Optimized Execution of Parallel Loops via User-Defined
Scheduling Policies

Seonmyeong Bak Yanfei Guo
Georgia Institute of Argonne National
Technology Laboratory
sbakb@gatech.edu yguo@anl.gov
ABSTRACT

On-node parallelism continues to increase in importance
for high-performance computing and most newly deployed
supercomputers have tens of processor cores per node. These
higher levels of on-node parallelism exacerbate the impact
of load imbalance and locality in parallel computations, and
current programming systems notably lack features to enable
efficient use of these large numbers of cores or require users
to modify codes significantly. Our work is motivated by the
need to address application-specific load balance and locality
requirements with minimal changes to application codes.

In this paper, we propose a new approach to extend the
specification of parallel loops via user functions that specify
iteration chunks. We also extend the runtime system to in-
voke these user functions when determining how to create
chunks and schedule them on worker threads. Our runtime
system starts with subspaces specified in the user functions,
performs load balancing of chunks concurrently, and stores
the balanced groups of chunks to reduce load imbalance in
future invocations. Our approach can be used to improve load
balance and locality in many dynamic iterative applications,
including graph and sparse matrix applications. We demon-
strate the benefits of this work using MiniMD, a miniapp
derived from LAMMPS, and three kernels from the GAP
Benchmark Suite: Breadth-First Search, Connected Compo-
nents, and PageRank, each evaluated with six different graph
data sets. Our approach achieves geometric mean speedups
of 1.16x to 1.54x over four standard OpenMP schedules and
1.07x over the static_steal schedule from recent research.

CCS CONCEPTS

o Computer systems organization — Multicore architectures;
o Software and its engineering — Parallel programming lan-
guages; Runtime environments;

KEYWORDS

OpenMP, Load Balancing, Loop Parallelism, User-Defined
Scheduling

Publication rights licensed to ACM. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor
or affiliate of the United States government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for Government purposes only.
ICPP 2019, August 5-8, 2019, Kyoto, Japan

© 2019 Copyright held by the owner/author(s). Publication rights
licensed to Association for Computing Machinery.

ACM ISBN 978-1-4503-6295-5/19/08. .. $15.00
https://doi.org/10.1145/3337821.3337913

RIGHTS L1 N Hig

Vivek Sarkar
Georgia Institute of
Technology
vsarkar@gatech.edu

Pavan Balaji
Argonne National
Laboratory
balaji@anl.gov

ACM Reference Format:

Seonmyeong Bak, Yanfei Guo, Pavan Balaji, and Vivek Sarkar.
2019. Optimized Execution of Parallel Loops via User-Defined
Scheduling Policies. In 48th International Conference on Parallel
Processing (ICPP 2019), August 5-8, 2019, Kyoto, Japan. ACM,
New York, NY, USA, 10 pages.
https://doi.org/10.1145/3337821.3337913

1 INTRODUCTION

For the past few years, many researchers in high-performance
computing have introduced programming models that make
use of increasing on-node parallelism in the modern micropro-
cessors. Many of these researchers use hybrid programming
models to enable efficient load balancing in the intra- and
internode level through the interoperation of distributed- and
shared-memory programming models [1, 8, 12, 34].

These programming models have introduced techniques
to resolve load imbalance efficiently while maintaining local-
ity. One such technique is chunking. Users create iteration
chunks or tasks through language constructs provided by the
programming models to express parallelism in their codes,
choosing one of the predefined schedules that runtime sys-
tems use for scheduling. However, these chunking techniques
do not resolve dynamic load imbalance and maintain locality
properly on many irregular parallel applications because of
variables determined at runtime. To achieve load balancing,
researchers often seek a dynamic approach such as work steal-
ing. However, this practice can lead to limited improvement
or even degradation in performance.

The main variables causing the unresolved load imbalance
are input datasets and parameters. These runtime variables
determine the amount of load for each iteration or task. For
example, the number of inner loop iterations and conditional
statements incurring control divergence for each iteration
or task changes depending on the variables. This variability
results in load imbalance as in Figure 1, which is handled only
by migrating tasks in the previous approaches dynamically or

parallel_for(int i=0; i <4 ; it++) {
for (int j=0; j<neighl[il; j++) {..}
}

< _Linput A <L input B

i=o =1 i=2 j=3 ize =t i=2 | i=3
[] [] |
L1 L

-

Figure 1: Imbalanced load in each iteration for different input
dataset and chunking for balanced load

https://doi.org/10.1145/3337821.3337913
https://doi.org/10.1145/3337821.3337913

ICPP 2019, August 5-8, 2019, Kyoto, Japan

periodically. The migration of tasks, however, incurs traffic
on interconnect as well as loses data locality, which is critical
for most memory-intensive parallel applications.

