
So�ware Combining to Mitigate Multithreaded MPI Contention

Abdelhalim Amer
Argonne National

Laboratory

aamer@anl.gov

Charles Archer
Intel Corporation

charlesarcher@gmail.com

Michael Blocksome
Intel Corporation

michael.blocksome@intel.

com

Chongxiao Cao
Intel Corporation

chongxiao.cao@intel.com

Michael Chuvelev
Intel Corporation

michael.chuvelev@intel.

com

Hajime Fujita
Intel Corporation

hajime.fujita@intel.com

Maria Garzaran
Intel Corporation

maria.garzaran@intel.com

Yanfei Guo
Argonne National

Laboratory

yguo@anl.gov

Jeff R. Hammond
Intel Corporation

jeff.r.hammond@intel.com

Shintaro Iwasaki
The University of Tokyo

iwasaki@eidos.ic.i.u-tokyo.

ac.jp

Kenneth J. Raffenetti
Argonne National

Laboratory

rafenet@mcs.anl.gov

Mikhail Shiryaev
Intel Corporation

mikhail.shiryaev@intel.

com

Min Si
Argonne National

Laboratory

msi@anl.gov

Kenjiro Taura
The University of Tokyo

tau@eidos.ic.i.u-tokyo.ac.

jp

Sagar Thapaliya
Intel Corporation

sagar.thapaliya@intel.com

Pavan Balaji
Argonne National

Laboratory

balaji@anl.gov

Abstract

Efforts to mitigate lock contention from concurrent threaded

accesses to MPI have reduced contention through fine-grained

locking, avoided locking altogether by offloading communication

to dedicated threads, or alleviated negative side effects from con-

tention by using better lock management protocols. The blocking

nature of lock-based methods, however, wastes the asynchrony

benefits of nonblocking MPI operations, and the offloading model

sacrifices CPU resources and incurs unnecessary software offload-

ing overheads under low contention.

We propose new thread safety models, CSync and LockQ, based

on software combining, a form of software offloading without the re-

quirement for dedicated threads; a thread holding the lock combines

work of threads that failed their lock acquisitions. We demonstrate

that CSync, a direct application of software combining, improves

scalability but suffers from lack of asynchrony and incurs unneces-

sary offloading. LockQ alleviates these shortcomings by leveraging

MPI semantics to relax synchronization and reduce offloading re-

quirements. We present the implementation, analysis, and evalu-

ation of these models on a modern network fabric and show that

LockQ outperforms most existing thread safety models in low- and

high-contention regimes.

ACM acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the
United States government. As such, the United States Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.

 ICS '19, June 26–28, 2019, Phoenix, AZ, USA
© 2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-6079-1/19/06…$15.00
https://doi.org/10.1145/3330345.3330378

CCS Concepts

• Software and its engineering → General programming

languages; • Social and professional topics → History of pro-

gramming languages;

ACM Reference Format:

Abdelhalim Amer, Charles Archer, Michael Blocksome, Chongxiao Cao,

Michael Chuvelev, Hajime Fujita, Maria Garzaran, Yanfei Guo, Jeff R. Ham-

mond, Shintaro Iwasaki, Kenneth J. Raffenetti, Mikhail Shiryaev, Min Si,

Kenjiro Taura, Sagar Thapaliya, and Pavan Balaji. 2019. Software Combining

to Mitigate Multithreaded MPI Contention. In Proceedings of ACM Inter-

national Conference on Supercomputing 2019 (ICS’19). ACM, New York, NY,

USA, 13 pages.

1 Introduction

The Message Passing Interface (MPI) remains the predominant

programming system on distributed-memory high-performance

computing (HPC) platforms. Because of the inadequacy of the

message-passing model to program shared-memory parallel sys-

tems, however, MPI users are moving to hybrid models, MPI+X, that

leverage MPI for distributed-memory programming and another

programming system, X, such as OpenMP, suitable for shared mem-

ory [17]. In MPI+threads programming, concurrent thread accesses

to the MPI stack are allowed and supported by most production

MPI libraries. Although these libraries satisfy the functional re-

quirement of multithreaded MPI, however, most, if not all, suffer

from contention, which hinders application performance.

Among the major sources of contention is competition for lock

acquisition, since locks are the primary mechanism used by these

libraries to protect shared state. Several methods have been devel-

oped to mitigate lock contention issues and can be grouped into

three orthogonal approaches. The first relies on contention reduc-

tion through fine-grained critical sections and atomic operations

where needed (e.g., reference counting) [5, 9, 16, 19]. This approach,

367

ICS’19, June 26-28, 2019, Phoenix, AZ, USA Amer et al.

however, reduces but does not eliminate contention and provides

no remedy when it takes place. Blocking lock acquisitions also

introduces nondeterministic and often long delays for nonblocking

MPI operations, thus wasting their asynchrony benefits. The sec-

ond approach focuses on lock contention avoidance by eliminating

lock acquisitions on the critical path [10, 21, 28]. This is achieved

by using an offload model where application threads offload com-

munication operations to dedicated communication threads. This

model has two shortcomings: it requires dedicated communication

threads that compete with application threads for resources, and

the software offloading system incurs compulsory overheads even

when contention is nonexistent. The third approach aims at better

contention management; when contention takes place, it attempts

to reduce negative side effects by passing lock ownership to threads

with productive work [1, 3, 8]. This is achieved by leveraging MPI

internal knowledge to drive an adaptive locking protocol. This ap-

proach has also the asynchrony issue on nonblocking operations,

however, in addition to being less practical because it requires

hardware-aware custom lock implementations.

We propose new thread safety models based on software combin-

ing [11, 14, 24], a form of software offloading that does not require

dedicated threads; lock holders become the combiner threads that

execute work on behalf of threads that failed their lock acquisitions,

thus behaving similarly to dedicated communication threads of

software offloading methods. We first present CSync, an application

of the state-of-the-art DSM-Synch [11] software combining tech-

nique to communication operations, which required API extensions

for ease of integration. We demonstrate that CSync indeed signif-

icantly reduces scalability degradation but suffers from the same

asynchrony and offloading shortcomings of the lock-based methods

and software offloading, respectively. We then discuss the limits

of software combining techniques that rely on a coupled lock-list

data structure, and we propose an alternative model, LockQ, that

decouples lock and the corresponding list data structures and lever-

ages MPI semantics to (1) preserve asynchrony of MPI nonblocking

operations under practical assumptions and (2) avoid unnecessary

offloading. LockQ eliminates the unbounded synchronization delays

on performing nonblocking MPI operations; to our knowledge, it is

the first model that provides this progress property without relying

on dedicated communication threads.

We present the implementation, analysis, and comparative eval-

uation of six thread safety models—CSync, LockQ, and four other

models found in the literature—on a modern network fabric. Our ex-

perimental method includes communication-intensive benchmarks,

graph traversal and particle transport proxy applications, and an

integration of all the models in the same production MPI library.

Our results show that LockQ outperforms CSync and the offload

model under low contention. At high contention, LockQ performs

competitively against CSync and the offload model and significantly

outperforms the other methods while being hardware agnostic.

2 Background and Related Work

We describe in this section the subtle interaction between appli-

cation threads and MPI. We also define concepts and terminology

used throughout the paper, and we discuss the various contention-

mitigating thread safety models found in the literature.

2.1 MPI+Threads Interaction

MPI is a library specification that allows but does not require

concurrent multithreaded accesses from the MPI user. Given the

increasing number of hybrid MPI+threads applications, demand

for concurrent accesses to MPI has risen accordingly, resulting in

most production MPI libraries supporting this mode of access. MPI

defines two basic rules for concurrent accesses: thread safety and

progress guarantee. Libraries satisfying the latter rule guarantee

that a thread blocked within the MPI library does not obstruct the

progress of other threads. Other rules exist and derive from single-

threaded requirements but are less pertinent for the remainder of

this paper. For instance, collective operations on the same com-

municator must be issued in the same order by all processes; thus,

application threads involved in different collective operations on

the same communicator must synchronize outside MPI in order to

guarantee such ordering.

2.2 Terminology and Baseline

It is impractical to attempt a thorough review of the differences

between MPI libraries and the methods developed in the past two

decades to tackle thread safety issues in MPI. Instead, we group

the various approaches found in practice and in the literature into

what we call thread safety models and then illustrate how they are

implemented through simplified code snippets. Our algorithmic

descriptions will rely on low-level network (LLN) and thread safety

building blocks to implement the internals of an MPI library. Our

goals are simplicity and expressiveness to capture necessary details

while leaving out noncritical information. The following are the

assumptions and terminology used throughout the rest of the paper.

Low-Level Network.We assume that the MPI library calls in-

ternally a low-level network interface that is not thread safe; MPI,

as a result, has to protect such calls in order to avoid corruption

from multithreaded accesses to this API. We use LLN_ to prefix such

calls. In practice, this API can be seen as wrapping network fabric

calls, which are closer to the hardware, such as the OpenFabrics

Interfaces (OFI) [13] and Unified Communication X (UCX) [27], and

doing the necessary translation from MPI-level information to the

target low-level interface.

Critical Sections. To implement critical sections, we assume

a locking API that supports lock acquire and release operations

as well as a lock acquisition attempt operation. These opera-

tions are represented with the lock_acquire, lock_release, and

lock_tryacq calls, respectively. For instance, these could map to

the POSIX API calls pthread_mutex_lock, pthread_mutex_unlock,

and pthread_mutex_trylock calls, respectively.

Baseline Model. Here we consider the most basic model, yet

often adopted in practice, described using the above terminology

and assumptions as illustrated in Figure 1a. This model relies on a

global coarse-grained lock to protect every MPI call that accesses

a shared state. The code snippets throughout the paper will use a

nonblocking communication operation (MPI_Isend) and a blocking

progress operation (MPI_Wait) to drive the discussion. The lock (L)

ensures thread safety by requiring each MPI routine to acquire and

release the lock at the entry and exit of the routine, respectively.

