
How I Learned to Stop Worrying about
User-Visible Endpoints and Love MPI

Rohit Zambre
rzambre@uci.edu

University of California, Irvine

Aparna
Chandramowliswharan

amowli@uci.edu
University of California, Irvine

Pavan Balaji
balaji@anl.gov

Argonne National Laboratory

ABSTRACT
MPI+threads is gaining prominence as an alternative to the tradi-
tional “MPI everywhere” model in order to better handle the dis-
proportionate increase in the number of cores compared with other
on-node resources. However, the communication performance of
MPI+threads can be 100x slower than that of MPI everywhere. Both
MPI users and developers are to blame for this slowdown. MPI users
traditionally have not exposed logical communication parallelism.
Consequently, MPI libraries have used conservative approaches,
such as a global critical section, to maintain MPI’s ordering con-
straints for MPI+threads, thus serializing access to the underlying
parallel network resources and limiting performance.

To enhance the communication performance of MPI+threads,
researchers have proposed MPI Endpoints as a user-visible exten-
sion to the MPI-3.1 standard. MPI Endpoints allows a single process
to create multiple MPI ranks within a communicator. This could,
in theory, allow each thread to have a dedicated communication
path to the network, thus avoiding resource contention between
threads and improving performance. The onus of mapping threads
to endpoints, however, would then be on domain scientists. In this
paper we play the role of devil’s advocate and question the need
for such user-visible endpoints. We certainly agree that dedicated
communication channels are critical. To what extent, however, can
we hide these channels inside the MPI library without modifying
the MPI standard and thus unburden the user? More important,
what functionality would we lose through such abstraction? This
paper answers these questions through a new implementation of
the MPI-3.1 standard that uses multiple virtual communication in-
terfaces (VCIs) inside the MPI library. VCIs abstract underlying
network contexts. When users expose parallelism through exist-
ing MPI mechanisms, the MPI library maps that parallelism to the
VCIs, relieving the domain scientists from worrying about end-
points. We identify cases where user-exposed parallelism on VCIs
perform as well as user-visible endpoints, as well as cases where
such abstraction hurts performance.

CCS CONCEPTS
• Software and its engineering→Massively parallel systems;
Multithreading; Message oriented middleware.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICS ’20, June 29-July 2, 2020, Barcelona, Spain
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7983-0/20/06.
https://doi.org/10.1145/3392717.3392773

KEYWORDS
MPI+threads, MPI+OpenMP, MPI_THREAD_MULTIPLE, exascale
MPI, high-performance communication, MPI Endpoints

ACM Reference Format:
Rohit Zambre, Aparna Chandramowliswharan, and Pavan Balaji. 2020. How
I Learned to Stop Worrying about User-Visible Endpoints and Love MPI. In
2020 International Conference on Supercomputing (ICS ’20), June 29-July 2,
2020, Barcelona, Spain. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3392717.3392773

1 INTRODUCTION
MPI everywhere (typically one MPI process per core) has been
the traditional model for using MPI on supercomputers. While
the model has served applications well for several decades, it is
becoming difficult to scale on modern architectures, primarily ow-
ing to the disproportionate increase in the number of cores per
node compared with other on-node resources such as memory and
network registers. For example, memory wastage for halo regions
in PDE simulations with the MPI everywhere model is a known
problem [35], which worsens with the increase in dimensionality
of the domain decomposition. To address this issue, researchers
have been increasingly adopting hybrid MPI+threads (typically
one MPI process per node or socket, and one thread per core) par-
allelism (e.g., MPI+OpenMP) [18] since it allows them to utilize
the many cores on a node while sharing the remaining on-node
resources [19, 27, 30].

The communication performance of MPI+threads, however, is
dismal, especially when multiple threads are involved in communi-
cation (i.e., MPI_THREAD_MULTIPLE). The reason for the poor per-
formance stems from the quaint view, held by both MPI users and
MPI developers, of the network as a sequential hardware resource.
Modern network interface cards (NICs) feature multiple hardware
communication contexts that allow for independent, parallel com-
munication streams from a single node [42]. To efficiently utilize
the network parallelism, MPI users must expose logical parallelism
in their communication so that threads can map to different under-
lying hardware contexts on the NIC. How does one expose such
logical communication parallelism? The MPI standard specifies
certain sequential ordering constraints between messages [9] that
guarantee some determinism in execution. But these sequential
ordering constraints are based on <communicator, rank, tag> or
<window, rank> tuples. The user can inform the MPI library that
two or more messages have no relative ordering between them by
using, for example, different communicators, different windows, or
in some cases different ranks or tags, thus exposing logical paral-
lelism between these messages.

https://doi.org/10.1145/3392717.3392773
https://doi.org/10.1145/3392717.3392773
https://doi.org/10.1145/3392717.3392773


ICS ’20, June 29-July 2, 2020, Barcelona, Spain Zambre et al.

The state of the art, however, is conservative in this regard. Ap-
plications typically do not expose MPI communication parallelism
because MPI libraries today do not utilize such parallelism. MPI
libraries, on the other hand, still employ conservative approaches,
such as a global critical section and the use of only one network
hardware context, because applications today do not expose any
parallelism that the library can exploit.

To facilitate the improvement in the communication perfor-
mance of MPI+threads, user-visible MPI Endpoints [8, 20] has
been proposed as an extension to the MPI-3.1 standard. These user-
visible endpoints allow the user to explicitly map threads to the
underlying network resources. If the user mapped each thread to a
distinct endpoint, then, in theory, all threads could have dedicated
communication paths to the network. Several efforts [22, 29, 40]
indeed demonstrate scaling communication throughput with MPI
Endpoints through dedicated communication channels inside the
MPI library. Unfortunately, these works have a number of short-
comings. First and foremost, user-visible solutions enforce the new
concept of endpoints upon users through new APIs and put the
onus of mapping threads to the endpoints on the domain scientist,
potentially hurting productivity. Second, prior works did not com-
pare against an MPI-3.1 implementation that uses multiple network
hardware contexts, thus implicitly assuming that current imple-
mentations of MPI-3.1 are already the most optimal. Third, they
modify applications to expose communication parallelism to the
MPI library with MPI Endpoints but do not expose the equivalent
parallelism to the MPI-3.1 version of the library, thus making the
comparison unfair. Finally, irrespective of whether we optimize
the implementation of MPI-3.1 or implement MPI Endpoints, cer-
tain corner cases with respect to communication progress must be
handled for correctness, even though they sometimes hurt perfor-
mance. Prior works ignore such corner cases, sacrificing correctness
in pursuit of higher performance.

In this paper, we play the role of devil’s advocate to user-visible
endpoints. In fairness to the previous efforts, we agree with them
on two aspects: (1) applications must expose communication paral-
lelism, butMPI-3.1 already providesmultiple mechanisms to do that;
and (2) MPI libraries must provide multiple independent communi-
cation channels, but an efficient MPI library can do so internally
without exposing them to users as endpoints. Thus we are left with
the question: Are extensions to the MPI standard necessary in order
to improveMPI+threads communication?

To answer this question, we start with a newMPI-3.1 library that
internally uses multiple virtual communication interfaces (VCIs). A
VCI represents a communication stream that is mapped to a net-
work hardware context. Users expose communication parallelism
through existing MPI mechanisms (such as communicators, win-
dows, ranks, and tags), and the MPI library maps that parallelism to
the different hardware contexts by funneling messages over the in-
ternal VCIs. More important, VCIs are completely hidden within the
MPI library, thus requiring no extension to the MPI standard and
placing no requirement for thread-to-network-resource mapping
on the domain scientists.

The effectiveness of transparently using multiple VCIs depends
on the communication pattern of applications. In this regard, we
classifyMPI+threads applications into three categories: (1) appli-
cations that can directly use dedicated communication channels

where the multi-VCI approach saturates the network performance
similarly to MPI everywhere and user-visible endpoints; (2) ap-
plications that require shared progress where both multiple VCIs
and user-visible endpoints suffer from loss in performance; and
(3) applications that need direct access to the network resources
where abstracting the VCIs can hurt performance compared with
user-visible endpoints. We study applications in all three categories
in this paper. To that end, we make the following contributions:

(1) We develop a fast MPI+threads library by addressing thread
safety and network resource underutilization while adhering
to the MPI standard (in Section 4).

(2) We compare the capabilities of MPI-3.1 with those of user-
visible endpoints for microbenchmarks and real applications
(in Sections 5 and 6).

(3) We provide users with recommendations on exposing com-
munication parallelism in their applications with MPI-3.1 (in
Section 6) based on Section 2’s discussion of parallelism in
the existing MPI standard.

2 PARALLELISM IN THE MPI STANDARD
For both two- and one-sided MPI communication, the existing MPI
standard allows applications to expose communication parallelism.
Below, we discuss approaches for a single MPI process to expose
such parallelism. In particular, communication parallelism in MPI
can be viewed as multiple independent communication streams,
where each stream is a first-in, first-out (FIFO) ordered set of com-
munication operations.

2.1 Point-to-point communication
For two-sided communication, MPI uses the <communicator, rank,
tag> triplet to match operations.

Different communicators.MPI does not define any order be-
tween operations executed on different communicators. This ap-
proach implies that all operations on different communicators can
execute independently on parallel communication streams.