We can solve this input-dependent load imbalance by user
provided information because users know how input datasets
and parameters determine the amount of load for each loop or
task. The in-/out-degree of each vertex in graph applications
is approximately correlated with the amount of load for the
vertex. A sparse matrix has the same characteristic, which
can be exploited to estimate the amount of load for each
iteration. With this user information, we can create groups
of chunks to have approximate equal amount of load as in
Figure 1. The information can be obtained, however, only
in runtime through inspection or offline analysis before the
execution. Most programming languages do not have features
to extract this information at runtime because the overhead
for inspection is expected to be too high, outweighing the
benefit of the inspection.

Arguably, the overhead can be minimized by reusing the
dynamic information during periods where the information
does not change. In many parallel applications, the same
parallel kernels are used with the same data repeatedly until
the applications converge to a certain threshold. Therefore, if
we can create chunks that have even load size by inspection
using user-provided functions, we can build groups of chunks
with better load balance and reuse these groups of chunks
for the next invocation of the kernels with minimal overhead.
This reuse of balanced groups will improve the performance
of irregular applications substantially with better initial load
balance and locality from the reduced migration of tasks.

In this paper, we present a set of APIs with which a
user can define user functions to inspect each iteration of
parallel loops. The user functions estimate the amount of
load on each iteration by using data structures or information
about each iteration. After threads finish creating chunks by
inspection using user functions, one of the threads balances
the chunks concurrently while workers execute their created
chunks. These balanced groups of chunks are stored and
indexed by some unique information of the target loop. We
also made the subspace selection from the iteration space
of the target loop configurable by another user-provided
function, which is critical for performance. Additionally, we
adopted work stealing to handle transient load imbalance
incurred by variables in runtime, such as Intel Turbo Boost
and DVFS. We implemented our approach in OpenMP, a
standard shared-memory programming model, and used the
LLVM OpenMP runtime as our base runtime system. To
evaluate our work, we used the Breadth-First Search (BFS),
Connected Components (CC), and PageRank (PR) kernels
from the GAP Benchmark Suite with six real graphs as well
as MiniMD, a miniapp version of LAMMPS in the Mantevo
suite. The contributions of this paper are as follows:

e Introduction of APIs to enable user-defined scheduling
with user functions for lightweight inspection

e Efficient implementation for user-defined scheduling
with work stealing and runtime profiling

RIGHTS L1 N Hig

Seonmyeong Bak, Yanfei Guo, Pavan Balaji, and Vivek Sarkar

e Evaluation with various applications and real datasets
such as MiniMD and with the GAP benchmark kernels:
BF'S, Connected Components, and PageRank

e Adoption of user-defined scheduling to a graph frame-
work generating OpenMP codes

The remainder of the papers is organized as follows. In Sec-
tion 2 we present background information about the OpenMP
programming model and scheduling policies.In Section 3 we
introduce our API to enable user-defined scheduling. In Sec-
tion 4 we show how we implement the user-defined scheduling
in the LLVM OpenMP runtime. In Section 5 we showcase
the benefits of our approach with MiniMD from the Mantevo
suite and BFS, Connected Components, and PageRank from
the GAP suite. In Section 6 we discuss related works, and in
Section 7 we conclude with a summary of our work.

2 BACKGROUND

2.1 Overview of OpenMP Programming Model

OpenMP [11] is a de facto standard for shared-memory par-
allel programming models. It has most forms of parallelism
at the intranode level, such as loop, tasking, offloading, work
sharing, vectorization, and atomics. OpenMP is a fork-join
programming model, meaning that it has an implicit barrier
at the end of each parallel region represented by the omp
parallel directive or work-sharing constructs such as omp
for. At the beginning of each parallel region, the Open MP
spawns a pool of threads that run the same codes within
the parallel region in single program, multiple data fashion.
Therefore, tasking in OpenMP is help-first, which means a
created task can be stolen by other worker threads while the
thread creating the task proceeds with the rest of the codes
in the parallel region.