MPI_Isend is required to create a user-visible request object (req at

line 3) and to translate the call to the network fabric (LLN_isend).

This model assumes the absence of asynchronous progress either

368

So�ware Combining to Mitigate Multithreaded MPI Contention ICS’19, June 26-28, 2019, Phoenix, AZ, USA

because the LLN does not support it or because the application

does not want to sacrifice CPU resources to enable it. As a result,

application threads have to drive progress manually when in the

MPI library (line 10). To respect MPI’s progress semantics, block-

ing operations have to release the lock if the operations they are

waiting for have not completed, in order to allow other threads to

progress (line 12).While waiting for completion, theMPI library can

optionally pause or yield the CPU to improve resource utilization.

As can be seen in this example, if two threads call MPI_Isend

and MPI_Wait in parallel, they will compete for the lock L. If

MPI_Wait holds the lock while there is no operation to complete,

MPI_Isend will block waiting for lock acquisition unnecessarily.

We consider MPI_Wait in this case as incurring unproductive lock

acquisitions and thus wasting the opportunity for communication

operations, such as MPI_Isend, to secure a productive lock acquisi-

tion in a timely manner. Moreover, waiting on a lock acquisition

in MPI_Isend might block for an unbounded number of steps, thus

wasting the asynchrony benefits of an MPI nonblocking call.

2.3 Survey of Existing Thread Safety Models

Themost efficient way to describe existing contention-mitigating

efforts is to depart from the coarse-grained locking model and show

how improvements are made over the baseline implementation

of MPI_Isend and MPI_Wait. The code snippets for these models

are illustrated in Figures 1b through 1d; the key differences with

respect to the coarse-grained model are highlighted with a colored

background.

Fine-Grained Locking. This approach aims at reducing con-

tention by shrinking the length of the critical sections. This is a

large category in practice because numerous ways exist to protect

shared states and objects (instances of this model can be found in

[5, 9, 16, 19]). One way is to use a single lock, but acquiring and

releasing the lock occur at fine-grained levels (e.g., just before touch-

ing a shared object). Another method is to use multiple locks where

each lock protects a different object or a class of objects. In Figure 1b,

we illustrate one way to reduce contention using fine-grained locks.

The responsibility of the global lock is split into two locks, req_L

and LLN_L, to independently protect request memory management

operations and LLN operations, respectively. This model has several

shortcomings, however. Contention can still take place in hotspots,

such as when multiple threads actively wait and contend for the

LLN_L lock. The overheads of this model in low-contention regimes

also grow with the number of locking operations on the critical

path; indeed, the locking operations incur overheads associated

with function calls (if not inlined), memory barriers, and atomic

operations that hurt instruction-level parallelism.

LLN Lockless Offloading. This model ensures contentionless

access to the LLN (Figure 1c). The bulk of the work is performed

by dedicated threads belonging to the LLN. Application threads

simply post communication operations and either leave (nonblock-

ing operation) or busy wait on a flag (blocking operation). The

application thread first creates a work descriptor (line 6) and uses

an LLN routine to post the descriptor (software offloading; usually

a lock-free enqueue operation). A communication thread then pulls

the descriptor and executes the operation on behalf of the calling

thread. Waiting for completion simply involves checking the sta-

tus of the request; no progress calls are required (loop at line 10).

Lock contention is completely avoided in this case since it is lock-

less (note that contention for a descriptor queue might still occur),

and the approach reduces interference between issuing operations

and waiting for their completion since they are no longer coupled

through lock acquisitions. This model, however, sacrifices CPU

resources for the sake of the communication threads that might

interfere with application threads when competing for on-node

resources. Furthermore, software offloading incurs overheads in the

absence of contention because of unnecessary offloading; in this

case, a thread can directly issue the operation instead of creating,

posting, and relying on the dedicated thread to dequeue and execute

a work descriptor. MPICH2 over PAMI (Parallel Active Message In-

terface) on Blue Gene/Q systems [21], the work by Vaidyanathan et

al. that offloads MPI communication to a dedicated thread [28], and

the work by Wataru et al. that offloads Infiniband communication

operations to user-level threads [10] are examples that follow this

model.

Lock Contention Management. This model does not alter

lock granularity. Instead, contention is managed in a way that

reduces overheads outside serialization. For instance, as shown by

Amer et al. [1, 3], in order to reduce thewaste from unnecessary lock

acquisitions in the progress loop (lline 14 in Figure 1a), the locking

protocol can prioritize lock acquisitions with higher productive

potential. Figure 1d shows an example of a locking API that exposes

a routine lock_acquire_low that gives lower priority to the calling

thread, thus prioritizing threads calling lock_acquire. To further

reduce contention when waiting for completion, Dang at al. showed

how the progress loop can be managed in a server-client model

where one of the application threads (server) calls network progress

while the others (clients) wait on a local flag [8]. The server wakes

up threads that have their pending operations completed.

In the lock-based examples, locks have been used as the unique

form of synchronization. Protecting LLN calls in this way is com-

mon and important for correctness and performance portability.

Protecting the request object pool (line 2 in Figures 1b and 1c) is

done only for illustration and can be implemented in a lockless man-

ner. With the exception of the offload model, all the above models

impose blocking lock acquisition on nonblocking MPI operations

(MPI_Isend in the example). Depending on the performance and

fairness of the lock implementation, the caller might wait for an

unbounded number of steps to acquire the lock before issuing an

operation, thus reducing the asynchrony benefits of MPI nonblock-

ing operations. The offload model effectively eliminates this issue as

long as the underlying queuing system guarantees a bounded num-

ber of steps to enqueue a work descriptor, which is a wait-freedom

requirement. Since wait-free queues have been demonstrated in

practice [20], this requirement can be satisfied, and the offload

model can retain the asynchronous property of nonblocking calls.

This model, however, imposes (1) offloading overheads (even in

the absence of contention) and (2) communication threads, which

sacrifice CPU resources and potentially cause interference with

application threads.

3 Combining-Based Thread Safety Models

Ideally, the thread safety model would retain the asynchrony

benefits of the offload model without requiring dedicated communi-

cation threads. In the following, we present two new thread safety

369

ICS’19, June 26-28, 2019, Phoenix, AZ, USA Amer et al.

1 MPI_Isend (ARGS,*req) {

2 lock_acquire(L);
3 request_create(ARGS,req);

4 LLN_isend(ARGS,req);

5 lock_release(L);
6 }
7 MPI_Wait (ARGS,*req) {

8 lock_acquire(L);
9 while (!complete(req)) {

10 LLN_progress_all();

11 if (!complete(req)) {

12 lock_release(L);
13 /*[pause or yield]*/;

14 lock_acquire(L);
15 }

16 }

17 free(req);

18 req = REQUEST_NULL;

19 lock_release(L);
20 }

(a) Coarse-grained global locking

1 MPI_Isend (ARGS,*req) {

2 lock_acquire(req_L);
3 request_create(ARGS,req);

4 lock_release(req_L);
5 lock_acquire(LLN_L)
6 LLN_isend(ARGS,req);

7 lock_release(LLN_L);
8 }
9 MPI_Wait (ARGS,*req) {

10 while (!complete(req)) {

11 /*[pause or yield]*/;

12 lock_acquire(LLN_L);
13 LLN_progress_all();

14 lock_release(LLN_L);
15 }

16 lock_acquire(req_L);
17 free(req);

18 lock_release(req_L);
19 req = REQUEST_NULL;

20 }

(b) Fine-grained locking

1 MPI_Isend (ARGS,*req) {

2 lock_acquire(req_L);
3 request_create(ARGS,req);

4 lock_release(req_L);
5 /*create work descriptor*/

6 descr_create(ARGS,req,&d);

7 LLN_post(d);

8 }
9 MPI_Wait (ARGS,*req) {

10 while (!complete(req)) {

11 /* progress done by

12 communication threads*/

13 /*[pause or yield]*/;

14 }

15 lock_acquire(req_L);
16 free(req);

17 lock_release(req_L);
18 req = REQUEST_NULL;

19 }
20

(c) LLN lockless offloading

1 MPI_Isend (ARGS,*req) {

2 lock_acquire(L);
3 request_create(ARGS,req);

4 LLN_isend(req);

5 lock_release(L);
6 }
7 MPI_Wait (ARGS,*req) {

8 lock_acquire(L);
9 while (!complete(req)) {

10 LLN_progress_all();

11 if (!complete(req)) {

12 lock_release(L);
13 /*[pause or yield]*/;

14 lock_acquire_low(L);
15 }

16 }

17 free(req);

18 req = REQUEST_NULL;

19 lock_release(L);
20 }

(d) Priority locking

Figure 1: Simplified description of various thread safety models. LLN_progress_all progresses all network resources (global progress); complete(req) returns TRUE if
req has completed; ARGS captures function arguments that are unnecessary to mention individually and would otherwise clutter the code snippets.

models for multithreaded MPI based on software combining. The

first model, CSync, is mostly a direct application of DSM-Synch [11],

which is a scalable implementation of the combining principle. This

model borrows from the offload model the concept of handing

over work to another thread (i.e., combiner) but without requiring

dedicated threads. This approach improves scalability by reducing

remote memory references but carries over blocking synchroniza-

tion as done in lock-based models. The second model, LockQ, ad-

dresses the shortcomings of CSync by relaxing synchronization on

the critical path of nonblocking MPI operations by exploiting MPI

knowledge. In the following, we describe the step-by-step process

of implementing these models while discussing their costs on the

critical path in the absence and presence of contention.

3.1 Software Combining in Practice

Combining is an old technique that was used in hardware [25]

and software [30] to mitigate memory and network contention by

combining requests from the same memory location. Software com-

bining has also been used to implement concurrent data structures

by exploiting the fact that sequentially combining multiple requests

by the same thread (or processor) reduces the overall memory and

network traffic. These benefits have long been questioned, however,

because of high synchronization overheads.