Same communicator, different ranks. Within a communica-
tor, MPI specifies a nonovertaking order [9]: if multiple ordered
operations match the same target operation, the operation that was
issued first must consume the target operation before the one that
was issued later. No matching order applies to operations intended
for different targets. For example, no ordering constraints apply
to multiple send operations that use the same communicator but
target different ranks. Hence, they can execute on parallel commu-
nication streams. On the other hand, receive operations that use the
same communicator cannot execute in parallel even if they specify
different ranks. The reason is that it is possible for any receive
operation to contain the MPI_ANY_SOURCE wildcard. To ensure cor-
rect matching order, the MPI library needs to funnel all receive
operations of a communicator through the same communication
stream (see Figure 1).

Same communicator, same rank, different tags. Operations
that target the same rank within a communicator but use different
tags cannot utilize parallel communication streams for both send
and receive operations. The order of operations in MPI is deter-
mined by the MPI user. In MPI+threads, operations on different
threads may be parallel or ordered through, for example, a thread



How I Learned to Stop Worrying about
User-Visible Endpoints and Love MPI ICS ’20, June 29-July 2, 2020, Barcelona, Spain

Figure 1: Different combinations of <comm,rank,tag> tuples demonstrating point-to-point parallelism in the MPI standard.
Dashed horizontal lines represent thread barriers.

barrier. Suppose the user issues two operations on two different
threads with a barrier between the operations (see Figure 1). A
target operation that satisfies both operations must first match the
operation that was issued before the barrier. To ensure this, the MPI
library must use the same communication stream for the operations
from the two threads. If the operations use different communica-
tion streams, the operation issued after the barrier could incorrectly
match the target prior to the one issued before the barrier.

2.2 Remote Memory Access communication
MPI’s one-sided communication, namely, remote memory access
(RMA), is executed on top of windows. Unlike point-to-point, RMA
operations do not have any matching constraints and feature a lot
more parallelism. MPI does not require any ordering for its Get, Put,
and Accumulate classes of operations if two or more operations
target different ranks or use different windows. Additionally, two
or more Put or Get operations do not have any ordering constraints
even if they use the same window. Hence, multiple Get and Put
types of operations can execute on parallel communication streams.
But, by default, MPI-3.1 requires program order for Accumulate
operations originating from the same source and targeting the
same memory location on the same window. It does, however, give
the user the option to relax this ordering constraint through the
accumulate_ordering hint. Without hints, multiple Accumulate-
style operations can execute on parallel communication streams if
they use different windows or target different memory locations.

Even though multiple RMA operations on the same window
could use parallel communication streams, mixing synchronization
operations, such as MPI_Win_flush, with communication opera-
tions, such as MPI_Get, can be tricky. Synchronization calls can
wait for both past and concurrent communication operations to
complete. Thus, if one thread is waiting inside MPI_Win_flush and
another thread continuously issues MPI_Get operations, the first
thread might block indefinitely. Apart from these constraints, all
types of RMA operations on different windows can execute through
separate communication streams in parallel.

3 SOFTWARE AND TESTBEDS
Our MPI implementation is based on the highly optimized CH4 [36]
device of the MPICH library. The CH4 device is a combination of
three components: a core (ch4_core), a network module (netmod),
and a shared-memory module (shmmod). The netmod and shmmod

are responsible for conducting internode and intranode communica-
tion, respectively. In this work, we focus on the netmod component
because we assumeMPI+threads applications would directly use
the shared memory of the process for intranode communication.

For most common data operations, CH4 offloads functionalities,
such as tag matching, to the low-level communication library, such
as OpenFabrics Interfaces (OFI) [26] or Unified Communication X
(UCX) [38]. Where the hardware cannot independently handle op-
erations, CH4 falls back on using an active message implementation
of the operation in its ch4_core.

Our testbeds include two platforms: the Skylake cluster and
the Gomez cluster in the Joint Laboratory for System Evaluation
at Argonne National Laboratory. The clusters feature different
interconnects: Skylake hosts Intel Omni-Path (OPA) and Gomez
hosts Mellanox InfiniBand (IB) EDR. These two families of intercon-
nects constitute the majority of the TOP500 in the supercomputing
space [11]. For Skylake, we use the OFI netmod in conjunction with
PSM2; for Gomez, we use the UCX netmod with Verbs.

For our analysis and evaluation, we use the cores on the socket
that the NIC is attached to. We ensure that the CPU speed is set to
its base frequency and that turbo boost is turned off.

4 A FAST MPI+THREADS LIBRARY
In this section, we detail our implementation of parallel commu-
nication streams (or VCIs) within a single MPI process. Although
our work is on MPICH, the concepts extend to other MPI libraries
as well. To design a fast MPI+threads library, we need to deseri-
alize access to the software as well as to the network hardware
resources; the former is a critical precursor for the latter to extract
performance.

4.1 Deserializing access to the MPI library
InMPI+threads, the MPI library needs to protect its resources from
the threads’ parallel updates. State-of-the-art MPI implementations
conservatively employ a large global critical section with a single
lock. The MPI operation enters the critical section at the beginning
of its execution and exits it either when it returns from the function
or when it yields to other threads to make progress. This approach
largely serializes communication from multiple threads even if the
communication operations issued by those threads are independent.

Fine-grained critical sections. Balaji et al. [15, 16] and Amer
et al. [12] split the global lock in MPICH into multiple locks such
that each lock protects a different class of objects. For example,



ICS ’20, June 29-July 2, 2020, Barcelona, Spain Zambre et al.

FG

Global

0 1 2 3
Messages/s (x10^6)

8B MPI_Isend; MPICH/OFI/OPA

Figure 2: Overhead of FG.

0

1

2

3

1 2 4 8 16
Number of threads

M
es

sa
ge

s/
s 

(x
10

^
6) Critical section

Global
FG

8B MPI_Isend; MPICH/OFI/OPA

Figure 3: Global vs. FG.

access to the network communication portal is protected by a lock
different from the one that protects the management of request
objects. Although fine-grained critical sections (FG) mean higher
parallelism, they incur two expenses over a global critical section
(Global): (1) more lock acquisitions and releases on the critical path
and (2) atomics for reference and completion counters.

The number of locks taken in FG depends on the type of opera-
tions. For any initiation operation, we need at least one lock—the
one that protects access to the communication portal. Generally,
for MPI_Isend and MPI_Irecv, we need a second lock—the one
that allocates a request object from the global pool of requests. For
small-message transmissions, however, we do not need the lock of
the request pool. Up to a certain message size, modern intercon-
nects guarantee completion as soon as they are posted; they do
not require any polling of the network.∗ MPICH optimizes mem-
ory usage for such operations by maintaining a global lightweight
request that is marked as complete. These operations then simply
increase the reference counter of the pre-completed request.

For progress operations, the number of locks taken depends on
the number of times the progress engine is invoked. The progress
engine not only checks for the completion of an operation but
also progresses active outstanding schedules, such as those of non-
blocking collectives. One iteration of the progress engine in MPICH
takes three locks: one to poll the communication portal and two to
check the activeness of progress hooks† (each hook maintains its
own thread safety). When an operation completes, another lock is
taken when the request object is returned to the pool.

Although FG improves concurrency when multiple threads com-
pete for MPI resources, it adds some overhead when there is no
contention (e.g., when a single thread is active). Figure 2 shows that
FG hurts performance by 16.71% in the uncontended case (compared
with Global). This performance difference is due to the higher num-
ber of locks and to atomic counting (as we corroborate in Section 5).
With increasing number of threads, the performance difference
between FG and Global reduces, and FG eventually outperforms
Global at 16 threads, as seen in Figure 3. Moreover, although Global
performs better than FG for fewer threads, FG is critical when
parallel communication streams exist, as we show in Section 4.3.

4.2 Parallel communication streams
To address the problem of network resource underutilization, we
first define the virtual communication interface object. A VCI is an

∗A correct MPI implementation would need to poll the network intermittently even
for such operations to progress any active message execution of an operation.
†MPICH/CH4 currently maintains two progress hooks.

0.00

0.25

0.50

0.75

1.00

1 2 4 8 16 32 64
Number of VCIs

Ti
m

es
 (s

)

4 ranks; 1 rank per node; MPICH/OFI/OPA

0

1

2

3

4

1 2 4 8 16 32 64 128
Number of VCIs

Ti
m

es
 (s

)

4 ranks; 1 rank per node; MPICH/UCX/IB

MPI_ Init Finalize

Figure 4: Multi-VCI MPI_Init and MPI_Finalize overheads.

abstract representation of a communication stream. Each VCI maps
to a communication context on the network hardware and contains
its own independent set of communication resources that maintain
a FIFO order of the MPI operations that map to it. Hence, with
multiple VCIs, we get parallel communication streams in the MPI
library. The physical realization of a VCI depends on the netmod
and the underlying interconnect. A VCI in the OFI netmod is an OFI
endpoint (for transmission and reception) that is bound to an OFI
completion queue (for progress). For Intel OPA, the OFI endpoint
maps to a hardware context on the Intel HFI network adapter [4]. A
VCI in the UCX netmod is a UCP worker. For Mellanox IB, the UCP
worker contains Verbs resources: a queue pair (QP) for transmission,
a shared receive queue for reception, and a completion queue for
progress. The QP maps to the micro UARs (hardware registers) on
the Mellanox adapter [6].

