
0 and rank 1 were on separate nodes; stealing tasks were
available only on the target node (node 1).

Figure 7 reports the results. Work stealing consistently
improves performance for all data sizes. It delivers up to
3.7x speedup in the intra-NUMA test and more than 1.8x
in the internode version. We note that the trend of the
internode results is similar to that of the intra-NUMA version.
The speedup is reduced because of the constant cost of
network data transfer. While using a 128 KB data size, we
notice both intra-NUMA and internode accumulate speedup
gradually decreases because of task dequeue contention and
bandwidth status checking overhead. In both experiments, we
observe higher speedup with large data size (e.g., 8 MB)
because it provides more work that can be accelerated by the
workers. The increase of speedup slows after having more
than 8 processes on the node because the ceiling of memory
throughput is reached.

D. Optimizations Evaluation

We then separately analyzed the optimizations proposed in
Section III-E.

1) Reversed Task Enqueue: We reused the PingPong bench-
mark used in Section V-A. We launched 36 processes on
a Broadwell node and set the data size to 90 MB (twice
the 45 MB LLC size on Broadwell). Each process accesses
the data of the destination buffer from low address to high
address after data exchange. Thus, we set the info hint
post_comm_access=lo-to-hi to the world communicator.
With the reversed task enqueue optimization, CAB-MPI posts
tasks from high address to low address of the buffers. As
shown in Fig. 8, this optimization can reduce the post-
communication access time by 11%. The result can be clearly
explained by the reduced L2 and L3 cache misses, as indicated
in the graph.

2) Noncontiguous Task Bundle: We reused the pack-unpack
PingPong benchmark with the X-Z plane datatype to evaluate
the noncontiguous task bundle optimization. We performed
the experiment on a single Broadwell node. As reported in
Fig. 9, the optimization significantly improves performance,
contributing up to 1.5x speedup (with Z=256 count of doubles)
for both intra-NUMA and inter-NUMA cases. The speedup
rate decreases with larger Z dimension sizes (longer stride in
the vector layout). The trend is expected, as we discussed in
Section III-E2.

3) On-Demand Chunking: We analyzed the performance of
different static chunk sizes by using the contiguous PingPong
benchmark. We created 36 processes on a Broadwell node and
varied the chunk size for different message sizes. As shown
in Fig. 10, a small chunk size (e.g., 16 KB, 32 KB) is more
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Fig. 4: Intranode contiguous PingPong with comparison of localize, mixed, and throughput-aware stealing strategies: (a) and
(b) vary the message size with fixed number of processes (36 and 64 for Broadwell and KNL, respectively); (c) and (d) vary
the number of processes with fixed 8 MB message size. In all tests, only two processes perform PingPong; the others remain
idle and behave as workers. In (c) and (d) the workers are sequentially increased from the first NUMA node. Core binding is
set for all processes.
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Fig. 5: Intra-NUMA noncontiguous PingPong with varying Z
dimension sizes in the X-Z plane of a 3D matrix. Each line
represents a Z dimension size (count of doubles).

beneficial for small messages; for large messages, however,
large chunk sizes (e.g., 32–96 KB) perform better. The reason
is that a small chunk size enables sufficient tasks for small
messages; when a message becomes large, a large chunk
size can ensure less task-stealing overhead. The proposed on-
demand chunking allows CAB-MPI to set a different chunk
size for different message sizes; thus it always delivers the
best performance.
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Fig. 6: Internode noncontiguous PingPong on two Broadwell
nodes. The data layout uses the X-Z plane of a 3D matrix with
Z=256 (count of doubles).
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Fig. 7: One-sided Accumulate with MPI_SUM reduce operation
and varying data size (from 128 KB to 8 MB) on Broadwell.
Data is contiguous with the double datatype. Only rank 0
performs Accumulate; the others behave as workers.

E. Stealing Overhead Analysis

The overheads of the work-stealing mechanism are caused
by owner task creation, owner/worker queue operations, and
operations for updating and checking nactive on every process
(only in the throughput-aware strategy). We demonstrated the
overheads by measuring two modified CAB-MPI versions
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Fig. 9: Task bundle performance and speedup in intranode
noncontiguous PingPong on Broadwell.
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with the intra-NUMA contiguous PingPong test with small
messages. The first version enables work stealing for any
message size but keeps the chunk size unmodified. The owner
process does not expose any stealing task because the message
size is always smaller than a single chunk. Thus, the workers
perform “empty checking” without stealing any task. We
abbreviate this version as CABMPI-check-only. The second
version also forces each message to split into two tasks
(denoted by CABMPI-check-steal). Therefore, the remaining
stealing overhead can be shown. As shown in Figure 11,
CABMPI-check-only reports close to 0.15µs overhead on a
Broadwell node in comparison with the baseline. This is
caused mainly by the checking of nactive from processes on
remote NUMA nodes. The overhead produced by CABMPI-
check-steal is more significant (e.g., close to 6.5µs at 2 B
message). We analyzed that the overhead is generated mainly
by the lock contention on task queues that are concurrently
accessed by 34 workers. However, we note that CAB-MPI
is designed for medium and large message transfer (e.g.,
we set a threshold at 64 KB on our platform) and thus the