Recently, software combining has become more popular thanks

to more efficient implementations. The most notable works that

made them more practical are flat-combining by Kendler et al. [14]

and CC-Synch and DSM-Synch by Fatourou et al. [11]. These tech-

niques share the general idea that critical section work is protected

by a lock and represented by a request object. A thread first an-

nounces its request by pushing it to an announcement list and then

proceeds to compete for the lock. We refer to this thread as an

announcer. The thread that succeeds in acquiring the lock becomes

the combiner that will not only execute its own request but also ex-

ecute requests found in the announcement list. On lock acquisition

failure, the thread busy waits until either its request has completed

or the lock has been released. We refer to this step as synchronizing

between an announcer thread and a combiner one.

To our knowledge, CC-Synch and DSM-Synch are the most scal-

able software combining techniques and draw their efficiency from

the lock algorithms they are derived from: CC-Synch is based on

CLH [22], and DSM-Synch is based on MCS [23]. Given that these

lock algorithms build implicit queues of waiting threads, the cor-

responding software combining techniques reuse the queues to

function as announcement lists. In addition to supporting lock own-

ership passing, these queues allow explicit traversal by the lock

holder and execute the requests found in the queue nodes. CC-Synch

has been proven to be slightly superior to DSM-Synch in practice,

but both outperform all prior software combining techniques. We

choose hereafter to use DSM-Synch instead of CC-Sync because it

is based on MCS; this allows us to better isolate the performance

differences with respect to the following Per-VNI and LockQ models

that use MCS-related primitives.

To avoid confusion with MPI request objects, in the following

we refer to requests being posted on the announcement list as work

descriptors, and we use the terminology work queue, combining

queue, and announcement list interchangeably.

3.2 Critical Section Scope

Software combining can be applied to any critical section, but

it should be limited to offloading nonblocking operations because

blocking operations will penalize the combining thread for un-

bounded periods of time, resulting in load imbalance and, worse,

possibly leading to deadlocks in the context of MPI due to data

dependencies between threads. Consequently, this paper limits soft-

ware combining to only nonblocking LLN operations, which are

often subject to significant contention hotspots. To expose inter-

nal parallelism in the MPI library while reducing the complexity

of maintaining a large number of critical sections, we chose to

implement software combining at the level of the virtual network

interface (VNI). This thread safety granularity is a subcategory of

the previously described fine-grained locking model. A VNI is an

abstract object that encapsulates an independent network resource

and is thread unsafe; it requires external thread safety mechanisms

to ensure single-threaded access. For instance, it could be mapped to

an OFI endpoint. This level of locking granularity has been exploited

by Cray MPT [19] and Open MPI [16] to encapsulate network con-

texts, for instance. Any shared state outside a VNI, such as a request,

is not protected by VNI locks and requires separate protection.

370

So�ware Combining to Mitigate Multithreaded MPI Contention ICS’19, June 26-28, 2019, Phoenix, AZ, USA

Figure 3a illustrates how the VNI-level granularity operates. We

label the resulting thread safety model as Per-VNI, which is an in-

termediate model before applying software combining. The figure

also highlights the changes over the fine-grained locking model in

Figure 1b. We observe that the main difference between the two

models is that Per-VNI allows more fine-grained locking by pro-

tecting independent VNIs separately as opposed to protecting all

LLN operations with the same lock. The mapping between MPI-

level information to the target VNI is done with the hash() function,

developed with the goals of minimizing thread contention and max-

imizing network resource usage. MPI semantics, however, require

some form of global progress in case the LLN does not support all

of MPI in a hardware-native way. That is, if a single MPI operation

is not supported natively by the network fabric, the MPI library has

to emulate the operation with active messages.1 As a result, global

progress is necessary (line 22), but its overhead on the critical path

can be controlled by some MPI library-specific policy.2

Costs of Per-VNI over Global. The major extra costs are atomic

reference counting of request objects (to address races, such aswhen

two threads access the same request while one of them is outside

critical sections) and additional lock acquisitions on the critical

path (two locks in the example figure).

3.3 The CSync Thread Safety Model

Applications of software combining have been demonstrated

mostly to implement basic data structures, such as queues and

stacks. Our goal in this work is to execute complex communication

operations, such as network calls that traverse several layers of the

software stack. One particular challenge we encountered was the

programmability constraint of software combining; the user-facing

API is often a single synchronization function that merges three

operations in one API routine: acquiring the lock, combining, and

releasing the lock. This forces the user to implement every critical

section that accesses an object as a function (often called apply())

that operates on a descriptor. This can be unnecessary program-

ming complexity especially for noncritical operations, which can

be satisfactorily implemented with traditional mutual exclusion. In

addition, indiscriminately announcing every operation regardless

of productivity aspects pollutes the work queue with unproduc-

tive operations (e.g., LLN_progress can be unproductive). In the

following, we describe DSM-Synch and its API extension to support

traditional mutual exclusion and alleviate the above shortcomings.

3.3.1 DSM-Synch and API Extension. The new DSM-Synch API

is composed of dsm_synch (the original function); dsm_acquire,

which performs lock acquisition and combining; and dsm_release,

which releases the lock. For dsm_acquire to work while sharing the

same queue as dsm_synch, a thread enqueues a special descriptor to

announce an empty operation (we chose NULL as the special value,

but any other carefully chosen constant can be used). A combiner

thread then halts combining on seeing such a descriptor and passes

ownership of the lock. Because frequently halting combining hurts

scalability, we allow at most one empty descriptor in the queue,

1For instance, we know of no network fabric that supports natively the MAXLOC and
MINLOC operations (Section 5.9.4 of the MPI-3.1 Standard). Doing so requires that
MPI processes listen to potential active message requests to be serviced, which might
arrive on any VNI.
2E.g., the branch at line 21 could be taken infrequently.

specifically by blocking dsm_acquire callers with an MCS lock and

letting at most one thread proceed to compete for the combining

queue. Details follow.

We first reproduce the original DSM-Synch algorithm from Fa-

tourou et al. [11] in Figure 2a. We highlight the major algorithmic

differences with respect to the original MCS algorithm it was de-

rived from, as well as a bug fix at line 63. We notice that dsm_synch

performs lock acquisition, combining, and lock release in the same

API routine. This approach assumes that every access to the orig-

inal critical section must go though the dsm_synch operation. In

practice, however, we found that this is constraining on the pro-

grammer, involves a performance penalty of announcing a request

when contention does not take place, and potentially pollutes the

work queue with unproductive operations. As a result, we con-

cluded that supporting traditional mutual exclusion along with

software combining gives more flexibility to the programmer and

provides means to avoid the performance overheads.

To develop a more expressive API, we first decoupled the three

operations being performed in dsm_synch to extract reusable com-

ponents (Figure 2b). The only minor change needed for this step

is to keep track of the head of the queue when combining, which

is highlighted in the code snippet. The changes allow the new re-

lease routine to infer whether a lock release operation is necessary

(i.e., I am the combiner so I have to pass ownership of the lock).

Next, we show our extensions to DSM-Synch to allow traditional

mutual exclusion (Figure 2c). Let us first ignore the new MCS lock

at lines 3, 17, and 28. The new API routine dsm_acquire performs

a lock acquisition by enqueuing a NULL request (line 19), which

mostly follows the original MCS algorithm. The calling thread has

to wait until it acquires the lock and implies that it has to become

a combiner thread. Thus, it follows with a call to combine (line 21).

The routine dsm_release simply calls release (line 26). For this to

work correctly, the most important change lies in the combine rou-

tine. The combiner thread must avoid executing a NULL request

(lines 42–47) and break out of the loop when the next thread in-line

called dsm_acquire (i.e., its request is NULL; line 54). In other words,

combining is halted, and a lock ownership passing is enforced.

These changes allow correct behavior but exhibit a serious per-

formance flaw under contention. In the presence of a large number

of NULL requests, combining will be halted frequently, thus wast-

ing its benefit. We tackled this issue by allowing at most one NULL

request in the combining queue using a two-step lock acquisition

algorithm. On calling dsm_acquire, only the lock holder of D->lock

(line 17) proceeds to acquire the combining lock (line 19), effectively

filtering the surplus of NULL requests.

3.3.2 The CSync Model. Here we rely on the DSM-Synch API. In

Figure 3b we illustrate how it is applied over the Per-VNI model.

DSM-Synch assumes a global apply() function that operates on a

work descriptor (lines 1–6). Our implementation uses operation

codes to distinguish between the LLN operations to execute. For

instance, ISEND corresponds to LLN_isend. Then, we replace the

critical sections around nonblocking operations by creating a work

descriptor followed by calling dsm_synch. At this stage, the thread

either acquires the lock and combines operations or waits for an-

other combiner thread to execute the operation on its behalf. For

noncritical LLN operations (e.g., LLN_progress), mutual exclusion

371

ICS’19, June 26-28, 2019, Phoenix, AZ, USA Amer et al.

1 typedef struct qnode {

2 void *req;

3 unsigned status;

4 struct qnode *next;

5 } qnode_t;

6 /* thread private node */

7 typedef struct tnode {

8 qnode_t qnodes[2];

9 int toggle;

10 } tnode_t;

11 thread_local tnode_t tnode;

12 typedef struct dsm {

13 qnode_t *tail;

14 } dsm_t;

15 void dsm_synch(dsm_t *D, void *req){

16 qnode_t *tmp, *local, *pred;

17 /* prepare my local node */

18 tnode->toggle = 1 - tnode->toggle;

19 local = &tnode->qnodes[tnode->toggle];

20 local->status = WAIT;

21 local->next = NULL;

22 local->req = req;

23
24 /* swap with global lock (queue tail)

25 * this announces my request "req" */

26 pred = SWAP(D->tail, local);

27 /* lock owned by other thread (combiner)

28 * update next and wait on my status */

29 if (pred != NULL) {

30 pred->next = local;

31 while(local->status == WAIT) /*NOP*/;

32 /* return if request completed */

33 if(local->status == COMPLETE)

34 return;
35 }

36
37 /* am combiner and req is pending */

38 tmp = local;

39 int counter = 0;

40 while (1) {

41 apply(tmp->req);

42 tmp->status = COMPLETE;

43 if (tmp->next == NULL ||

44 tmp->next->next == NULL ||

45 counter > MAX_COMBINE)

46 break;
47 tmp = tmp->next;

48 counter++;

49 }

50
51 /* release the lock */

52 if (tmp->next == NULL) {

53 if(CAS(D->tail, tmp, NULL))

54 return;
55 /* wait pending enq to update next */

56 while (tmp->next == NULL) /*NOP*/;

57 }

58
59 /* reached maximum combining operations

60 * or false-positive empty queue.