VCI pool design. To utilize the underlying network parallelism,
we maintain a pool of VCIs inside a single MPI process. Since
operations on different communicators can execute on different
communication streams (see Section 2), every time the user creates
a new communicator, we assign it a VCI from the pool and mark
that VCI as active. All operations on the communicator now funnel
through the VCI that was assigned to the communicator. If multiple
threads communicated using separate communicators, they would,
in theory, establish parallel communication streams to the NIC from
the same process. However, since the number of contexts on the
network hardware is limited,‡ the VCI pool may be empty during
communicator creation. In such a case, we revert to a fallback VCI.
For this work, we designate the VCI allocated to MPI_COMM_WORLD
as the fallback. When the user frees a communicator, its associated
VCI is returned to the pool and is marked as inactive. Certainly
better techniques to map communicators to VCIs exist, but such
techniques are out of the scope of this paper and will be analyzed
in the future. The overhead from this design is that each operation
now needs to compute which VCI to use on the critical path. For
the communicator-to-VCI mapping, this computation is a lookup,
which costs 8 additional instructions in our implementation. The
VCI pool design extends to RMA operations as well, where we
assign VCIs to each window since operations on different windows
can execute in parallel (see Section 2).

Thread safety.We extend the fine-grained critical sections from
Section 4.1 such that each VCI is then protected by its own separate
lock since it is independent. Threads that map to different VCIs can
access the VCIs without contention.

‡For example, Intel OPA features only 160 hardware contexts on the HFI adapter [4]



How I Learned to Stop Worrying about
User-Visible Endpoints and Love MPI ICS ’20, June 29-July 2, 2020, Barcelona, Spain

0

10

20

30

40

50

1 2 4 8 16
Number of threads

M
es

sa
ge

s/
s 

(x
10

^
6) MPI+threads

Original (Global + 1 VCI)
FG
FG + multi VCIs

8B MPI_Isend; MPICH/OFI/OPA

Figure 5: Multiple VCIs.

0

10

20

30

40

50

1 2 4 8 16
Number of cores

M
es

sa
ge

s/
s 

(x
10

^
6) Optimizations

Original (Global + 1 VCI)
All
All w/o per-VCI progress

8B MPI_Isend; MPICH/OFI/OPA

Figure 6: Progress opts.

0

10

20

30

40

50

1 2 4 8 16
Number of cores

M
es

sa
ge

s/
s 

(x
10

^
6) Optimizations

Original (Global + 1 VCI)
All
All w/o per-VCI req-mgmt

8B MPI_Isend; MPICH/OFI/OPA

Figure 7: Request opts.

0

10

20

30

40

50

1 2 4 8 16
Number of cores

M
es

sa
ge

s/
s 

(x
10

^
6) Optimizations

Original (Global + 1 VCI)
All
All w/o cache-aware VCI

8B MPI_Isend; MPICH/OFI/OPA

Figure 8: Cache-aware VCI.

1 /*Point -to-point example */
2 Rank 0:
3 MPI_Ssend(comm1);
4 MPI_Ssend(comm2);
5
6
7
8 Rank 1 / Thread 0:
9 MPI_Irecv(comm1 ,req1);
10 #pragma omp barrier
11 #pragma omp barrier
12 MPI_Wait(req1);
13
14 Rank 1 / Thread 1:
15 MPI_Irecv(comm2 ,req2);
16 #pragma omp barrier
17 MPI_Wait(req2);
18 #pragma omp barrier

1 /*RMA example (large Puts)*/
2 Rank 0:
3 MPI_Get(win1);
4 MPI_Get(win2);
5 MPI_Win_flush(win1);
6 MPI_Win_flush(win2);
7
8 Rank 1 / Thread 0:
9 MPI_Get(win1);
10 #pragma omp barrier
11 #pragma omp barrier
12 MPI_Win_flush(win1);
13
14 Rank 1 / Thread 1:
15 MPI_Get(win2);
16 #pragma omp barrier
17 MPI_Win_flush(win2);
18 #pragma omp barrier

Figure 9: Point-to-point (left) andRMA (right) scenarios that
would deadlock without shared progress of VCIs.

Connection establishment. Each VCI has its own transport-
level address that needs to be exchanged between the ranks in order
to establish connections. We do so during the initialization of MPI.
We first use PMI [14] to exchange the addresses of the fallback VCIs
on every rank. Using the fallback VCI, we exchange the addresses
of the rest of the VCIs using an allgather operation. As expected,
establishing connections statically during initialization incurs an
overhead that grows with the number of VCIs (see Figure 4). Sim-
ilarly, the finalization time increases since the tear-down time of
VCIs is proportional to the number of VCIs.§

4.3 Optimizing multi-VCI communication
Figure 5 shows that simply using multiple VCIs produces practically
no performance benefit. We present several optimizations to the
multi-VCI communication introduced in Section 4.2.

Per-VCI progress. With only one VCI (Original), the job of
the progress function was simple: poll for progress on the single
VCI. With multiple VCIs, a naïve extension would be to poll for
progress on all the active VCIs. Although correct, this approach
would be detrimental to performance especially when multiple
threads progress operations in parallel since they would be con-
tending on the VCIs’ locks. Also, each thread would be doing more
work than necessary. Because all MPI communication operations
map to a VCI, progress for an operation primarily needs to poll the
§Features like OFI scalable endpoints can reduce the connection establishment and
tear-down overheads, because they share the same transport-level address. However,
we have not used them in this work because their performance is still not on par with
that of regular endpoints, at least for the PSM2 provider that we used in this work.
Furthermore, scalable endpoints share some resources, such as the OFI address vector,
accesses to which could be serialized in the critical path by the OFI provider [10].

VCI on which the operation was posted. We extend the progress
engine to allow for per-VCI progress. First, we store the VCI used for
an operation in its request object. This action adds 3 instructions
to the critical path. Using the information stored in the request
object, the progress functions poll for progress on the VCI that was
used for the operation. When multiple threads progress operations
mapped to different VCIs, they do not contend.

Although per-VCI progress helps improve performance, progress-
ing only the VCI used by the current request is incorrect and can
lead to deadlock. Consider the point-to-point example in Figure 9.
This is a correct MPI program—the first synchronous send¶ on rank
0 (line 3) should return because its matching receive has already
been posted (line 9). With current MPI libraries, this program com-
pletes because MPI_Wait(req2) (line 17) initiates the reception of
MPI_Ssend(comm1) by polling the single VCI that both communi-
cators map to, thus allowing MPI_Ssend(comm1) to return. With
multiple VCIs and per-VCI progress, MPI_Wait(req2) progresses
only the VCI associated with comm2, preventing MPI_Ssend(comm1)
to complete and causing deadlock. Figure 9 also describes a similar
scenario with RMA operations using passive-target synchroniza-
tion for cases where the underlying network requires target-side
CPU involvement for progress.

In summary, the pure per-VCI progress model can improve per-
formance, but the global progress model is necessary to ensure
correctness even though it loses some performance. To account for
such communication patterns, we use a hybrid progress model; that
is, we perform one round of global progress after a certain number
of unsuccessful per-VCI progress attempts to complete an operation.
We demonstrate the benefit of our hybrid per-VCI optimization in
Figure 6. Communication throughput is 6.97× lower without per-
VCI progress (All w/o per-VCI progress) compared with the case
where all optimizations are used.

Per-VCI request management. Even when operations from
multiple threads map to different VCIs, they contend on the request-
class’s lock when they need to acquire a request (e.g., during an
MPI_Isend) or release it (e.g., during an MPI_Wait). To address this
contention, we maintain a cache of requests for each VCI. Access
to each cache is protected by the VCI’s lock. During the creation
of a request, we first attempt to acquire a request from the cache
belonging to the VCI that the operation maps to. This does not
require acquiring an extra lock because the lock for the VCI is
already held for the operation. If the cache is empty, we fall back on
acquiring a request from the global pool, which requires acquiring
the request class’s lock. The caching idea extends to releasing a

¶conceptually similar to an MPI_Send following the rendezvous protocol.



ICS ’20, June 29-July 2, 2020, Barcelona, Spain Zambre et al.

Table 1: Summary of locks on the critical path of initiation and progress operations in different critical sections.

Critical section \ MPI op. Isend Isend (immediate) Put Wait Wait (immediate)
Global 1 (Global) 1 (Global) 1 (Global) 1 (Global) 1 (Global)

FG 2 (VCI + Request) 1 (VCI) 1 (VCI) 2 (VCI + Request) 0
FG + per-VCI req-cache 1 (VCI) 1 (VCI) 1 (VCI) 2 (VCI + VCI (request freeing)) 0

request to the cache of a VCI as well. Thus, in the common case,
we reduce the number of lock acquisitions in initiation operations
to 1 (FG+per-VCI req-cache in Table 1, which summarizes the locks
taken in different critical sections). Although the request class’s
lock is not taken (in the common case) for progress functions either,
the VCI’s lock pertaining to the request is taken twice—the final
freeing of the request occurs in the MPI runtime layer, outside the
critical section that protects the progress of the VCI.