contention overhead is negligible in practice. The small check-
only overhead may degrade performance for applications that
perform only small messages (i.e., no stealing). The user can
disable work stealing to eliminate such an overhead.
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Fig. 11: Stealing overhead evaluation with small messages by
using intra-NUMA PingPong on a Broadwell node with 36
processes. Similar trend is observed on KNL.

F. Shared-Memory-Based Intranode Data Transfer

Several MPI implementations utilize shared-memory tech-
niques (e.g., CMA, XPMEM, PiP) to optimize MPI intranode
communication. We compared CAB-MPI with these state-of-
the-art optimizations. To be specific, we measured MPICH
uses POSIX shared memory (denoted by MPICH-posix),
MPICH with the XPMEM cooperative protocol [28] (MPICH-
xpmem-coop), OpenMPI using CMA (version 4.0.3, denoted
by OMPI-cma), PiP-aware MPI extended from MPICH (base-
line) [17], and MPC based on thread-based data sharing (ver-
sion 3.4.0) [22]. 4 The MPICH options use commit 427cdb07
from the master branch. We compared these approaches with
CAB-MPI through the intra-NUMA PingPong test on a single
Broadwel node as shown in Fig. 12. We note that the baseline
PiP-aware MPI performs copy only on the receiver whereas
MPICH-xpmem-coop utilizes both the sender and receiver to
perform the copy, thus the latter shows better performance.
Nevertheless, CAB-MPI improves the performance over all
existing approaches by utilizing the local idle processes.
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Fig. 12: Comparison of shared-memory-based optimizations
by measuring intra-NUMA PingPong with a fixed message
size at 8 MB and fixed number of processes at 36 on a
Broadwell node. Only two processes perform PingPong; the
others remain idle or behave as workers.

4MPC uses modified gcc 7.3.0 and software package which may cause
unfair comparison with the other approaches.



VI. APPLICATION EVALUATION AND ANALYSIS

We evaluated our approach on two miniapplications:
miniGhost and BSPMM.

A. MiniGhost

MiniGhost is a miniapplication developed for exploring
the context of exchanging interprocess boundary data that is
widely seen in finite difference and finite volume computa-
tions [5]. MiniGhost is often used to mimic different stencils
used in HPC applications. Our experiments used its 3D 7-
point stencil where each process computes a 7-point stencil
for nvar number of 3D grids each with (nx × ny × nz)
dimension. We used the default bulk synchronous parallel with
message aggregation (BSPMA) method where each plane of
the grids is accumulated into a single message and exchanged
with the neighbor. For each of the X-Y, Y-Z, and X-Z planes,
we defined a different vector derived datatype to describe the
layout of data in nvar grids and directly specify it in the
halo-exchange communication. For instance, the accumulated
message for the X-Y plane on each process can be represented
with a vector with nvar count of blocks each with (nx×ny)
length and (nx× ny× nz) stride. Compared with the manual
pack/unpack-based implementation in the original miniGhost
code, this approach allows MPI to directly copy noncontiguous
data into the internal buffer that is ready for data transfer.
We fixed the data size to 1 GB (nx × ny × nz × nvar×
sizeof(double)=1 GB) on each process and set nx, ny, and
nz equal (each grid is a cube). Thus, the global problem size
is 1 GB×P , where P is the total number of processes. We
also modified the miniGhost code to use the MPI Cartesian
topology in order to generate the optimal process grid (e.g.,
8× 8× 9 with 576 processes).
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Fig. 13: MiniGhost with 3D 7-point stencil and BSPMA
method running on 576 cores (16 nodes) on Broadwell. The
global data size is fixed to 576 GB with varying nx=ny=nz,
nvar local parameters; the optimal (8× 8× 9) process grid is
used.