Among many OpenMP constructs, work-sharing constructs
are most commonly used because a user can easily parallelize
loops or codes with adding just a few pragmas.

2.2 Scheduling Policies in OpenMP

In this section, we discuss scheduling policies for omp for
constructs in the OpenMP standard and some previous work
on scheduling iterations.

2.2.1 Scheduling Policies in the OpenMP Standard. The
OpenMP standard has several predefined scheduling policies
for scheduling iterations in the omp for work-sharing con-
structs, such as static, dynamic, guided, runtime, and auto.
The static construct statically divides the iteration space
into chunks the size of which is the number of iterations/the
number of threads in an OpenMP team by default or the
size the user provides. Each thread gets chunks that are stat-
ically assigned by its thread id, so each thread gets the same
chunks when the target loop is executed repeatedly. This
policy maximizes locality but loses load balancing for dy-
namic load imbalance. The dynamic construct makes all the
threads get a chunk from the iteration space whenever they
request a new chunk; all the iterations are made available
to all the threads in an OpenMP team, thus eradicating the

Optimized Execution of Parallel Loops via User-Defined Scheduling Policies

load imbalance and increasing resource utilization maximally.
However, each thread executes chunks in random order and
hence loses data locality, resulting in huge degradation. Set-
ting a chunk size can reduce this degradation by exploiting
locality within each chunk but still incurs significant degrada-
tion. The guided construct is a modified version of dynamic
where a thread requesting a chunk earlier gets a bigger chunk
than do threads requesting later. This is a naive heuristic for
better load balancing. The chunk size for each request is the
number of iterations left divided by the number of threads
in the OpenMP team. The runtime construct is a scheduling
policy that can be determined by an environmental variable
or by calling the API in runtime. The auto construct de-
termines the scheduling of the loop automatically by the
runtime, which is set static on most implementations.

2.2.2 Hybrid Scheduling of static and dynamic. A couple
of efforts have been made to overcome the limitations of the
standard configurations [20] by mixing static and dynamic.
The basic idea is to split the iteration space into subspaces
statically and make some portion of the subspace stealable by
other threads within the OpenMP team for load balancing.
This scheme enables load balancing while keeping locality. We
use this as one of the baseline schemes to be compared with
our approach. Our base runtime, LLVM OpenMP runtime,
has already implemented this approach. In the rest of this
paper, we call this hybrid static steal scheduling.

3 DESIGN

In this section, we present an overview of our approach for
changing the scheduling of a parallel loop with user functions,
which are a set of APIs that enable lightweight inspection
and user-specified scheduling of parallel loops.

3.1 Overview of User-Defined Scheduling for
Parallel Loops

Figure 2 outlines how our runtime implements scheduling
of parallel loop iterations with user functions. The left part
of the figure represents standard loop scheduling, while the
colored steps on the right of the figure shows the steps added
for user-defined scheduling. Our extensions on the right also
include creating a scheduler based on help-first work steal-
ing [15] rather than work sharing. In our user-defined sched-
uling on the right, each thread first queries a shared data
structure as to whether the current loop is profiled. If so,

Control flow of parallel loop Control flow of user-defined scheduling
‘ Start Loop | Start Loop |

Yes v
Loop profiled?

v No
Get a subspace in the loop
v

Create chunks in the subspace

Get Next Chunk Local s:bspace Yes

empty?
v

Get a local chunk Steal a
v

Execute the chunk

chunk

‘ Execute the chunk

Yes Ay Tet
No

| End of Loop | ‘

Any left
iterations?

End of Loop |

Figure 2: Control flow of parallel loop with user-defined sched-
uling

RIGHTS L1 N Hig

ICPP 2019, August 5-8, 2019, Kyoto, Japan

it retrieves the corresponding stored group of chunks and
executes the chunks. If not, it chooses a subspace of the
iteration space of the loop as specified by a user function
and creates chunks within the subspace with another user
function. The user functions enable customized scheduling
based on load estimation for each iteration of a parallel loop.
Fach thread starts stealing chunks from other threads’ local
subspaces when its local subspace becomes empty. After all
iterations are executed, the threads in the OpenMP team
for the loop synchronize and terminate the execution of the
parallel loop. In Section 3.2, we introduce an example of API
details for enabling user-defined scheduling and explain the
implementation of this feature in our runtime.