In addition to traditional requests, MPICH maintains the pre-
completed lightweight request described in Section 4.1. A light-
weight request is a single object and not a pool, so it cannot be
cached like traditional requests. What we do instead is replicate this
lightweight request and provide each VCI with its own. The per-
VCI lightweight requests do not need atomic operations for their
updates since each is protected by the lock of the VCI it belongs to.

Figure 7 shows the benefits of the per-VCI request management
optimizations. Without the optimizations, throughput is 39.98×
lower (All w/o per-VCI req-mgmt) compared with all optimizations.

Cache-line awareness for VCIs. We implement the VCI pool
as an array of structs. Each VCI struct holds the lock for that VCI.
Locks of consecutive VCIs are likely to lie on the same cache line,
resulting in the effects of false sharingwhen threadsmap to different
VCIs. Hence, we use compiler attributes to cache-align each VCI.
Figure 8 shows that without a cache-aware VCI, the message rate
is 1.49× lower (All w/o cache-aware VCI).

Summary. All the thread-safety and multi-VCI optimizations
described in this section are critical for enabling fast parallel streams
of communication for MPI+threads. The message rate achieved by
the optimized MPI library with 16 threads for 8-byte MPI_Isends
is 94.43× higher than that of the state of the art.

5 MICROBENCHMARK ANALYSIS
We showcase the performance of the fastMPI+threads library

We first measure the aggregate message rate of MPI_Isend and
MPI_Put (passive target synchronization) using a communication-
intensive benchmark. The benchmark demonstrates the maximum
rate at which multiple cores can inject messages into the network
simultaneously. Each core on the host node targets a distinct core
on the remote node. We compare the following modes of execution.

• MPI everywhere parallelism using the original MPICH ver-
sion that uses one VCI.
• MPI+threads (ser_comm+orig_mpich) parallelism with the
user not exposing communication parallelism on the original
MPICH that uses one VCI and the Global critical section.
• MPI+threads (ser_comm+vcis)—same as above but using the
optimized multi-VCI based MPICH/CH4.
• MPI+threads (par_comm+orig_mpich) parallelismwith user-
exposed parallelism on the original MPICH.

• MPI+threads (par_comm+vcis)—same as above but using
the optimized multi-VCI based MPICH/CH4.
• MPI+threads parallelism with user-visible endpoints on top
of the optimized multi-VCI infrastructure where each end-
point is a VCI.

User-visible endpoints enable explicit control over VCIs, allowing
users to specify the endpoint to use on the host and the remote
endpoint to target. The communication performance of user-visible
endpoints reflects the upper bound of the MPI-3.1 implementation
wherein users implicitly use VCIs through MPI-3.1 mechanisms.

For our analysis with MPI+threads, we spawn one rank per
node with an OpenMP thread per core. MPI everywhere uses a
rank per core. In our microbenchmarks with user-visible endpoints,
each host-target thread pair uses its own endpoint, thus exposing
communication parallelism to the MPI library. With MPI-3.1, when
users do not expose parallelism (ser_comm), all threads use the same
communicator or window. In user-exposed parallelism (par_comm),
each thread pair uses its own communicator or window.

5.1 Well-behaved communication
For the different modes of execution on OFI/OPA and UCX/IB,
Figure 10 shows the message-rate scalability of a small-message
MPI_Isend, and Figure 11 shows the message rate of MPI_Isend
with 16 cores across varyingmessage sizes.MPI everywhere achieves
the highest throughput in all cases. When users expose communi-
cation parallelism, they achieve the same performance irrespective
of the use of VCIs (par_comm) or user-visible endpoints. When
users expose no communication parallelism (ser_comm), there is
no performance gain with increasing number of threads.

Thread safety costs. A corresponding MPI everywhere config-
uration represents the practical upper bound of the communica-
tion performance of an MPI+threads configuration. Our optimized
MPI+threads library utilizes the same level of network parallelism
as MPI everywhere. However, MPI+threads incurs thread safety
overheads over MPI everywhere even in the uncontended case.
These overheads are most visible for small messages (see Figure 11)
since the message rate is bound by the CPU, not by the network.
The sources of the thread safety overheads are lock acquisitions
and atomics for completion or reference counting. Figure 12 shows
that if we disable locking and atomics,∥ MPI+threads can match the
throughput of MPI everywhere. One solution to mitigate thread-
safety costs would be to allow users to provide hints as to which
communicators will be accessed by a dedicated thread, thereby
allowing the MPI library to disable locking for the VCIs of commu-
nicators accessed by dedicated threads.

∥Since each thread maps to its own VCI in theMPI+threadsmicrobenchmark, disabling
thread safety, although incorrect, does not lead to erroneous behavior.



How I Learned to Stop Worrying about
User-Visible Endpoints and Love MPI ICS ’20, June 29-July 2, 2020, Barcelona, Spain

0

20

40

60

1 2 4 8 16
Number of cores

M
es

sa
ge

s/
s 

(x
10

^
6)

Isend; MPICH/OFI/OPA

0

20

40

60

80

1 2 4 8 16
Number of cores

M
es

sa
ge

s/
s 

(x
10

^
6)

Isend; MPICH/UCX/IB

MPI
Everywhere
+Threads (ser_comm+orig_mpich)
+Threads (par_comm+orig_mpich)

+Threads (par_comm+vcis)
+Threads (ser_comm+vcis)
+Threads (Endpoints)

Figure 10: Message-rate scalability of 8-byte MPI_Isend.

0

20

40

60

1 4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

Message size (B)

M
es

sa
ge

s/
s 

(x
10

^
6) Isend; 16 cores; MPICH/OFI/OPA

0

20

40

60

80

1 4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

Message size (B)

M
es

sa
ge

s/
s 

(x
10

^
6) Isend; 16 cores; MPICH/UCX/IB

MPI
Everywhere
+Threads (ser_comm+orig_mpich)
+Threads (par_comm+orig_mpich)

+Threads (par_comm+vcis)
+Threads (ser_comm+vcis)
+Threads (Endpoints)

Figure 11: MPI_Isend throughputwith varyingmessage sizes.

MPI+Threads
(+no atomics)

MPI+Threads
(+no locks)

MPI+Threads

MPI Everywhere

0 25 50 75
Messages/s (x10^6)

Isend; MPICH/UCX/IB

Note: error bars overlap.

Figure 12: MPI+threads costs.

Takeaway: For basic communication, VCIs and endpoints per-
form similarly and nearly as well asMPI everywhere.

5.2 Not-so-well-behaved communication
Similar to Figures 10 and 11, Figures 13 and 14 demonstrate, for
the different modes of execution on OFI/OPA and UCX/IB, the
throughput scalability of a small-message MPI_Put, and the 16-core
message rate of MPI_Put across varying message sizes, respectively

Network hardware limitations. The MPI+threads message
rate of MPI_Put on OFI/OPA is dismal even with exposed paral-
lelism on VCIs and user-visible endpoints. The reason is that Intel
OPA emulates its RMA operations in software, requiring the applica-
tion on the target side to actively progress a VCI for a performance-
oriented execution of the operation. When the application provides
no help, OPA relies on its low-frequency PSM2 progress thread for
completion of the operation. In our benchmark, all the threads from
all processes first initiate their RMA operations in parallel. Then,

0

10

20

30

40

1 2 4 8 16
Number of cores

M
es

sa
ge

s/
s 

(x
10

^
6)

Put; MPICH/OFI/OPA

0

25

50

75

100

1 2 4 8 16
Number of cores

M
es

sa
ge

s/
s 

(x
10

^
6)

Put; MPICH/UCX/IB

MPI
Everywhere
+Threads (ser_comm+orig_mpich)
+Threads (par_comm+orig_mpich)

+Threads (par_comm+vcis)
+Threads (ser_comm+vcis)
+Threads (Endpoints)

Figure 13: Message-rate scalability of 8-byte MPI_Put.

0

10

20

30

40

1 4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

Message size (B)

M
es

sa
ge

s/
s 

(x
10

^
6) Put; 16 cores; MPICH/OFI/OPA

0

25

50

75

100

1 4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

Message size (B)

M
es

sa
ge

s/
s 

(x
10

^
6) Put; 16 cores; MPICH/UCX/IB

MPI
Everywhere
+Threads (ser_comm+orig_mpich)
+Threads (par_comm+orig_mpich)

+Threads (par_comm+vcis)
+Threads (ser_comm+vcis)
+Threads (Endpoints)

Figure 14: MPI_Put throughput with varying message sizes.

0

10

20

30

40

1 2 4 8 16
Number of cores

M
es

sa
ge

s/
s 

(x
10

^
6) MPI

Everywhere
+Threads (ser_comm+orig_mpich)
+Threads (par_comm+orig_mpich)
+Threads (par_comm+vcis)
+Threads (ser_comm+vcis)
+Threads (Endpoints)

Put; MPICH/OFI/OPA

Figure 15: Parallel Win_free.

one thread waits on an MPI barrier, after which all threads syn-
chronize with a thread barrier. The communicator used for the MPI
barrier internally uses a VCI different from those of the windows
on which the RMA operations are issued. Thus, none of the threads
directly make progress on the incoming messages of the RMA VCIs.
The thread waiting on the MPI barrier occasionally performs global
progress, so the benchmark eventually completes, but such global
progress is infrequent and thus hurts performance.