61 * elect next thread as the combiner.*/

62 tmp->next->status = UNLOCKED;

63 tmp->next = NULL; /* omitted for correctness */

64 }

(a) Original DSM-Synch[11]

1 typedef struct tnode {

2 struct qnode qnodes[2];

3 int toggle;

4 qnode_t *head;

5 } tnode_t;

6 void dsm_synch(dsm_t *D, void *req) {

7 /* (1) acquire lock or enq req */

8 acq_enq(D, req);

9 /* (2) combine requests if any */

10 combine(D);

11 /* (3) release lock if needed. */

12 release(D);

13 }
14 void acq_enq(dsm_t *D, void *req) {

15 qnode_t *local, *pred;

16 tnode->toggle = 1 - tnode->toggle;

17 local = &tnode->qnodes[tnode->toggle];

18 local->status = WAIT;

19 local->next = NULL;

20 local->req = req;

21 pred = SWAP(D->tail, local);

22 if (pred != NULL) {

23 pred->next = local;

24 while(local->status == WAIT) /*NOP*/;

25 if(local->status == COMPLETE)

26 return;
27 }

28 }
29 void combine(dsm_t *D) {

30 qnode_t *tmp, *local;

31 local = &tnode->qnodes[tnode->toggle];

32 if (local->status == COMPLETE) {

33 /* combine and release unnecessary */

34 tnode->head = NULL;

35 return;
36 }

37 tmp = local;

38 int counter = 0;

39 while (1) {

40 apply(tmp->req);

41 tmp->status = COMPLETE;

42 if (tmp->next == NULL ||

43 tmp->next->next == NULL ||

44 counter > MAX_COMBINE)

45 break;
46 tmp = tmp->next;

47 counter++;

48 }

49 tnode->head = tmp;

50 }
51 void release(dsm_t *D) {

52 qnode_t *tmp = tnode->head;

53 /* tmp = head or NULL if req completed

54 * NULL, no need to perform release. */

55 if (tmp == NULL)

56 return;
57 if (tmp->next == NULL) {

58 if(CAS(D->tail, tmp, NULL))

59 return;
60 while (tmp->next == NULL) /*NOP*/;

61 }

62 tmp->next->status = UNLOCKED;

63 tmp->next = NULL; /* omitted for correctness */

64 }

(b) Logical Decomposition

1 typedef struct dsm {

2 qnode_t *tail;

3 mcs_t lock;

4 } dsm_t;

5
6 void dsm_synch(dsm_t *D, void *req) {

7 /* (1) acquire lock or enq req */

8 acq_enq(D, req);

9 /* (2) combine requests if any */

10 combine(D);

11 /* (3) release lock if needed. */

12 release(D);

13 }
14
15 void dsm_acquire(dsm_t *D) {

16 /* (1) acquire the MCS lock */

17 lock_acquire(D->lock);
18 /* (2) acquire the combining lock */

19 acq_enq(D, NULL);

20 /* (3) combine requests if any */

21 combine(D);

22 }
23
24 void dsm_release(dsm_t *D) {

25 /* (1) release the combining lock */

26 release(D);

27 /* (2) release the MCS lock */

28 lock_release(D->lock);
29 }
30
31 void combine(dsm_t *D) {

32 qnode_t *tmp, *local;

33 local = &tnode->qnodes[tnode->toggle];

34 if (local->status == COMPLETE) {

35 /* combine and release unnecessary */

36 tnode->head = NULL;

37 return;
38 }

39 tmp = local;

40 int counter = 0;

41 while (1) {

42 if (tmp->req == NULL) {

43 /* invariants:

44 (1) I am the combiner thread

45 (2) I called "DSM-Acquire"

46 (3) first loop iteration */

47 assert(counter == 0);

48 } else {

49 apply(tmp->req);

50 tmp->status = COMPLETE;

51 }

52 if (tmp->next == NULL ||

53 tmp->next->next == NULL ||

54 tmp->next->req == NULL ||

55 counter > MAX_COMBINE)

56 break;
57 tmp = tmp->next;

58 counter++;

59 }

60 tnode->head = tmp;

61 }
62
63
64

(c) API Extension

Figure 2:DSM-Synch description (a), logical component breakdown and restructuring (b), and API extensions (c).WAIT, UNLOCKED, and COMPLETE denote compile-
time constants for the state of a node, and MAX_COMBINE is the threshold for the number of requests a combiner thread is allowed to execute. SWAP and CAS
represent atomic swap and compare-and-swap operations, respectively. The code highlighted in (a) indicates the major changes with respect to the originalMCS
algorithm (note that the original algorithm had a bug at line 63, which we fixed by simply avoiding that unnecessary and erroneous store operation); those in (b)
indicate the algorithmic changes compared with the original DSM-Synch to break it into separate routines; and the highlights in (c) indicate the changes over (b)
to support traditional mutual exclusion in addition to software combining.

is used by protecting the call with dsm_acquire and dsm_release;

dsm_acquire not only ensures lock acquisition but also does com-

bining. To avoid a thread falling victim to heavy combining for the

rest of the threads, a threshold on combining is used and set to

1K by default (MAX_COMBINE constant in Figure 2) to circulate the

combining responsibility.

Costs of CSync over Per-VNI with MCS. The synchronization

part of dsm_synch is identical to MCS. In the absence of contention,

CSync’s heaviest extra cost is setting the work descriptor, which in-

volves one to two cache lines of load/store operations. If combining

is performed, unpacking the arguments adds a similar overhead.

Synchronization is reduced for noncombining threads since they

only read the status of a descriptor. CSync incurs the same extra

costs as Per-VNI with respect to atomic operations in addition to

having one extra lock acquisition in dsm_acquire.

372

So�ware Combining to Mitigate Multithreaded MPI Contention ICS’19, June 26-28, 2019, Phoenix, AZ, USA

1 MPI_Isend (ARGS,*req) {

2 lock_acquire(req_L);
3 request_create(ARGS,req);

4 lock_release(req_L);
5 idx = hash(req);

6 lock_acquire((L[idx])
7 LLN_isend(VNI[idx],req);

8 lock_release(L[idx]);
9 }
10
11
12
13
14
15 MPI_Wait (ARGS,&req) {

16 idx = hash(req);

17 while (!complete(req)) {

18 lock_acquire(L[idx]);
19 LLN_progress(VNI[idx]);

20 lock_release(L[idx]);
21 if(cond)
22 LLN_progress_global();

23 }

24 lock_acquire(req_L);
25 free(req);

26 lock_release(req_L);
27 req = REQUEST_NULL;

28 }
29

(a) Per-VNImodel

1 void apply(*d) {

2 switch(d->op) {

3 case ISEND: LLN_isend(d->ARGS,d->req);

4 ...

5 }

6 }
7 MPI_Isend (ARGS,*req) {

8 lock_acquire(req_L);
9 request_create(ARGS,req);

10 lock_release(req_L);
11 idx = hash(req);

12 descr_create(ARGS,req,&d);

13 dsm_synch((L[idx], d);

14 }
15 MPI_Wait (ARGS,&req) {

16 idx = hash(req);

17 while (!complete(req)) {

18 dsm_acquire(L[idx]);
19 LLN_progress(VNI[idx]);

20 dsm_release(L[idx]);
21 if(cond)
22 LLN_progress_global();

23 }

24 lock_acquire(req_L);
25 free(req);

26 lock_release(req_L);
27 req = REQUEST_NULL;

28 }
29

(b) CSyncmodel

1 MPI_Isend (ARGS,*req) {

2 lock_acquire(req_L);
3 request_create(ARGS,req);

4 lock_release(req_L);
5 idx = hash(req);

6 if (lock_tryacq(L[idx])) {

7 combine(Q[idx]);

8 LLN_isend(ARGS,req);

9 lock_release(L[idx]);
10 } else {

11 decsr_create(&d);

12 post(Q[idx],d);

13 }

14 }
15 MPI_Wait (ARGS,*req) {

16 idx = hash(req);

17 while (!complete(req)) {

18 lock_acquire(L[idx]);
19 combine(Q[idx]);

20 LLN_progress(VNI[idx]);

21 lock_release(L[idx]);
22 if(cond)
23 LLN_progress_global();

24 }

25 lock_acquire(req_L);
26 free(req);

27 lock_release(req_L);
28 req = REQUEST_NULL;

29 }

(c) LockQmodel

Figure 3: Per-VNI, CSync, and LockQ thread safety models.

3.4 The LockQ Thread Safety Model

CSync improves on MCS in most cases, as will be shown in the

Evaluation section, but it falls short in many ways: (1) the compul-

sory announcement incurs overheads of creating the work descrip-

tor particularity in the absence of contention; (2) the dsm_synch

routine is blocking, which wastes the asynchrony of MPI nonblock-

ing operations; and (3) the effectiveness of combining is limited by

shallow queue depth (because of threads waiting instead of pushing

more work and also because of interruptions from lock acquisitions

with empty descriptors). We observe that the coupled lock-list data

structure of CSync is at the heart of the issue. Because threads use

the lock data structure to announce operations, they cannot leave

unless their operations have completed or the lock has been passed

to them. If a thread T leaves after announcing its operation, the

system might hang for a long time or even indefinitely because T

failed at its ownership passing and combining responsibilities.