3.2 APIs for User-Defined Scheduling and
Example

Listing 1 introduces the API to communicate two user-
defined functions to the runtime: inspect func and sub-
space__select__func. The first function specifies how each chunk
is created. If nothing is specified, it creates chunks of size
1 within each subspace. The second function partitions the
iteration space into one subspace per thread. If this func-
tion is not specified, the default partitioning is to divide the
iteration space evenly among all threads in the OpenMP
team as in the static steal approach. The third parameter,
user__data, can optionally point to user-managed data that
can be accessed by the two user-defined functions. The next
two parameters, steal _enabled and profiling__enabled, serve
as toggles to enable/disable work stealing and profiling in the
runtime. Their default values are FALSE. The last parameter,
num,__subspaces, specifies the total number of subspaces in
the iteration space of the target loop. The default value is
the number of threads in the OpenMP team.

// Function to specify user-defined scheduling with user-functions
void ompx_set_usersched_for_loops(
void (*inspect_func) (int left_start, int left_end,
int *assigned_start, int *assigned_end, void *user_data),
// pointer to a user function for chunk creation
int (*subspace_select_func) (int num_spaces, void *user_data),
// pointer to a user function for subspace selection
void *user_data, int steal_enabled,
int profiling_enabled, int num_subspaces) ;
/* user_data: pointer to user data accessible within the user
functions
steal_enabled, profiling_enabled: toggles to turn on/off
workstealing and concurrent profiling
num_subspaces: number of subspaces created by the user function
for the affected loop */

// Reset the schedule of the upcoming loop to the previous
schedule set before the user-defined scheduling
void ompx_reset_usersched_for_loops();

Listing 1: API for specifying user-defined functions,
inspect__func() and subspace__select__func()

Listing 2 shows how the API we proposed can be used to
configure user-defined scheduling for iteration chunks in the
omp for loops. The user can define how each thread selects
a subspace from the iteration space and how each iteration
chunk is created. In addition, the user can enable work steal-
ing and concurrent load balancing for the created chunks.
The function inspect_func is called for omp for loops with
the schedule(runtime) clause. Each thread obtains a subspace

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Graph *g_ptr;
void inspect_func(int left_start, int left_end,
int *assigned_start, int *assigned_end, void *user_data){
int weight=0, iter=left_start;
do {
weight+=g_ptr->indegree(iter++);
if (weight>=threshold) break;
/* Create each chunk when sum of indegrees reaches
"threshold ' */
} while (curr_idx < left_end);
*assigned_start=left_start, *assigned_end=curr_idx;
if (*assigned_end>=left_end) *assigned_end=left_end;
}
int subspace_select_func(int num_subspaces, void *user_data) {
return omp_get_thread_num();
//Each thread gets a subspace with its thread id
}
int main (void) {
g_ptr=&g;
ompx_set_usersched_for_loops(inspect_func, subspace_select_func,
NULL, 1, 1, omp_get_num_threads());
#pragma omp parallel for schedule(runtime)
for (int i=0; i<g.num_nodes(); i++) {
for (NodeID v : g.in_neigh(u)) {...}
}
}

Listing 2: Example of simplified PageRank with user-defined
functions applied,

from the iteration space and creates chunks from the iter-
ations within the subspace by the provided inspect func.
These chunks are scheduled with or without work stealing or
concurrent load balancing, depending on the toggle values
provided by the user. In this example, inspect_func allocates
a maximum of “threshold” indegrees(innerloops) per chunk.
The indegree(iter) can be replaced by other load functions
for different sparse computations.

4 IMPLEMENTATION

In this section, we describe our implementation of the design
from Section 3 in the LLVM OpenMP runtime system. We
forked 07/23/2018 commit from the repo! in GitHub.

4.1 Overview of Qur Implementation

Figure 3 shows an overview of our implementation. We enable
chunk creation to be configured by two user-defined functions
as described in section 3.2. First, a user can specify a portion-
ing of the loop iteration space into one subspace per worker
thread. Next, the OpenMP runtime uses another user-defined
function to inspect each iteration and determine how many
iterations to be included in the current chunk being created.
This inspection enables a variable number of iterations to
be included in each chunk, in order to improve load balance
as in Listing 2. Each thread pushes the created chunks to
a local work-stealing queue. If work stealing is enabled by
the API, then other worker threads can steal chunks from
busy threads. If a user enables concurrent profiling, each
thread copies locally created chunks and stores them in a
data structure shared in its OpenMP team. The last thread
creating all its chunks starts concurrent load balancing with
the stored copy of chunks while others execute chunks in their
local work-stealing queue. The balanced groups of chunks
after concurrent load balancing are used in future invocations