With UCX/IB, on the other hand, we see no such degradation
in performance because Mellanox IB is capable of implementing
contiguous MPI_Put operations fully in hardware. Thus, even if the
target threads are not making direct progress on the RMA VCIs,
the operations still complete quickly.

With MPI everywhere, each process has a single VCI. Thus, the
target ranks waiting on an MPI barrier continuously progress the
VCI being targeted by the initiator ranks.

The main point demonstrated here is the tradeoff between ded-
icated progress and shared progress.MPI everywhere has no dis-
tinction between dedicated and shared progress because it only has



ICS ’20, June 29-July 2, 2020, Barcelona, Spain Zambre et al.

0

10

20

0 1 10 100 1000
Target-side computation loop (x10^6)

M
es

sa
ge

s/
s 

(x
10

^
6)

16 cores; Put; MPICH/OFI/OPA

Figure 16: Busy target.

0

20

40

0 1 2 4 8 16
Number of serialized communicators

M
es

sa
ge

s/
s 

(x
10

^
6)

16 cores; 16 VCIs; Isend; MPICH/OFI/OPA

Figure 17:Mappingmismatch

a single VCI. For MPI+threads, when a single VCI is used (i.e., orig-
inal MPICH), likeMPI everywhere, it has no distinction between
dedicated and shared progress either. But, for MPI+threads, when
we use multiple VCIs, the same independence of VCIs that enables
good performance through the avoidance of locks also hurts shared
progress between the threads. One can work around this issue by,
for example, having each thread be responsible for progress on its
window (in the same way that MPI everywhere works). One possi-
bility is that threads call MPI_Win_free on their own windows in
parallel (see Figure 15), thus making progress on the corresponding
VCIs, although how practical this possibility is in real applications
remains to be seen.

Busy target. Typically, the target side is involved in its own
computational activities and does not just wait for communication
to complete, as in Figure 15. The target’s computation then deter-
mines the productivity of operations that need the target VCI to be
progressed. Figure 16 shows a deteriorating MPI_Put message rate
when the computation before the call to MPI_Win_free increases
on the threads of the target rank.

Takeaway:When shared progress is required neither VCIs nor
user-visible endpoints perform well.

Mismatch in expected mapping to VCI. Even if the user ex-
poses parallelism, parallel operations can contend on the same
VCI because the number of VCIs available is hardware dependent
and typically small, and these VCIs themselves are not exposed to
the user. A simple first-come, first-served model of VCI allocation
to communicators might not be the best strategy in this regard
because the user cannot identify which communicators map to
distinct VCIs and can therefore be used by different threads for
better performance. Figure 17 shows the deteriorating effect on
throughput for increasing amounts of serialization when there are
16 threads and the network hardware features only 16 contexts.
The user is exposing communication parallelism, but the observed
performance is low because of the mismatch in expectations of
mapping to the underlying VCIs. One solution to this mismatch in
expected mapping would be to allow users to provide hints as to
which communicators are used by different threads and can benefit
from independent VCIs.

User-visible endpoints, compared to MPI-3.1, can perform better
in this situation because they expose the network hardware con-
texts to the user. We note that user-visible endpoints could also
be implemented as a virtual layer on top of internal VCIs. How-
ever, they form a closer mapping to network resources than what
communicators do.

Figure 18: Dedicated threads.

0

1

2

3

1 2 4 8 16
Number of sender threads

M
es

sa
ge

s/
s 

(x
10

^
6) Using

Endpoints
Communicators

Isend; MPICH/OFI/OPA

Figure 19:Hurtful abstraction

Takeaway:User-visible endpoints allow users to carefullyman-
age their communication, thus performing better in situations
when the MPI-3.1 library serializes user-exposed parallelism.

5.3 Limiting MPI semantics
Abstracting the use of VCIs through communicators can hurt certain
irregular communication patterns. Figure 18 captures the commu-
nication pattern of Legion’s [17] runtime, which maintains a set
of threads where a few are dominant message senders and a few
are dedicated polling threads that receive messages. With MPI-3.1,
each sender thread uses a separate communicator. However, the
semantics of MPI require the receiver thread to iterate over the com-
municators, thus forcing the receiver to contend on the VCIs of the
senders and hurting performance (see Figure 19). With user-visible
endpoints, this contention does not exist since each thread uses
a distinct endpoint and can directly address the endpoint of the
remote receiver. The single receiver is a bottleneck with both user-
visible endpoints and communicators. With communicators, the
fraction of time spent by the receiver on a VCI’s lock decreases with
increasing number of senders. Hence, its performance approaches
that with endpoints.

Takeaway:WhenMPI’s semantics limit the user from exposing
parallelism, user-visible endpoints perform better than VCIs.

6 APPLICATION ANALYSIS
In this section, we showcase the communication performance of
three applications, one from each of the three categories described
in Section 1. For each application, we compare the performances
of MPI everywhere (a rank per core) and MPI+threads (a rank per
node; an OpenMP thread per core) parallelism. ForMPI+threads,
we show the performances of user-exposed parallelism on VCIs
and on the original MPI library and compare them with that of
user-visible endpoints.

6.1 Stencil applications
Stencils are arguably the most common design patterns in HPC ap-
plications. They are at the heart of various application domains such
as computational fluid dynamics, image processing, and partial dif-
ferential equation solvers. Prominent applications with the stencil
communication pattern include Nek5000 [33] and LAMMPS [34].

Using a 2D 5-point stencil, we evaluate the neighborhood halo
exchange (non-blocking point-to-point) time per iteration of the
stencil pattern. We first partition the mesh into blocks across nodes,



How I Learned to Stop Worrying about
User-Visible Endpoints and Love MPI ICS ’20, June 29-July 2, 2020, Barcelona, Spain

Figure 20: 6x6 grid with 3x3
sub-blocks per node.

Figure 21: Logical parallelism
inMPI+threads stencil.

and thenwithin each nodewe further partition the sub-block among
cores (Figure 20 shows an example). The squares formed by the
intersection of the dashed blue lines represent cores that are driven
by processes and threads inMPI everywhere andMPI+threads par-
allelism, respectively. The blue dashed lines also represent bound-
aries where the halo exchange takes place through shared memory.
MPI still executes intranode halo exchanges in MPI everywhere. In
MPI+threads, threads use MPI only for internode halo exchanges
and directly read the shared memory for intranode communication.
The stencil pattern falls into the first category of applications—
the internode communication of threads on edges of the nodes is
independent and can execute on its own communication stream.

With user-visible endpoints, we create as many endpoints as
there are threads on edges. For the example in Figure 20, we create
8 endpoints per node. Each communicating thread uses its own
endpoint and exchanges halos by addressing the ranks of the remote
endpoints, thereby achieving parallel communication. With MPI-
3.1, we use two sets of communicators—odd and even—for each of
the north-south and east-west exchanges. Each set contains as many
communicators as there are threads on the node edge. Figure 21
shows an example. Depending on the Cartesian coordinates of the
rank, the threads on a rank would use either the odd set or the even
set. The odd-even sets prevent multiple threads from using the same
communicator. Without them, T0 on R0 and R2 in Figure 21 would
use the same NS_0 communicator, requiring T2 on R0 to also use
the NS_0 communicator and thus serializing the communication
of T0 and T2 on R0. Periodic stencils where the number of ranks
along a dimension of the process-grid is odd require a separate set
of communicators for the wraparound. The communicator usage
can indeed be reduced without hurting performance by using only
one communicator for the threads on corners, since their halo
exchanges execute in serial.

The above example also demonstrates that the matching seman-
tics of communicators or tags (i.e., the same communicator and tag
must be used for both the sender and receiver) sometimes makes
exposing communication parallelism with MPI-3.1 clumsy com-
pared with that of user-visible endpoints. While not a performance
argument, one might consider it to be a productivity concern.

Our evaluation utilizes all 9 nodes of the OFI/OPA cluster and
engages 16 cores per node. Figure 22 shows the halo communica-
tion time∗∗ for each mode across varying mesh dimensions. This
time discards the cost of any load imbalance since we use MPI

∗∗For the MPI_THREAD_FUNNELED mode, we do not report the time spent in packing
and unpacking the buffer.

0.0

0.1

0.2

0.3

48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28

8

24
57

6

49
15

2

98
30

4

19
66

08

Mesh dimension

Ti
m

e 
(m

s)

MPI
Everywhere
+Threads (Original)
+Threads (VCIs)
+Threads (Endpoints)
+Threads (FUNNELED)

Halo communication time per iteration; 9 nodes; 16 cores per node; MPICH/OFI/OPA

Figure 22: Halo communication across varying mesh sizes.

barriers before the start of each halo exchange. We observe that
the communication performance of VCIs with user-exposed par-
allelism matches that of MPI everywhere parallelism, user-visible
endpoints, and MPI_THREAD_FUNNELED.

Recommendation: Maximize independence between threads
for point-to-point communication with MPI communicators.

Warning: Independent communication with MPI ranks or tags
is not sufficient because of wildcards on the receive side.

Warning: The matching requirements of communicators or
tags sometimes makes exposing communication parallelism
with MPI-3.1 clumsy compared with that of user-visible end-
points.