LockQ addresses these shortcomings by decoupling lock and an-

nouncement list data structures and by leveraging MPI semantics

to relax synchronization, preserve asynchrony, and feed combin-

ing threads with more work than CSync would. LockQ, similarly

to CSync, is implemented with the Per-VNI model as its baseline;

Figure 3c highlights the changes over the Per-VNI model. Each VNI

v is associated with not only a lock L[v] but also a work queue

Q[v]. By decoupling lock and data structures, a thread can enqueue

a descriptor and leave without causing trouble to threads compet-

ing for the lock. Any successful lock acquisition on a VNI must be

followed by combining the operations in the corresponding queue.

In this decoupled model, however, posting and combining an

operation are racy operations. Suppose T1 is about to release the

lock of work queue Q[v] (i.e., it is done being the combiner of that

queue) and T2 fails its lock acquisition and posts its operation on

Q[v]. T1 will not execute the operation since it already finished

combining while T2 is leaving. If no other thread acquires L[v], the

operation will never get executed.

This is where MPI semantics come into play. In MPI, a nonblock-

ing operation must be followed by a synchronization (or progress)

MPI call to ensure progress and check (or wait) for the completion

of the target operation. For instance, the MPI_Wait and MPI_Test

calls are used to check or wait for the completion of various re-

quests, such as those associated with nonblocking point-to-point

operations. MPI_Win_flush is an example of a synchronization call

for remote memory access (RMA) operations. LockQ relies on these

calls as the last resort to combine pending operations on a VNI.

Since these calls must be issued by the user eventually, correctness

of execution is ensured, and deadlocks are avoided. From a differ-

ent perspective, after a thread announces the MPI_Isend operation,

busy waiting for its execution is redundant since it can wait for its

completion when calling MPI_Wait; thus, MPI semantics allowed

relaxing the synchronization.

Let us look at how LockQ is implemented in practice. When

executing a nonblocking operation, instead of waiting for the lock,

a thread performs a nonblocking lock acquisition attempt (line 6).

On success, the thread becomes the combiner for the target VNI

and combines any pending operation in its work queue (line 7)

before executing its own operation (line 8). Doing so is critical for

the correctness of ordered communication (e.g., point-to-point or

one-sided accumulate operations). On lock acquisition failure, the

thread creates a work descriptor for the operations and announces

(posts or enqueues at line 12) it on the target work queue. The

posted operationmay ormay not be combined by a thread executing

another nonblocking operation. The user, however, has to follow the

MPI_Isend operation with a synchronization call, such as MPI_Wait.

In this case, the user waits on the lock acquisition (line 18) and

combines the operation (line 19).

The combine() routine is similar to the one used by DSM-Synch.

It traverses the work queue, calls the same apply() routine as DSM-

Synch, and has the same MAX_COMBINE threshold on combining. If

the threshold is reached, the thread enqueues its operation and

373

ICS’19, June 26-28, 2019, Phoenix, AZ, USA Amer et al.

releases the lock without executing its operation. This threshold

part of the algorithm is omitted from Figure 3c for brevity (line

8 should not be executed if the threshold is reached). The final

technical detail is with respect to ordering. Some MPI operations

require total ordering, such as point-to-point and RMA accumulate

operations. This implies that if two user threads synchronize to

establish some ordered communication, the ordermust be preserved

by the MPI library. To respect this constraint, the work queue must

be totally ordered.

3.4.1 Totally Ordered Concurrent�eue.Communication that does

not require ordering allows the LockQmodel to leverage relaxed and

potentially faster queues than does a totally ordered queue that is

essential only for ordered communication. A totally ordered queue

is more practical, however, because the MPI library programmer

does not need to worry about ordering issues, regardless of the

communication characteristic of the application. Here we describe

a practical totally ordered queue that was used for LockQ. We note

that in LockQ, at most one thread dequeues from a work queue. This

design allows the dequeue routine to relax memory consistency

and focus only on the consistency between enqueue operations and

on possible races between an enqueue and a dequeue operation.

Figure 4 shows the implementation of SWP, a multiproducer

single-consumer queue. This queue was inspired by the MCS

lock [23], which maintains an implicit queue of waiting threads.

The lock owner behaves as the only thread allowed to dequeue

(wake up) the waiting thread next in line; SWP simply makes the

queue explicit and removes unnecessary waiting loops. In SWP,

head and tail point to a dummy node to decouple enqueue and

dequeue operations. To enqueue an element, a thread prepares its

node (lines 9–11), enqueues the node by first swapping it against

the tail (line 12), and then updates the next pointer of the previous

tail (line 13). During a dequeue operation, looking at the next field

of the head of the queue is sufficient to detect an empty queue (line

18). If the queue is not empty, next points to the node that holds

the data and will become the new head (becomes a dummy node)

of the queue (line 22). The old head node gets freed (line 24).

Linearizability. SWP is not linearizable because the enqueue

method does not admit a linearization point [15]; its effect is not

visible to all methods at one point. The effects are globally visible

at two points on lines 12 and 13. This makes the queue fragile since

a thread that gets interrupted after executing line 12 and before

executing line 13 renders the queue unusable until the thread is

back. This implies that the queue is not robust against failures.

Wait-Freedom. Active enqueue/dequeue methods are wait-free

since they finish executing in a bounded number of steps (even if

an infinite delay at some thread is introduced between lines 12 and

13). In this case, however, the dequeue will always return empty

because of the linearizability issue and renders the queue unusable.

This is not a setback for LockQ, however, since it admits any

concurrent queue implementation. We have attempted to use the

fast fetch-and-add wait-free queue by Yang et al. [29] (using the

reference implementation by the authors), but its integration in

LockQ and in ourMPI library was not successful and requires further

investigation (even with just two multithreaded MPI processes, the

execution resulted in crashes and deadlocks). While SWP might

seem inferior because of its lack of linearizability, we deployed

1 init(Q) {

2 node = alloc_node(); // Dummy node

3 node->data = NULL; // to avoid contention

4 node->next = NULL; // for the head and tail

5 Q->head = node; // from an enqueue and

6 Q->tail = node; // a dequeue

7 }
8 enqueue(Q, void *data) {

9 node = alloc_node();

10 node->data = data; // new tail node

11 node->next = NULL; // nobody behind me yet

12 pred = SWAP(&Q->tail, node); // tail update visible

13 pred->next = node; // link pred to my node

14 }
15 dequeue(Q, void **data) {

16 *data = NULL;

17 head = Q->head;

18 if (head->next == NULL) { // queue empty

19 return; // return on empty queue

20 } else { // queue not empty, no race

21 next = head->next; // between enqs and a deq

22 Q->head = next; // head update visible

23 *data = next->data;

24 free_node(head);

25 return;
26 }

27 }

Figure 4: SWP: a multiproducer single-consumer concurrent queue. SWAP de-
notes an atomic swap operation. We highlight the lines that break lineariz-
ability.

this queue along with LockQ on production systems at large scale

without any practical issues.

3.4.2 Implementation of LockQ. The implementation in this paper

relies on the SWP queue, which is efficient in practice because it

ensures fast wait-free enqueue operations and total ordering. The

other motivation for this queue is for a fair comparison with CSync

and Per-VNI with MCS and to isolate the performance differences

between them, since they are all based on MCS and rely on atomic

swap operations.

LockQ preserves the theoretical property of asynchrony in MPI

nonblocking calls. In practice, it allows better communication over-

lapping since the thread can return to the application to execute

computational work. We also allow a thread to announce more

than one request at a time, in order to exploit request pipelining

and thus improve the latency hiding of the system. To avoid the

overhead of announcing requests under no contention, a thread

announces a request only on lock acquisition failure.

Costs of LockQ overCSync. In the absence of contention, LockQ

is less costly and incurs similar costs as Per-VNI. Under contention,

LockQ is slightly more costly than CSync: (1) it requires at least two

atomic operations (one of lock_tryacq and one for enqueueing

the work descriptor); and (2) since the same thread can pipeline

multiple operations multiple times, descriptors require dynamic

memory management instead of reusing the same queue node.

3.5 Nonblocking Progress Management

Thus far, we considered communication initiation-type of non-

blocking MPI calls, such as MPI_Isend. There exists another type

of nonblocking calls aimed for communication progress, such as

MPI_Test, that allows testing for the completion of an opera-

tion. From an implementation perspective, MPI_Test could map to

MPI_Wait (Figure 3c) but executing only a single iteration of the

loop at line 17. This renders the call blocking on lock acquisition

and wastes asynchrony. Moreover, by the time the waiting thread

acquires the lock, the operation it is waiting for might have been

completed by another thread, thus rendering the lock acquisition

374

So�ware Combining to Mitigate Multithreaded MPI Contention ICS’19, June 26-28, 2019, Phoenix, AZ, USA

unnecessary. It also exacerbates contention because threads issuing

operations on the same VNI as threads waiting on it compete for the

same lock. An alternative approach would be to simply check for

the request completion without progressing the LLN. This approach,

however, violates the MPI progress requirement in the absence of

asynchronous progress, as pointed out in Section 3.2.

We tackled this issue by adopting a nonblocking progress man-

agement not only for nonblocking MPI progress calls but also for

managing internally progress on blocking calls, such as MPI_Wait.

We use the progress loop in MPI_Wait to drive the discussion. A

thread does a nonblocking lock acquisition attempt (instead of

a blocking one at line 17 of any code snippet in Figure 3) and

busy waits for the request to be completed on lock acquisition

failure (MPI_Test would return to the user, but the same progress

tight loop could occur in the user code as well). The winner of

the lock progresses the VNI and might complete requests for the

other threads, for which competing for lock acquisition at this level

becomes unnecessary. Busy waiting on a lock acquisition attempt

often translates into high cache traffic from threads competing for

the same cache line, however, which outweighs the benefit of the

nonblocking progress in practice. We thus reduce the pressure on

the lock acquisition attempt using an exponential backoff, a known

optimization in the context of locking. Here we apply it for MPI

progress calls. For nonblocking progress calls, the current backoff

value is memorized across successive calls in order to detect con-

tention and use the backoff mechanism to reduce the frequency

of lock acquisition attempts. This particular case occurs in the

Graph500 benchmark evaluated in Section 4.4.