Figure 13 presents the execution time and speedup with
varying problem parameters. We increased nx, ny, and nz
at the same time; hence nvar decreases. The overhead of
the computing portion remains similar for all inputs. When
nx=ny=nz are small, the dominant overhead is caused by
the halo exchange communication with extremely sparse data

elements. When the grid size becomes large and nvar de-
creases, the program becomes more compute-bound, and the
communication overhead is generated mainly by the Y-Z
plane. CAB-MPI improves the internal pack/unpack speed for
all three planes. However, it achieves the best speedup for
the Y-Z plane. This also justifies the reason that the speedup
increases from grid size 4 to 24. For larger grid sizes, the
constant computing portion causes the major overhead, and
thus the overall speedup decreases. The best speedup achieved
by CAB-MPI is 1.3x at nx=ny=nz=24, nvar=9709. Unlike
the observation from Fig. 12, MPICH-xpmem-coop performs
even worse than baseline (PiP-aware MPI with 1-copy) for grid
sizes smaller than 16. The reason is that its cooperative copy
is not process idleness aware; thus, adding more workload on
the sender process aggravates load imbalance.

Figure 14 shows the miniGhost weak-scaling performance
with CAB-MPI on up to 128 Broadwell nodes (4,608 pro-
cesses) by using a fixed set of parameters nx=ny=nz=24,
nvar=9709 on each process. Roughly speaking, CAB-MPI
delivers improved performance with varying number of pro-
cesses. The speedup gradually decreases at large scale, how-
ever, because the overhead of network data transfer becomes
dominant. Nevertheless, CAB-MPI always outperforms the
baseline MPI implementation and MPICH-xpmem-coop.
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Fig. 14: Weak-scaling evaluation of miniGhost with 3D 7-
point stencil and BSPMA method running on up to 128
Broadwell nodes. Each process uses a fixed set of parameters
nx=ny=nz=24, nvar = 9709 (1 GB local data size, and more
than 4 TB global data size on 128 nodes).

B. BSPMM

NWChem [29] is a widely used computational chemistry
application suite. NWChem is developed on top of Global
Arrays over the MPI one-sided model [30], [31]. A typ-
ical get–compute–update pattern is widely used in all the
internal phases of NWChem, which every process essentially
performs by varying the size of matrix-matrix multiplication
for multidimensional tensor contraction by coordinating with
others through get and accumulate operations. BSPMM is
a miniapplication that mimics the one-sided get–compute–
update computation in NWChem through a 2D sparse matrix
multiplication A × B = C. Each process asynchronously
gets subblocks from the global matrices A and B, performs
dgemm with the subblocks locally, and then accumulates the
result into the remote C matrix. The ownership of each
subblock computation is scheduled by updating a global shared
counter with MPI atomic fetch and op. The subblock data is



represented as a strided subarray derived dataype in MPI. We
expect that CAB-MPI can optimize BSPMM from intranode
data transfer (for both get and accumulate), pack for internode
accumulates (noncontiguous get does not apply because it is
transferred via multiple RDMA requests in MPICH), and the
reduce computation associated with each accumulate.

We set each global matrix size to 102400×102400 and
used block size 1024 (both in count of doubles) with double
data elements. We performed strong scaling on the Broadwell
cluster on up to 1,152 processes. As shown in Fig. 15, both get
and accumulate can be improved with CAB-MPI on a single
node (36 processes). When scaling across multiple nodes,
internode accumulates becomes the dominant overhead in the
overall execution time and thus contributes to higher speedup.
We achieved the best speedup of 1.4x on 144 processes (4
nodes). We also notice that the overall speedup gradually
decreases after scaling over 144 processes. The reason is that
the proportion of the reduce computation reduces in each
accumulate since the network data transfer takes longer time.
MPICH-xpmem-coop achieves performance similar to that of
the baseline because its cooperative protocol cannot apply to
one-sided communication where the remote process is not
required to make an MPI call explicitly.
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Fig. 15: BSPMM strong scaling and overhead analysis on
Broadwell using global matrix size 102400×102400 and block
size 1024 (both in count of double elements).

C. Discussion of Application-Level Performance Impact

CAB-MPI can benefit both regular and irregular applica-
tions. For instance, the miniGhost evaluation showed improved
performance in the regular bulk synchronous parallelism pat-
tern where we observed that stealing performs mainly in block-
ing calls such as MPI_Wait_all and MPI_Barrier. BSPMM
is a typical example of the irregular application pattern where
CAB-MPI performs stealing in blocking MPI_Win_flush

calls. However, we note a limitation of CAB-MPI in that it
relies on the semantics of MPI blocking calls to identify idle
processes (i.e., valid workers). Hence it cannot help applica-
tions that use only nonblocking calls to check the completion
of messages (e.g., MPI_Test). The concept of work stealing
is still applicable to such applications; however, an additional
method is required for process idleness determination. We plan
to address it in future work.