6.2 OpenMC
The Center for Exascale Simulation of Advanced Reactors (CESAR)
was a DOE co-design center whose primary objective was to adapt
algorithms to the next-generation HPC architectures on the path
to exascale systems. CESAR focused on algorithms that target the
high-fidelity analysis of nuclear reactors. These include algorithms
governing thermal hydraulics and neutronics. Applications simu-
lating the former typically have a neighborhood, stencil style of
communication, which we evaluated in Section 6.1. The latter con-
sists of distributed Monte Carlo (MC) neutron-transport codes, such
as OpenMC [37]. Siegel et al. [39] presented the original energy-
banding (EB) algorithm for OpenMC, and Felker et al. [23] extended
the EB idea to distributed-memory machines by distributing the
cross-section data (composed of energy bands) across multiple
nodes. Rather than the domain, particles are evenly distributed be-
tween the nodes. During simulation, each node fetches one band of
the cross section using MPI_Get operations, tracks the movement
of its share of particles, and iterates over the number of bands.

CESAR’s EBMS miniapp [2] captures the communication pat-
tern of the distributed EB idea. It utilizes MPI shared memory [28]:
multiple processes on a node that share a receive buffer that is large
enough to hold one band of the cross-section. While the computa-
tion is distributed among the different processes on the node, only
one process is responsible for communication. We extended the
EBMS miniapp to distribute the communication workload among
the processes as well [3]. We also implemented a MPI+threads
version of the miniapp with one multithreaded process per node.



ICS ’20, June 29-July 2, 2020, Barcelona, Spain Zambre et al.

Figure 23: Logical parallelism inMPI+threads EBMS.

0.00

0.05

0.10

0.15

64 25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

Band size (bytes)

Ti
m

e 
(m

s)

MPICH/UCX/IB

0.0

0.5

1.0

1.5

2.0

64 25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

Band size (bytes)

Ti
m

e 
(m

s)

MPICH/OFI/OPA

MPI Everywhere + shared memory
+Threads (Original)

+Threads (VCIs)
+Threads (Endpoints)

Figure 24: Time per remote fetch across varying band sizes
with 16 cores per node on UCX/IB (left) and OFI/OPA (right).

0.00

0.02

0.04

0.06

64 25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

Band size

Ti
m

e 
(m

s)

Time per Get; MPICH/OFI/OPA

0.0

0.5

1.0

1.5

2.0

64 25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

10
48

57
6

Band size

Ti
m

e 
(m

s)

Time per Flush; MPICH/OFI/OPA

MPI Everywhere + shared memory
+Threads (Original)

+Threads (VCIs)
+Threads (Endpoints)

Figure 25: Get and flush time across varying band sizes on
OFI/OPA.

The communication workload between the cores is the same for
both the MPI everywhere (+ shared memory) and the MPI+threads
versions.

The EBMS pattern falls into both the first and second categories
of applications (listed in Section 1). It falls into the first category
because MPI_Get operations of different threads are independent;
they can execute on distinct communication streams. The pattern
falls into the second category because of the use of RMA—the
underlying interconnect may be limited and rely on shared progress.

To leverage the independence between threads with user-visible
endpoints, we create a separate endpoint for each thread. With MPI-
3.1, we use a separate window per thread as shown in Figure 23.
The memory is not duplicated for each window.

Our evaluation utilizes 4 nodes and engages 16 cores per node
on both the UCX/IB and OFI/OPA clusters. We measure the time for
each fetch of a portion of a band that resides on a remote node. A

Figure 26: Logical parallelism inMPI+threads BSPMM.

remote fetch includes an MPI_Get and an MPI_Win_flush. Figure 24
shows the time for a remote fetch on the UCX/IB cluster. The
communication performance of MPI+threadswith VCIs is the same
as that of MPI everywhere and user-visible endpoints.

Recommendation: Maximize independence between threads
for RMA communication with MPI windows.

On the other hand, the remote-fetch times on OFI/OPA (see Fig-
ure 24) show that exposing parallelism on VCIs hurts performance,
especially for large messages. The case is the same with user-visible
endpoints. The time for a remote fetch is governed by the issue
of the fetch (MPI_Get) and its completion (MPI_Win_flush). If we
separate them out, Figure 25 shows that the time for an MPI_Get
using multiple VCIs is the same as that in MPI everywhere but
the time of MPI_Win_flush is more expensive. The reason is that
the communication pattern of the application does not guaran-
tee that the remote VCI being targeted by the MPI_Get operations
will be progressed—the thread mapped to the target VCI on the re-
mote rank could be waiting on a thread-barrier that exists between
each iteration of the simulation. Intel OPA relies on the application
to make progress on the target VCI for the completion of large-
message RMA transfers and for a productive execution of small to
medium message transfers. Hence, the execution is dependent on
the occasional global progress in the progress engine.

Warning: Independent communication with VCIs fundamen-
tally opposes shared progress.

6.3 NWChem
NWChem [41] is a prominent quantum chemistry application suite
for large-scale simulations of chemical and biological systems. It
uses the Global Arrays (GA) [31] library to distribute the mul-
tidimensional arrays across the memories of multiple nodes and
provide access to the data through one-sided MPI operations. When
NWChem is used for quantum chemical many-body methods, such
as CCSD and CCSD(T), the dominant cost is that of BSPMM: block-
sparse matrix multiplication (tensor contractions). NWChem imple-
ments this with dense matrix operations using a get-compute-update
pattern: each worker (processing entity) uses MPI_Get to retrieve
the submatrices it needs, and after the multiplication it uses an
MPI_Accumulate to update the memory at the target location.

Using a mini-app [1], we evaluate a 2D version of this communi-
cation pattern that performs A×B = C , wherein the input matrices
A and B are composed of tiles. Each tile is either a dense or zero



How I Learned to Stop Worrying about
User-Visible Endpoints and Love MPI ICS ’20, June 29-July 2, 2020, Barcelona, Spain

0.00

0.02

0.04

0.06

1 2 4 8 16 32 64 12
8

Tile dimension

Ti
m

e 
(m

s)

Get; MPICH/OFI/OPA

0.0

0.1

0.2

0.3

0.4

1 2 4 8 16 32 64 12
8

Tile dimension

Ti
m

e 
(m

s)

Get-flush; MPICH/OFI/OPA

0.000

0.025

0.050

0.075

0.100

1 2 4 8 16 32 64 12
8

Tile dimension

Ti
m

e 
(m

s)

Accum; MPICH/OFI/OPA

0.0

0.1

0.2

0.3

1 2 4 8 16 32 64 12
8

Tile dimension

Ti
m

e 
(m

s)

Accum-flush; MPICH/OFI/OPA

MPI Everywhere +Threads (Original) +Threads (VCIs) +Threads (Endpoints)

Figure 27: BSPMM communication performance on Intel Omni-Path.

matrix. The nonzero tiles are evenly distributed among the ranks
in a round-robin fashion. Each rank maintains a work-unit table
that lists all the multiplication operations that workers need in or-
der to cooperatively execute. Rank 0 hosts a global counter, which
the workers fetch and add atomically (MPI_Fetch_and_op). The
fetched counter serves as an index to the work-unit table. Each
worker locally accumulates its C tiles until the next fetched work
unit corresponds to a differentC tile, in which case the worker uses
an MPI_Accumulate to update the C tile. A worker is a process in
MPI everywhere and a thread inMPI+threads.

MPI+threads BSPMM falls under the third category of applica-
tions. Although each thread can use its ownwindow for its MPI_Get
to fetch tiles of A and B, MPI-3.1’s semantics constrain the threads
within a rank to use a single window for the MPI_Accumulate. Each
thread cannot use its own window for MPI_Accumulate because
atomicity across windows for the same memory location is unde-
fined. On the other hand, user-visible endpoints enable the creation
of multiple endpoints within a single window. Hence, each thread
uses its own endpoint for both MPI_Get and MPI_Accumulate as
shown in Figure 26.

Figure 27 portrays the performance of BSPMM’s communica-
tion pattern on 4 nodes of the OFI/OPA cluster with 16 cores en-
gaged per node. We measure the time taken to initiate the opera-
tions (e.g., MPI_Get) separately from the time taken to complete
them (e.g., MPI_Win_flush). VCIs initiate MPI_Get operations as
fast as endpoints andMPI everywhere. However, only endpoints
initiate MPI_Accumulate operations as fast as MPI everywhere;
MPI+threadswith MPI-3.1 is constrained by the use of a single win-
dow. The flush of MPI_Get operations demonstrates behavior simi-
lar to that in the EBMS pattern (see Section 6.2). MPI+threads with
VCIs flushes MPI_Accumulate operations faster than endpoints be-
cause of its use of a single VCI—the probability of the remote target
VCI being progressed is higher since all threads on the target rank
map to it. The Accum-flush of MPI everywhere is the slowest for
large tile dimensions because the worker cannot progress its VCI
until it finishes its computational tasks, which is larger for large tile
dimensions. On the other hand, if a worker in MPI+threads is busy
with computational tasks, other workers on the same rank might
progress the VCI, either because they all map to the same VCI or be-
cause of shared progress, allowing for a more productive execution
of a large-message RMA operation than that inMPI everywhere.

Warning: Atomic operation semantics are not easy to achieve
with multiple windows; using multiple VCIs may not help.