3.6 Progress and Asynchrony in LockQ

In this section, we informally reason about the progress proper-

ties of LockQ. First, we assume that the queue implementation is

wait-free (see [29]) and that the LLN calls are nonblocking (needed

for nonblocking MPI calls to be standard compliant). We distin-

guish three cases with respect to the type of nonblocking call being

performed and the success of the lock acquisition. In the case of

a progress call (e.g., MPI_Test), a lock acquisition failure returns

immediately, thus preserving nonblocking behavior. In the case

of a lock acquisition failure on a communication operation, the

thread posts its work descriptor and returns immediately. Since

the enqueue method is wait-free, this step is guaranteed to be non-

blocking. In the case of lock acquisition success, the thread becomes

a combiner and combines operations in the work queue. Execut-

ing individual work descriptors is nonblocking since the dequeue

method is wait-free and the LLN calls are nonblocking. Since the

number of operations executed by the combiner is bounded by

MAX_COMBINE, it follows that the combiner returns in a bounded

number of steps. This implies that LockQ can guarantee asynchrony

for nonblocking MPI calls with practical assumptions (wait-free

queue and nonblocking LLN routines).

3.7 Implementation

The new thread safety models have been integrated in the

production-level MPICH implementation (version 3.3a2) based on

the highly optimized CH4 device software layer [26]. Given that

work descriptors and queue nodes are dynamically allocated on the

Table 1: Platform specifications.

Microarchitecture Skylake Broadwell
Processor Xeon Platinum 8180 Xeon 2695v4
Clock frequency 2.5 GHz 2.1 GHz
Sockets / NUMA nodes 2 / 2 2 / 2
Cores per NUMA node 28 18
HW threads per core 2 1
L2/L3 Cache size 1 MB/38.5 MB 256 KB/45 MB
Interconnect Intel Omni-Path Intel Omni-Path
Compilers Intel 17.0.4 Intel 17.0.4
Linux kernel 3.10.0-693 3.10.0-693
Libpsm2/Libfabric 2.1/1.5.0 2.1/1.5.0

critical path, we link all binaries against Tcmalloc [12] for scalable

memory management.

4 Evaluation
We describe in this section the performance evaluation of various

thread safety models in terms of handling communication-intensive

benchmarks as well as graph traversal and particle transport proxy

applications.

4.1 Evaluation Platforms
Our evaluation was conducted on two commodity multicore

clusters, as detailed in Table 1. The first platform is based on the

Skylake microarchitecture featuring two 28-way core processors

totaling 56 cores (112 hardware threads) per node. Intel Turbo

Boost has been disabled to avoid dynamic frequency scaling from

interfering with the experiments. The second platform is based

on the Broadwell microarchitecture featuring two 18-way core

processors totaling 36 cores per node. Both clusters interconnect

nodes with the Intel Omni-Path fabric. MPICH on both clusters

was built with the CH4 device over the libfabric network module

and the provider based on the Intel Performance Scaled Messaging

2 (PSM2) library.

Our prototype implementation and evaluation method assumes

a single network resource (i.e., one VNI), which is mapped to a

libfabric endpoint. While using multiple VNIs would have been a

valuable setting, the intricacies of how threads and communication

patterns are mapped to VNIs are complex enough to warrant a

separate study.

4.2 Experimental Method
We evaluate the implementations of six thread safety models, as

briefly summarized below.

Global. Implements the model in Figure 1a.

Per-VNI. Implements the model in Section 3.2.

Offload. Implements the offload model in Figure 1c. It uses an

identical queuing system as LockQ and spawns a dedicated commu-

nication thread running on CPU 0.

HMCS<N>USC. Implements one of the best lock management

protocols for multithreaded MPI found in the literature [8] using

HMCS [6, 7] as the high-throughput lock. N indicates the number

of levels in this hierarchical lock, N=2 has one lock per NUMA

node and one root lock for the entire machine, and N=3 adds a

core-level lock for hardware threads sharing the same core. (N=3

will be evaluated only on the Skylake system since the Broadwell

cluster supports only one hardware thread per core). USC stands for

user space condition variable and captures the fact that this method

wakes up threads with completed work directly (O(1)) instead of

circulating the lock in O(N), as demonstrated in [8]

CSync. Implements the model in Section 3.3.

375

ICS’19, June 26-28, 2019, Phoenix, AZ, USA Amer et al.

LockQ. Implements the model in Section 3.4.

For a fair comparison, all these methods have been integrated in

the sameMPICH library, share the same critical paths except for the

subtle differences in the way they manage thread safety, have been

built with the same compiler toolchain, and are linked against the

same libraries at runtime. Global, Per-VNI, and LockQ use MCS as the

underlying locking algorithm (labeled LockQ-MCS). To showcase

the practicality of LockQ over CSync, we also include results with

Pthread mutex (labeled LockQ-MTX) as the underlying lock for this

model. The MPI request object pool is protected by the global lock

in the Global and HMCS<N>USCmodels and by a separate lock in the

other models. In both cases, we maintain a per-thread local request

cache to reduce contention for the lock, as done by Balaji et al. [5].

None of the methods use CPU 0 for the application threads. Thus,

it is either used only by the communication thread in the offload

model or unused.

Unless specified otherwise, the data points in the figure plots

that follow are sample means of 10 runs augmented with lower and

upper Gaussian confidence limits at 95% (error bars) based on the

t-distribution, which were computed with the smean.cl.normal

statistical function of the R Hmisc v4.1-1 package.

4.3 Communication-Intensive Benchmarks

Here, we consider a simple two-node setting with one MPI pro-

cess per node, various combinations of communication models

(nonblocking two-sided, blocking two-sided, and one-sided com-

munication) and degrees of concurrency. The experiments were

conducted on the Skylake cluster to emphasize thread contention

rather than node scaling.

Two-Sided Nonblocking. This model allows assessment of

point-to-point message rate capabilities. One of the processes is

the source of messages (calling MPI_Isend); the other is the sink

(calling MPI_Irecv). We consider two variations depending on the

degree of concurrency on each process, in other words, which

communication operation is being concurrently executed.

One-Sided. This model focuses on RMA message rate capabili-

ties using the MPI_Put operation. We use RMA passive communica-

tion by opening an epoch with MPI_Win_lock, issuing concurrently

a large window of MPI_Put operations with multiple threads, syn-

chronizing with the master thread, then using MPI_Win_flush to

complete all the pending operations, and closing the epoch with

MPI_Win_unlock.

Two-Sided Blocking. This model is a ping-pong test that tar-

gets point-to-point latency measurement. A single-threaded server

receives messages from a multithreaded client and sends back ac-

knowledgments. This ping-pong benchmark is implemented by

using MPI_Send and MPI_Recv calls.

Figure 5 shows the message rate and latency with respect to the

message size using 55 threads per MPI processes (one thread per

core). In the message rate case, we observe that Offload dominates

across the board, followed by LockQ, regardless of message sizes;

but the gap between the methods is more pronounced for messages

below 16 KB. We also notice that the code path that does not require

waiting for a completion event (MPI_Isend with messages below

64 B is injected and completed immediately) shows higher absolute

performance across methods and that LockQ competes with Offload.

On the latency side, most methods perform well except Global. Here,

the bottleneck lies in the progress management; except forGlobal, all

the methods have ways to reduce progress management overheads

and thus exhibit good latency. For example, Per-VNI, CSync, and

LockQ use a nonblocking progress with exponential backoff, and

the HMCS-based methods use an efficient O(1) mechanism; Offload

has the lowest overhead in this respect since application threads

only busy wait on completion without any contention. We also

observe that CSync underperforms at this scale especially with the

latency benchmark.

More insight is brought to light when varying the degree of

concurrency (Figure 6).

Sequential. This case has no contention. Global shows the best

performance since it has the lowest overhead (only one atomic

swap operation to acquire an MCS lock). Next are the HMCS-based

models, followed by the Per-VNI and LockQ that incur around 10%

or less overhead due to mostly performing more atomic operations.

Offload and CSync are the worst here because of the overhead of

unnecessary descriptor announcement. Offload is worse than CSync

since the application thread passes the descriptor to the dedicated

thread instead of executing it by itself.

Concurrency within a socket. The number of threads here

is within 28 and shows that the most scalable methods maintain

mostly flat performance, indicating little performance degrada-

tion (Offload and LockQ). CSync has the least clear trend: (1) it

does not perform well when the degree of concurrency is low be-

cause the combining queue is shallow and reduces the effectiveness

of combining; and (2) for MPI_Isend and MPI_Put, performance

grows with the number of threads, thanks to better combining

and no combining interruptions (no threads in the progress loop

calling dsm_acquire). With MPI_Irecv and the latency benchmark,

frequent combining interruptions happen and degrade its perfor-

mance.

Concurrency across sockets. This corresponds to thread

counts between 28 and 56. Offload is the only one that remains

scalable (thanks to reduced remote memory references); the others

degrade. The LockQ methods remain the next best performing.

Concurrency within cores. This corresponds to thread counts

above 56, in which case two hardware threads can run on the

same core.Offload remains scalable, whereasHMCS<3>USC improves

scalability by exploiting core-level locality. At 110 thread count,

the LockQ methods are still close to HMCS<3>USC despite being

hardware agnostic.

We also observe overall that bothMCS- and Pthread mutex-based

LockQmethods perform similarly despite using completely different

locking algorithms. This performance indicates the practicality of

LockQ, which can be easily integrated to other systems, unlike CSync,

which is reliant on the coupled lock-list data structure.

4.4 Breadth-First Search

Parallel breadth-first search (BFS) implementations are charac-

terized by irregular, dynamic, and sparse data exchanges (DSDEs).

Here, a process communicates with a small neighborhood of pro-

cesses that dynamically reshapes over time. NBX [18] has been

demonstrated to be an efficient implementation of DSDEs and has

been exploited by Amer et al. to implement a hybrid MPI+OpenMP

BFS algorithm using the Graph500 benchmark as a baseline [2].