VII. RELATED WORK

In this paper, we propose an interprocess work-stealing
mechanism in MPI to dynamically balance the MPI internal
tasks by using idle processes at runtime. The implementation
is based on a process-memory-sharing environment. We divide
the related work into two broad topics: interprocess load
balance and work stealing.

A. Interprocess Load Balance

Dynamic load balance is a common approach for irregular
workloads or for applications adapting heterogeneous execu-
tion environments. This approach is widely utilized in both
domain applications and runtime systems. Flaherty et al. [1]
and Biswas et al. [2] introduced their dynamic load balancer
approaches for irregular workloads in mesh applications by
repartitioning domains. Sheridan et al. [32] presented a dis-
tributed work-stealing scheme for X10 regular applications.
At runtime level, AMPI [23] executes processes on top of
user-level threads and adopts Charm++ [24] to migrate tasks
between processes to dynamically balance workloads. The
lightweight user-level thread-based implementation allows the
user to overdecompose the problem and create more tasks
than the number of underlying cores. Therefore, migrating
tasks across cores can potentially make a workload balanced
on each core. The task in AMPI is essentially an MPI rank
containing both user computation and communication work.
AMPI applications have to periodically invoke the AMPI
migrate function in order to allow the runtime to move tasks
across cores for load balance. Unlike these approaches, CAB-
MPI focuses on the workload balance of the MPI internal
work including both data movement tasks and compute-centric
reduce tasks. CAB-MPI does not require the user application
to overdecompose, and the communication load balance is
fully transparent to user applications. Our work is based on the
model that the user computation is managed and balanced by
each individual application while the MPI runtime balances
common internal workloads; hence both contribute to overall
workload balance.

B. Work Stealing

Traditional work-stealing mechanisms are designed for mul-
tithreading environments. The work-stealing strategies often
focus on computing tasks. LAWS [33] involves a triple-
level work-stealing algorithm to make idle threads steal tasks
from local workers, the local cache-friendly task pool, and
the remote cache-friendly task pool, in order to maximize
cache reuse. ADWS [10] provides hierarchical localized work
stealing to steal tasks only in an activated range, for better data
locality. HotSLAW [34] extends stealing beyond intranode to
distributed environments; it hierarchically picks a victim for
work stealing to keep data access as local as possible. Barghi et
al. [35] designed a locality-aware work stealing based on the
actor model and NUMA architectures. Many other methods
[36]–[44] also have tackled NUMA-aware work stealing by
increasing local data access to mitigate NUMA effects on
remote task stealing. Instead of creating tasks beforehand,



cooperative stealing [45], [46] utilizes the message-passing-
based approach where victims create tasks only when the
worker sends a stealing request, in order to avoid overhead
caused by concurrent deques. The work-stealing strategies
proposed in our work are different from these solutions in
several ways. We focus on the internal tasks of MPI that
often involve multiple data buffers that may locate in different
memory domains. Thus, the locality-aware optimizations must
be entirely redesigned. Moreover, the performance of MPI
task stealing is sensitive to memory throughput. Hence, we
propose a throughput-aware strategy that can maximize the
throughput by prioritizing local stealing while still allowing
remote stealing when the number of local idle processes is
not sufficient. We do not utilize cooperative stealing in our
scenario because the stealing must be sufficiently lightweight.

VIII. CONCLUSION

Communication imbalance is ubiquitous among HPC appli-
cations. Eliminating unbalanced communication at the appli-
cation level is difficult mainly because of the challenges to
estimate the amount of workloads. Load balance will not be
accurate if the application developer distributes communica-
tion loads based only on the message size, because the data
transfer overhead may vary at runtime in different situations
(e.g., intranode vs. internode, contiguous vs. noncontiguous).
To this end, we presented CAB-MPI, an MPI implementation
that can dynamically balance MPI communication through
novel interprocess work stealing. The proposed communi-
cation balance is transparent to user applications. We have
designed several stealing strategies and optimizations based on
the unique features of the MPI internal work. We showcased
the benefit of the work-stealing mechanism through three types
of MPI internal work: intranode data transfer, pack/unpack
for noncontiguous data movement, and computation in one-
sided accumulates. We evaluated the solution by using a set of
microbenchmarks and proxy applications on both Intel Xeon
and Xeon Phi platforms. Evaluation results indicate up to 1.3x
improved performance in the stencil-based miniGhost proxy
application over 576 Xeon cores and a 1.4x speedup in the
one-sided BSPMM application.
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