An important point to note is that the MPI_Accumulate opera-
tions in BSPMM do not need to be ordered. Hence, if the user hints
this relaxation using the accumulate_ordering=none hint, the
MPI library could issue the operations from different threads in par-
allel and thereby achieve the same performance as user-visible end-
points. Furthermore, increasing the number of ranks per node and
decreasing the number of threads per rank in hybrid MPI+threads
could also help the case of accumulates with VCIs. The optimal com-
bination of ranks per node and threads per rank, however, depends
on an empirical study with the application.

7 RELEVANCE TO MPI-4.0
The next iteration of the MPI standard, MPI-4.0 [7], is consider-
ing featuring new info hints (e.g. mpi_assert_no_any_tag) that
would provide the users with more opportunities to expose com-
munication parallelism in theirMPI+threads communication. For
example, if an application hints that it does not use wildcards in
its communication, MPI-4.0 would allow the user to expose com-
munication parallelism through tags within a single communicator
in addition to the option of exposing parallelism through commu-
nicators. These new ways to expose parallelism would, in turn,
need to be mapped to the multiple VCIs inside the MPI library.
Hence, the productive use of the new hints relies on the muti-VCI
infrastructure that this work provides.

8 RELATEDWORK
The communication performance of MPI+threads has been a decade-
long concern. Researchers have studied the problem in variousways,
ranging from mitigating lock contention on the MPI library’s soft-
ware resources [12, 13, 16] to extending the MPI standard [20, 25].
We discuss prior works that are conceptually related to ours.

8.1 MPI Endpoints demonstration
Dinan et al. [22] and Sridharan et al. [40] demonstrate the perfor-
mance of MPI+threadswith the MPI Endpoints proposal. Although
they agree that using a separate communicator per thread would
allow the user to expose parallelism, they do not compare MPI End-
points with the communicator-based approach. Our work compares
the capabilities of the existing MPI standard with user-visible end-
points, demonstrating scenarios where VCIs do as well as endpoints
and where they falter. Additionally, their work does not describe
the notion of progress, which is critical for correctness. Our work,
on the other hand, does not sacrifice correctness for performance.



ICS ’20, June 29-July 2, 2020, Barcelona, Spain Zambre et al.

8.2 MPI libraries
Open MPI. A couple of works [24, 32] on Open MPI are conceptu-
ally similar to our work—they use fine-grained critical sections and
map parallelism available in the existing MPI standard to multiple
network hardware contexts to improve MPI+threads communica-
tion performance. However, both works do not compare against
user-visible endpoints or MPI everywhere. Additionally, like the
MPI Endpoints work, neither of these works discusses the notion
of shared progress, ignoring correctness.

Gopalkrishnan et al. [24] evaluate the communication perfor-
mance of MPI+threads with OFI scalable endpoints. Recognizing
the practical performance limitations of scalable endpoints, our
work uses regular OFI endpoints instead (see Section 4.2), and
hence we observe much larger speedups than their work obtains.

Similar to VCIs in our work, Patinyasakdikul et al. [32] define
Communication Resource Instances (CRIs). Their approach involves
creating a pool of CRIs and either assigning CRIs to operations in
a round-robin fashion or assigning CRIs to threads using thread-
local storage. While this approach may be correct for a subset
of operations, some CRIs break MPI’s semantics for operations
such as MPI_Accumulate operations to the same target location.
Such operations are ordered by default on a window. In terms of
performance, even with user-exposed parallelism their point-to-
point communication performance does not scale with increasing
number of threads unlike the results of our work.

Intel MPI. Since its 2019 release, the Intel MPI library
has utilized multiple network hardware contexts on Intel
Omni-Path through its multiple endpoints support [5]. How-
ever, this support is only for a nonstandard threading level:
MPI_THREAD_SPLIT, which does not cover all cases possible in the
MPI_THREAD_MULTIPLE threading level. In contrast, our work
with VCIs fully and correctly supports MPI_THREAD_MULTIPLE.

In this work, we do not compare against the capabilities of other
MPI libraries since our goal is not to show that we can do better than
they can; rather, our aim is to study the strengths and limitations
of MPI-3.1 compared with those of user-visible endpoints. Adding
other libraries into the mix would blur the analysis in this paper.
However, a separate performance comparison with other libraries
would make a worthy future study.

8.3 Distributed-memory programming models
The newest version of the OpenSHMEM specification features user-
visible network contexts. Dinan et al. [21] evaluate this approach.
Although our work is not on OpenSHMEM, the motivation to im-
prove multithreaded communication is the same. Instead of leaping
into extending the standard, however, we evaluate the capabili-
ties of the existing MPI-3.1 standard for MPI+threads. Given the
strengths and limitations of MPI showcased in this paper, the MPI
community is better equipped to propose extensions to MPI, if any.

9 CONCLUDING REMARKS
The MPI+threads programming model is critical for effectively
utilizing modern processors. To dissolve its communication bottle-
neck, however, domain scientists must expose logical parallelism
in their communication. Only then will we able to achieve the true
potential of MPI+threads. The school of thought so far has been

that we need user-visible endpoints to express logical parallelism.
In this paper, however, we show that the existing MPI standard
already allows its users to overcome its ordering constraints and
express parallelism. By mapping MPI-3.1’s parallelism to internal
virtual communication interfaces, in the majority of cases we can
achieve communication performance equal to the performance of
user-visible endpoints and MPI everywhere without sacrificing cor-
rectness. More important, domain scientists do not need to worry
about managing and mapping to the limited hardware resources
with MPI 3.1, which is not the case in a user-visible solution such
as MPI Endpoints. We expect that MPI-4.0 will increase the oppor-
tunities for users to express parallelism through hints, and that,
with the adoption of VCIs, MPI developers will be able to effectively
exploit new and current ways of expressing logical communication
parallelism.

ACKNOWLEDGMENTS
We gratefully acknowledge the computing resources provided and
operated by the Joint Laboratory for System Evaluation (JLSE) at
Argonne National Laboratory (ANL). We thank the continuous
feedback from the members of the PMRS group at ANL, and we
thank Gail Pieper from ANL for her timely edits on this paper.
This work is supported by the U.S. Department of Energy, Office of
Science, under contract DE-AC02-06CH11357.

REFERENCES
[1] [n.d.]. BSPMM mini-app. https://github.com/rzambre/bspmm.
[2] [n.d.]. EBMS mini-app. https://github.com/ANL-CESAR/EBMS.
[3] [n.d.]. Extended EBMS mini-app. https://github.com/rzambre/ebms.
[4] [n.d.]. Intel Omni-Path Fabric Host Software. https://www.intel.

com/content/dam/support/us/en/documents/network-and-i-o/fabric-
products/Intel_OP_Fabric_Host_Software_UG_H76470_v9_0.pdf.

[5] [n.d.]. Intel® MPI Multiple Endpoints Support. https://software.intel.com/en-
us/mpi-developer-guide-linux-multiple-endpoints-support.

[6] [n.d.]. Mellanox PRM. http://www.mellanox.com/related-docs/user_manuals/
Ethernet_Adapters_Programming_Manual.pdf.

[7] [n.d.]. MPI-4.0 Draft Report. https://www.mpi-forum.org/docs/drafts/mpi-2019-
draft-report.pdf.

[8] [n.d.]. MPI Endpoints. https://github.com/mpi-forum/mpi-issues/issues/56.
[9] [n.d.]. Semantics of Point-to-Point Communication. https://www.mpi-forum.

org/docs/mpi-3.1/mpi31-report/node58.htm.
[10] [n.d.]. Shared AV table in OFI/PSM2. https://github.com/ofiwg/libfabric/issues/

5080.
[11] [n.d.]. TOP500 Meanderings: InfiniBand Fends Off Supercomputing Chal-

lengers. https://www.top500.org/news/top500-meanderings-infiniband-fends-
off-supercomputing-challengers/.

[12] Abdelhalim Amer, Charles Archer, Michael Blocksome, Chongxiao Cao, Michael
Chuvelev, Hajime Fujita, Maria Garzaran, Yanfei Guo, Jeff R Hammond, Shintaro
Iwasaki, et al. 2019. Software combining to mitigate multithreaded MPI con-
tention. In Proceedings of the ACM International Conference on Supercomputing.
ACM, 367–379.

[13] Abdelhalim Amer, Huiwei Lu, Yanjie Wei, Pavan Balaji, and Satoshi Matsuoka.
2015. MPI+ threads: Runtime contention and remedies. ACM SIGPLAN Notices
50, 8 (2015), 239–248.

[14] Pavan Balaji, Darius Buntinas, David Goodell, WilliamGropp, Jayesh Krishna, Ew-
ing Lusk, and Rajeev Thakur. 2010. PMI: A scalable parallel process-management
interface for extreme-scale systems. In European MPI Users’ Group Meeting.
Springer, 31–41.

[15] Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur.
2008. Toward efficient support for multithreaded MPI communication. In Euro-
pean Parallel Virtual Machine/Message Passing Interface UsersâĂŹ Group Meeting.
Springer, 120–129.

[16] Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur.
2010. Fine-grainedmultithreading support for hybrid threadedMPI programming.
The International Journal of High Performance Computing Applications 24, 1 (2010),
49–57.