376

So�ware Combining to Mitigate Multithreaded MPI Contention ICS’19, June 26-28, 2019, Phoenix, AZ, USA

Irecv Isend Put

16 512 16384 524288 16 512 16384 524288 16 512 16384 524288
4096

8192

16384

32768

65536

131072

262144

524288

1048576

2097152

Message Size (B)

M
e

s
s
a

g
e

 R
a

te
 (

m
s
g

s
/s

)

Global Per−VNI Offload HMCS<2>USC HMCS<3>USC CSync LockQ−MCS LockQ−MTX

(a) Message rate

Send / Recv

16 512 16384 524288

4

8

16

32

64

Message Size (B)

L
a
te

n
c
y
 (

u
s
)

(b) Latency

Figure 5:Message rate and latency results with respect to themessage size. Themessage rate results are groupedwith respect to theMPI operation being performed
concurrently by 55 threads (the title of each group is the operation that is performed with multiple threads).

Irecv Isend Put

2 8 32 128 2 8 32 128 2 8 32 128

524288

1048576

2097152

Number of Threads per MPI Process

M
e

s
s
a

g
e

 R
a

te
 (

m
s
g

s
/s

)

Global Per−VNI Offload HMCS<2>USC HMCS<3>USC CSync LockQ−MCS LockQ−MTX

(a) Message rate

Send / Recv

2 8 32 128

2

4

8

16

32

64

Threads per Process

L
a
te

n
c
y
 (

u
s
)

(b) Latency

Figure 6: Message rate (with 64 B message) and latency results with respect to thread concurrency. Threads are bound to hardware threads in a way to prioritize
filling cores close to each other. Only one hardware thread per core is used except when running with 110 threads. The results are grouped with respect to the
MPI operation being performed concurrently by multiple threads (the title of each group is the operation that is performed with multiple threads).

This implementation handles computation and communication con-

currently by multiple threads. The communication is implemented

with nonblocking point-to-point calls, and the wait for their com-

pletion is performed with nonblocking progress calls (MPI_Test).

These progress calls are issued when outgoing buffers are needed

for reuse or when there is no local computation to be performed. In

the Per-VNI, CSync, LockQ models, MPI_Test is implemented follow-

ing the backoff-based nonblocking progress method described in

Section 3.5. That is, if the backoff threshold has not been reached or

the lock acquisition fails, the call behaves as if the communication

has not yet completed. Since MPI requires that repeated calls to

MPI_Test eventually succeed for completed operations, our thread

safety models can satisfy this semantic by bounding the tolerated

number of lock acquisition failures.

This section focuses on heavy concurrency; the goal of the new

methods in this case is to perform as closely as possible to Offload

without scarifying resources. Strong-scaling results with a graph

scale of 32 (i.e., 232 vertices) are shown in Figure 7. The performance

is measured as the harmonic mean of the number of traversed edges

per second. Offload performs the best, followed by the LockQ in-

stantiations. CSync does improve on Per-VNI but remains inferior to

LockQ, which performs up to 8% better and indicates the benefits of

additional asynchrony and reduced overheads. LockQ significantly

underperforms compared with Offload (up to 30%). Our analysis

showed that the major bottleneck in these runs is waiting for com-

pletion, which significantly favors the Offload model (threads only

wait on a local flag, which is optimal). Threads in the other methods

are required to not only wait on a flag but also perform expensive

lock acquisitions and network progress. For confirmation, by forc-

ing threads in the Offload model to make progress (Offload-P in

Figure 7) performance is brought down to the same level as LockQ.

Synchronization counters [8] have the potential to reduce these

overheads by electing one of the threads as a server with the others

simply wait on a local flag. Unfortunately, this method is practi-

cal only for blocking calls and is unfit for nonblocking progress

calls such as MPI_Test. Investigation is need to develop thread syn-

chronization methods more suitable for nonblocking MPI progress

calls.

4.5 SNAP: Particle Transport

SNAP3 (SN Application Proxy) is a proxy application that em-

ulates the MPI-based discrete ordinates neutral particle transport

3https://github.com/losalamos/snap

377

ICS’19, June 26-28, 2019, Phoenix, AZ, USA Amer et al.

0e+00

2e+09

4e+09

2240 4480 8960

Total Number of Threads

P
e

rf
o

rm
a

n
c
e

 (
T

E
P

/s
)

Global Per−VNI Offload HMCS<2>USC
CSync LockQ−MCS LockQ−MTX Offload−P

Figure 7: Graph500 strong-scaling results on the Broadwell cluster with 35
threads per MPI process with respect to the total number of threads.

application PARTISN. Although PARTISN solves the linear Boltz-

mann transport equation on multidimensional grids, SNAP does

no actual physics but instead mimics the computational intensity,

memory footprint, and communication patterns of PARTISN. The

core of SNAP is characterized by an outer iterative loop that solves

the flux over the energy domain using, typically, tens to hundreds

of energy groups that are exploited for OpenMP thread-level paral-

lelism. Parallelism is also exploited at the other spatial and angular

dimensions. MPI-level data decomposition is performed along the

spatial domain and traversed through sweeps along the discrete

direction of the angular domain following the parallel Koch-Baker-

Alcouffe wavefront method [4]. The traversal incurs data exchanges

betweenMPI ranks using mostly two-sided point-to-point MPI com-

munication. We also built SNAP with OpenMP to perform both

communication and computation concurrently by multiple threads.

The baseline input problems used for the following experi-

ments originate from one of regression tests that come with SNAP:

mms_src. The following experiments study the various thread safety

models under low thread contention while striking a balance

between communication and computation. Under these circum-

stances, computation and coarse-grained communication (large

data transfers) render fine-grained thread synchronization methods

prone to overheads, and the simpler global locking models (Global

and HMCS<2>USC) act as an upper bound on performance. Results

are presented as time to solution of the "Transport Sweep" stage,

which is the most time-consuming part of the application.

Because of the increasingly deep memory hierarchies in cluster

nodes and difficulty in implementing NUMA-awareness in applica-

tions and dependent software layers, users often rely on spawning

multiple processes per node (PPN) to reduce the diameter of the

cache coherency traffic, which often improves overall parallel effi-

ciency. Figure 8.a shows the result of tuning SNAP on 16 Broadwell

nodes with a medium problem size {nx,ny,nz} = {128, 72, 64}. We

observe that most methods achieve peak performance at PPN=6,

thenmostly stagnate, exceptOffload, which suffers significant degra-

dation.

The performance improvement is a combination of better cache

performance, from reducing remote memory references and cache

coherency traffic that comes from accessing shared data among

threads, and also by driving the network using multiple processes.

The optimal PPN value represents a saturation point. PPN also

represents the number of cores Offload sacrifices. Sacrificing up to

four cores is tolerable in this case since the benefits outweigh the

Table 2: Input parameters for the SNAP runs. The parameters npey and npez
depend on the number of MPI processes, and nthreads equals the number
of threads per process, which depends on the number of PPN and whether a
dedicated a thread is used (*).

nthreads variable lx 0.08 src_opt 3
npey variable lz 0.08 timedep 1
npez variable ly 0.08 it_det 0
ndimen 3 nmom 4 tf 1.0
nx 128 nang 32 nsteps 10
ny variable ng 72 oitm 40
nz variable mat_opt 1 fluxp 0
iitm 5 scatp 0 angcpy 1
epsi 0.0001 fixup 0 ichunk 16

0

20

40

60

80

5 10 15

Numer of Processes per Node (PPN)

T
ra

n
s
p

o
rt

 S
w

e
e

p
 (

s
e

c
o

n
d

s
)

Global

Per−VNI

Offload

HMCS<2>USC

CSync

LockQ−MCS

LockQ−MTX

(a) PPN Tuning

0

25

50

75

100

2304 4608

Total Number of Cores

Global Per−VNI Offload HMCS<2>USC

CSync LockQ−MCS LockQ−MTX

(b) Strong Scaling with PPN = 6

Figure 8: Performance with the "Transport Sweep" stage of SNAP on the
Broadwell cluster: (a) results with problem size {nx , ny, nz } = {128, 72, 64}
with respect to PPN; (b) strong scaling with the problem size {nx , ny, nz } =
{128, 192, 192} from 64 to 128 nodes. npey and npez have been computed to
be as close to each other as possible.

losses. Beyond four, however, it is counter productive and results

in up to 70% performance degradation at PPN = 18.

Because of the neighborhood communication pattern in SNAP,

the optimal PPN can be preserved regardless of the number of

nodes provided that the problem size per process does not change

significantly. For instance, by weakly scaling the previous small

problem to {nx,ny,nz} = {128, 192, 192} on 64 nodes, the behavior

(Figure 8.b, 2,304 cores) is similar to that of the smaller-scale exper-

iment (Figure 8.a, PPN=6). In a strong-scaling case, however, the

optimal PPN is not portable because the system shifts to a more

communication-intensive regime and reduces the degradation suf-

fered in the Offload model (Figure 8.b, 4,608 cores).

These experiments with SNAP confirmed that the software com-

bining methods show no significant degradation under low con-

tention and equip the user with the same flexibility as the global

locking methods without negative side effects. Offload, on the other

hand, is constraining and is justified only when the application

can spare CPU resources, a situation that is not always possible,

especially with compute-intensive codes.

5 Concluding Remarks
We proposed new thread safety models for multithreaded MPI,

CSync and LockQ, that leverage software combining to mitigate

lock contention. These models were designed as protection mecha-

nisms around independent VNIs, abstract objects meant to capture

independent network resources. CSync shows significant scalabil-

ity improvements over traditional locking but suffers from lack of

asynchrony and overheads in the abscence of contention. LockQ

is a significant step forward in both performance and practicality;

it preserves asynchrony of MPI nonblocking calls, eliminates un-

necessary offloading operations, and is more flexible and easier to

378

So�ware Combining to Mitigate Multithreaded MPI Contention ICS’19, June 26-28, 2019, Phoenix, AZ, USA

integrate in MPI libraries than CSync is. The comparative evalua-

tion of these models over an Omni-Path fabric shows significant

improvement over existing contention-reducing and contention

management methods. LockQ also shows competitive performance

against software offloading but without sacrificing computational

resources for dedicated communication threads while avoiding

undesirable software offloading overheads at low contention.

The paper focused only on the highly serialized case, in order to

stress the combining synchronization aspect of the thread safety

model and evaluate its contention mitigation capabilities. We are

currently widening the scope of the study to multiple VNIs and

focusing on contention avoidance. This work was also performed

under the totally ordered communication constraint, thus requiring

a totally ordered queue for the LockQ model. This constraint can be

relaxed in favor of more parallelism at the announcing threads by

posting operations at different queues. Such a capability could be

leveraged for hardware awareness (e.g., NUMA-aware) or simply

for contention reduction.

Acknowledgments
This research was supported by the Exascale Computing Project (17-SC-20-SC),

a collaborative effort of the U.S. Department of Energy Office of Science and the

National Nuclear Security Administration, and by the U.S. Department of Energy,

Office of Science, under Contract DE-AC02-06CH11357. We gratefully acknowledge

the computing resources provided and operated by the Laboratory Computing Resource

Center (LCRC) and by the Joint Laboratory for System Evaluation (JLSE) at Argonne

National Laboratory.

References
[1] Abdelhalim Amer, Huiwei Lu, Pavan Balaji, Milind Chabbi, Yanjie Wei, Jeff

Hammond, and Satoshi Matsuoka. 2019. Lock Contention Management in Mul-
tithreaded MPI. ACM Transactions on Parallel Computing (TOPC) 5, 3 (2019),
12.

[2] Abdelhalim Amer, Huiwei Lu, Pavan Balaji, and Satoshi Matsuoka. 2015. Charac-
terizing MPI and Hybrid MPI+Threads Applications at Scale: Case Study with
BFS. In 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. IEEE, 1075–1083.

[3] Abdelhalim Amer, Huiwei Lu, Yanjie Wei, Pavan Balaji, and Satoshi Matsuoka.
2015. MPI+ Threads: Runtime Contention and Remedies. In Proceedings of the
20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’15). 239–248.

[4] Randal S Baker and Kenneth R Koch. 1998. An Sn Algorithm for the Massively
Parallel CM-200 Computer. Nuclear Science and Engineering 128, 3 (1998), 312–
320.

[5] Pavan Balaji, Darius Buntinas, D. Goodell, W. D. Gropp, and Rajeev Thakur. 2010.
Fine-Grained Multithreading Support for Hybrid Threaded MPI Programming.
International Journal of High Performance Computing Applications (IJHPCA) 24
(2010), 49–57.

[6] Milind Chabbi, Michael Fagan, and John Mellor-Crummey. 2015. High Perfor-
mance Locks for Multi-Level NUMA Systems. In Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’15).
215–226.

[7] Milind Chabbi and John Mellor-Crummey. 2016. Contention-Conscious, Locality-
Preserving Locks. In Proceedings of the 21st ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP’16). 22:1–22:14.

[8] Hoang-Vu Dang, Sangmin Seo, Abdelhalim Amer, and Pavan Balaji. 2017. Ad-
vanced Thread Synchronization for Multithreaded MPI Implementations. In 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID). IEEE, 314–324.

[9] Gábor Dózsa, Sameer Kumar, Pavan Balaji, Darius Buntinas, David Goodell,
William Gropp, Joe Ratterman, and Rajeev Thakur. 2010. Enabling Concurrent
Multithreaded MPI Communication on Multicore Petascale Systems. In Proceed-
ings of the 17th European MPI Users’ Group Meeting Conference on Recent Advances
in the Message Passing Interface (EuroMPI’10). Springer-Verlag, Berlin, Heidelberg,
11–20.

[10] Wataru Endo and Kenjiro Taura. 2018. Parallelized Software Offloading of Low-
Level Communication with User-Level Threads. In Proceedings of the International
Conference on High Performance Computing in Asia-Pacific Region. ACM, 289–298.

[11] Panagiota Fatourou and Nikolaos D. Kallimanis. 2012. Revisiting the Combining
Synchronization Technique. In Proceedings of the 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP ’12). 257–266.

[12] Sanjay Ghemawat and Paul Menage. 2009. Tcmalloc: Thread-Caching Malloc.
[13] Paul Grun, Sean Hefty, Sayantan Sur, David Goodell, Robert D Russell, Howard

Pritchard, and Jeffrey M Squyres. 2015. A Brief Introduction to the OpenFabrics
Interfaces - A New Network API for Maximizing High Performance Application
Efficiency. In 2015 IEEE 23rd Annual Symposium onHigh-Performance Interconnects
(HOTI’15). 34–39.

[14] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat Combining
and the Synchronization-Parallelism Tradeoff. In Proceedings of the twenty-second
annual ACM symposium on Parallelism in algorithms and architectures. ACM,
355–364.

[15] Maurice Herlihy and Nir Shavit. 2011. The Art of Multiprocessor Programming.
Morgan Kaufmann.

[16] Nathan Hjelm, Matthew GF Dosanjh, Ryan E Grant, Taylor Groves, Patrick
Bridges, and Dorian Arnold. 2018. Improving MPI Multi-Threaded RMA Com-
munication Performance. In Proceedings of the 47th International Conference on
Parallel Processing. ACM, 58.

[17] Torsten Hoefler, James Dinan, Darius Buntinas, Pavan Balaji, Brian Barrett, Ron
Brightwell, William Gropp, Vivek Kale, and Rajeev Thakur. 2013. MPI+MPI: A
New Hybrid Approach to Parallel Programming with MPI plus Shared Memory.
Computing 95, 12 (2013), 1121–1136.

[18] Torsten Hoefler, Christian Siebert, and Andrew Lumsdaine. 2010. Scalable Com-
munication Protocols for Dynamic Sparse Data Exchange. In Proceedings of the
15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’10). 159–168.

[19] Krishna Kandalla, Peter Mendygral, Nick Radcliffe, Bob Cernohous, David Knaak,
Kim McMahon, and Mark Pagel. 2016. Optimizing Cray MPI and SHMEM Soft-
ware Stacks for Cray-XC Supercomputers based on Intel KNL Processors. Cray
User Group (2016).

[20] Alex Kogan and Erez Petrank. 2011. Wait-Free Queues with Multiple Enqueuers
and Dequeuers. In Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming (PPoPP ’11). 223–234.

[21] Sameer Kumar, Amith R Mamidala, Daniel A Faraj, Brian Smith, Michael Block-
some, Bob Cernohous, Douglas Miller, Jeff Parker, Joseph Ratterman, Philip
Heidelberger, et al. 2012. PAMI: A Parallel Active Message Interface for the Blue
Gene/Q Supercomputer. In 2012 IEEE 26th International Parallel and Distributed
Processing Symposium (IPDPS ’12). 763–773.

[22] Peter Magnusson, Anders Landin, and Erik Hagersten. 1994. Queue Locks on
Cache Coherent Multiprocessors. In Parallel Processing Symposium, 1994. Pro-
ceedings., Eighth International. IEEE, 165–171.

[23] John M Mellor-Crummey and Michael L Scott. 1991. Algorithms for Scalable
Synchronization on Shared-memory Multiprocessors. ACM Transactions on
Computer Systems (TOCS) 9, 1 (1991), 21–65.

[24] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. 1999. Executing Parallel
Programs with Synchronization Bottlenecks Efficiently. In Proceedings of the
International Workshop on Parallel and Distributed Computing for Symbolic and
Irregular Applications, Vol. 16. Citeseer.

[25] GF Pfister, WC Brantley, DA George, SL Harvey, WJ Kleinfelder, KP McAuliffe,
EA Melton, VA Norton, and J Weiss. 1985. The IBM Research Parallel Processor
Prototype (RP3): Introduction and Architecture. In Proceedings of the 1985 Inter-
national Conference on Parallel Processing: August 20–23, 1985. IEEE Computer
Society Press, Washington, DC.

[26] Ken Raffenetti, Abdelhalim Amer, Lena Oden, Charles Archer, Wesley Bland,
Hajime Fujita, Yanfei Guo, Tomislav Janjusic, Dmitry Durnov, Michael Blocksome,
Min Si, Sangmin Seo, Akhil Langer, Gengbin Zheng, Masamichi Takagi, Paul
Coffman, Jithin Jose, Sayantan Sur, Alexander Sannikov, Sergey Oblomov,Michael
Chuvelev, Masayuki Hatanaka, Xin Zhao, Paul Fischer, Thilina Rathnayake, Matt
Otten, Misun Min, and Pavan Balaji. 2017. Why is MPI So Slow?: Analyzing the
Fundamental Limits in Implementing MPI-3.1. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’17). 62:1–62:12.

[27] Pavel Shamis, Manjunath Gorentla Venkata, M Graham Lopez, Matthew B Baker,
Oscar Hernandez, Yossi Itigin, Mike Dubman, Gilad Shainer, Richard L Graham,
Liran Liss, et al. 2015. UCX: An Open Source Framework for HPC Network
APIs and Beyond. In 2015 IEEE 23rd Annual Symposium on High-Performance
Interconnects (HOTI’15). 40–43.

[28] Karthikeyan Vaidyanathan, Dhiraj D. Kalamkar, Kiran Pamnany, Jeff R. Ham-
mond, Pavan Balaji, Dipankar Das, Jongsoo Park, and Bálint Joó. 2015. Improving
Concurrency and Asynchrony in MultithreadedMPI Applications Using Software
Offloading. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’15). 30:1–30:12.

[29] Chaoran Yang and John Mellor-Crummey. 2016. A Wait-Free Queue as Aast as
Fetch-and-Add. In ACM SIGPLAN Notices, Vol. 51. ACM, 16.

[30] Pen-Chung Yew, Nian-Feng Tzeng, et al. 1987. Distributing Hot-Spot Addressing
in Large-Scale Multiprocessors. IEEE Trans. Comput. 100, 4 (1987), 388–395.

379