[17] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:
Expressing locality and independencewith logical regions. In SC’12: Proceedings of

https://github.com/rzambre/bspmm
https://github.com/ANL-CESAR/EBMS
https://github.com/rzambre/ebms
https://www.intel.com/content/dam/support/us/en/documents/network-and-i-o/fabric-products/Intel_OP_Fabric_Host_Software_UG_H76470_v9_0.pdf
https://www.intel.com/content/dam/support/us/en/documents/network-and-i-o/fabric-products/Intel_OP_Fabric_Host_Software_UG_H76470_v9_0.pdf
https://www.intel.com/content/dam/support/us/en/documents/network-and-i-o/fabric-products/Intel_OP_Fabric_Host_Software_UG_H76470_v9_0.pdf
https://software.intel.com/en-us/mpi-developer-guide-linux-multiple-endpoints-support
https://software.intel.com/en-us/mpi-developer-guide-linux-multiple-endpoints-support
http://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf
http://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf
https://www.mpi-forum.org/docs/drafts/mpi-2019-draft-report.pdf
https://www.mpi-forum.org/docs/drafts/mpi-2019-draft-report.pdf
https://github.com/mpi-forum/mpi-issues/issues/56
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node58.htm
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node58.htm
https://github.com/ofiwg/libfabric/issues/5080
https://github.com/ofiwg/libfabric/issues/5080
https://www.top500.org/news/top500-meanderings-infiniband-fends-off-supercomputing-challengers/ 
https://www.top500.org/news/top500-meanderings-infiniband-fends-off-supercomputing-challengers/ 


How I Learned to Stop Worrying about
User-Visible Endpoints and Love MPI ICS ’20, June 29-July 2, 2020, Barcelona, Spain

the International Conference on High Performance Computing, Networking, Storage
and Analysis. IEEE, 1–11.

[18] David E Bernholdt, Swen Boehm, George Bosilca, Manjunath Gorentla Venkata,
Ryan E Grant, Thomas Naughton, Howard P Pritchard, Martin Schulz, and Ge-
offroy R Vallee. 2017. A survey of MPI usage in the U.S. Exascale Computing
Project. Concurrency and Computation: Practice and Experience (2017), e4851.

[19] Aydin Buluç, Scott Beamer, Kamesh Madduri, Krste Asanovic, and David Patter-
son. 2017. Distributed-memory breadth-first search on massive graphs. arXiv
preprint arXiv:1705.04590 (2017).

[20] James Dinan, Pavan Balaji, David Goodell, Douglas Miller, Marc Snir, and Rajeev
Thakur. 2013. Enabling MPI interoperability through flexible communication
endpoints. In Proceedings of the 20th European MPI Users’ Group Meeting. ACM,
13–18.

[21] James Dinan andMario Flajslik. 2014. Contexts: a mechanism for high throughput
communication in OpenSHMEM. In Proceedings of the 8th International Conference
on Partitioned Global Address Space Programming Models. ACM, 10.

[22] James Dinan, Ryan E Grant, Pavan Balaji, David Goodell, Douglas Miller, Marc
Snir, and Rajeev Thakur. 2014. Enabling communication concurrency through
flexible MPI endpoints. The International Journal of HPC Applications 28, 4 (2014),
390–405.

[23] Kyle G Felker, Andrew R Siegel, Kord S Smith, Paul K Romano, and Benoit
Forget. 2014. The energy band memory server algorithm for parallel Monte
Carlo transport calculations. In SNA+ MC 2013-Joint International Conference on
Supercomputing in Nuclear Applications+ Monte Carlo. EDP Sciences, 04207.

[24] Aravind Gopalakrishnan, Matias A Cabral, James P Erwin, and Ravindra Babu
Ganapathi. 2019. Improved MPI Multi-Threaded Performance using OFI Scalable
Endpoints. In 2019 IEEE Symposium on High-Performance Interconnects (HOTI).
IEEE, 36–39.

[25] Ryan E Grant, Matthew GF Dosanjh, Michael J Levenhagen, Ron Brightwell, and
Anthony Skjellum. 2019. Finepoints: Partitioned multithreaded mpi communi-
cation. In International Conference on High Performance Computing. Springer,
330–350.

[26] Paul Grun, Sean Hefty, Sayantan Sur, David Goodell, Robert D Russell, Howard
Pritchard, and Jeffrey M Squyres. 2015. A brief introduction to the OpenFabrics
Interfaces–a new network API for maximizing high performance application
efficiency. In 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects.
IEEE, 34–39.

[27] Edward Higgins, Matt Probert, Phil Hasnip, Keith Refson, and Ian Bush. 2015.
Hybrid OpenMP and MPI within the CASTEP code. Technical Report. ARCHER
eCSE Technical Report.

[28] Torsten Hoefler, James Dinan, Darius Buntinas, Pavan Balaji, Brian Barrett, Ron
Brightwell, William Gropp, Vivek Kale, and Rajeev Thakur. 2013. MPI+ MPI: A
new hybrid approach to parallel programming with MPI plus shared memory.
Computing 95, 12 (2013), 1121–1136.

[29] Daniel Holmes. [n.d.]. Introducing Endpoints into the EMPI4Re MPI library.
([n. d.]).

[30] Haoqiang Jin, Dennis Jespersen, Piyush Mehrotra, Rupak Biswas, Lei Huang, and
Barbara Chapman. 2011. High performance computing using MPI and OpenMP
on multi-core parallel systems. Parallel Comput. 37, 9 (2011), 562–575.

[31] Jaroslaw Nieplocha, Robert J Harrison, and Richard J Littlefield. 1994. Global
arrays: a portable shared-memory programming model for distributed memory
computers. In Proceedings of the 1994 ACM/IEEE conference on Supercomputing.
IEEE Computer Society Press, 340–349.

[32] Thananon Patinyasakdikul, David Eberius, George Bosilca, and Nathan Hjelm.
2019. Give MPI Threading a Fair Chance: A Study of Multithreaded MPI Designs.
In 2019 IEEE International Conference on Cluster Computing (CLUSTER). IEEE.

[33] James W. Lottes Paul F. Fischer and Stefan G. Kerkemeier. 2008. nek5000 Web
page. http://nek5000.mcs.anl.gov.

[34] Steve Plimpton. 1995. Fast parallel algorithms for short-rangemolecular dynamics.
J. Comput. Phys. 117, 1 (1995), 1–19.

[35] Rolf Rabenseifner, Georg Hager, and Gabriele Jost. 2009. Hybrid MPI/OpenMP
parallel programming on clusters of multi-core SMP nodes. In 2009 17th Euromicro
International Conference on Parallel, Distributed and Network-based Processing.
IEEE, 427–436.

[36] Ken Raffenetti, Abdelhalim Amer, Lena Oden, Charles Archer, Wesley Bland,
Hajime Fujita, Yanfei Guo, Tomislav Janjusic, Dmitry Durnov, Michael Block-
some, et al. 2017. Why is MPI so slow?: Analyzing the fundamental limits in
implementing MPI-3.1. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 62.

[37] Paul K Romano, Nicholas E Horelik, Bryan R Herman, Adam G Nelson, Benoit
Forget, and Kord Smith. 2014. OpenMC: A state-of-the-art Monte Carlo code for
research and development. In SNA+ MC 2013-Joint International Conference on
Supercomputing in Nuclear Applications+ Monte Carlo. EDP Sciences, 06016.

[38] Pavel Shamis et al. 2015. UCX: an open source framework for HPC network
APIs and beyond. In 2015 IEEE 23rd Annual Symposium on High-Performane
Interconnects. IEEE, 40–43.

[39] A Siegel, Kord Smith, K Felker, P Romano, Benoit Forget, and P Beckman. 2014.
Improved cache performance in Monte Carlo transport calculations using energy

banding. Computer Physics Communications 185, 4 (2014), 1195–1199.
[40] Srinivas Sridharan, James Dinan, and Dhiraj D Kalamkar. 2014. Enabling efficient

multithreaded MPI communication through a library-based implementation of
MPI endpoints. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 487–498.

[41] Marat Valiev, Eric J Bylaska, Niranjan Govind, Karol Kowalski, Tjerk P Straatsma,
Hubertus JJ Van Dam, Dunyou Wang, Jarek Nieplocha, Edoardo Apra, Theresa L
Windus, et al. 2010. NWChem: A comprehensive and scalable open-source
solution for large scale molecular simulations. Computer Physics Comm. 181, 9
(2010), 1477–1489.

[42] Rohit Zambre, Aparna Chandramowlishwaran, and Pavan Balaji. 2018. Scalable
communication endpoints for MPI+ Threads applications. In 2018 IEEE 24th
International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 803–
812.


	Abstract
	1 Introduction
	2 Parallelism in the MPI Standard
	2.1 Point-to-point communication
	2.2 Remote Memory Access communication

	3 Software and testbeds
	4 A Fast MPI+Threads Library
	4.1 Deserializing access to the MPI library
	4.2 Parallel communication streams
	4.3 Optimizing multi-VCI communication

	5 Microbenchmark analysis
	5.1 Well-behaved communication
	5.2 Not-so-well-behaved communication
	5.3 Limiting MPI semantics

	6 Application Analysis
	6.1 Stencil applications
	6.2 OpenMC
	6.3 NWChem

	7 Relevance to MPI-4.0
	8 Related Work
	8.1 MPI Endpoints demonstration
	8.2 MPI libraries
	8.3 Distributed-memory programming models

	9 Concluding remarks
	Acknowledgments
	References