! https://github.com/llvm-mirror/openmp

RIGHTSE LI MN iy

Seonmyeong Bak, Yanfei Guo, Pavan Balaji, and Vivek Sarkar
@ Subspaces are selected by user-defined function or default configuration

Thread 0 k d — Thread 3
0-20 21-40 — R 61-80

@ Chunks are created by user-defined function or default configuration

[4150]
5160

@ Each thread first consumes their local chunks and steals from others by work-stealing

@ Before consuming local chunks, the last thread to create all its chunks does concurrent
load balancing for future invocations ...

[a1-50]
5160

7/
£, 18:20]

@ ... and stores the result of load balancing in a hash map
- Hash-key = “src_loc:# of chunks: usr_ptr addr”, e.g., Hash (a.cpp:163:80:user_ptr)=1

it‘\?ise’; Thread 0 Thread 1 Thread 2 Thread 3
—

0

1 LICI]

2 Thread 0 .

B

0.2 - — eees .
51-60 [69-71]

@ The next invocation retrieves the load balancing result from the hash map
- If the variables in the hash key don’t change -> Reuse the same subspaces repeatedly

Figure 3: Implementation of user-defined scheduling for it-
eration chunks, later referred to as “usersched,” and “user-
sched(prof)” with concurrent load balancing in steps 4-5

of this loop. The load balancer thread stores the balanced
groups of chunks in a global hash map whose key consists of
several identifiers. We describe each step in more detail in
the following subsections.

4.2 Runtime Profiling: Concurrent Load
Balancing

On steps 4 and 5 of Figure 3, our runtime makes the last
thread creating chunks to store balanced groups of chunks
in a hash map by concurrent load balancing for the future
invocations of the target parallel loops. The load balancer
computes the average number of chunks for each subspace
in the team and moves chunks across subspaces to make
each subspace have the average. The balanced groups of
chunks are stored in a hash map indexed by a key, which is a
concatenation of three variables: source location info, number
of iterations for the target omp for loop, and user_data
pointer address info. If users know when the distribution of
chunks of the profiled loop changes by other variables (e.g.,
communication or load balancing across processes), then they
can call ompx__reset__usersched__loops just ahead of the loop
to initiate load balancing without looking up the hash map.
The changes in the variables of each key for the hash map
automatically incur load balancing of the loop again after
failing to find an entry in the hash map. We use C++ STL
unordered__map for the hash map.

4.3 Optimizations to Reduce Runtime Overhead

4.3.1 Selecting a Subspace in the Iteration Space. The way
that each thread picks a subspace in the entire iteration space

Optimized Execution of Parallel Loops via User-Defined Scheduling Policies

is important. As mentioned in Section 2, Kale et al. [20] in-
troduced how the hybrid scheduling of static and dynamic
improves load balancing without loss of locality. We adopted
this idea for our work and used the subspace selection as our
default configuration. In addition, we made this subspace
selection capable of being configured by passing a function
in the API. For the rest of this paper, we use the default
subspace selection and leave exploring the benefit of the con-
figurable subspace selection as our future work. In Section 7
we will briefly discuss applications that can benefit from
nonsequential execution of iterations configured by our API.

4.3.2 Work-Stealing Queue Implementation. We adopted
the Chase-Lev [10] algorithm, which is an efficient work-
stealing algorithm with minimal number of atomic operations
incurred. The algorithm is efficient enough for tasks that do
not have temporal and spatial locality. However, chunks
from consecutive iterations usually have temporal and spatial
locality. Therefore, both pop and steal operations of the work-
stealing queue should be done in some group of iterations
in order to benefit from the locality. Figure 4 shows how
we modified the algorithm to enable bulk work stealing in a
group of chunks and split the work-stealing queue into two
subqueues. When the upcoming loop is profiled, each thread
computes the size of a group for bulk pop and steal, which
is the number of chunks divided by the number of threads
in the OpenMP team. Then it pushes chunks in the fixed
size of groups of chunks into the first subqueue where pop
and steal operations are done in the chunk group size. Then
each thread pushes the residual of the division to the second
subqueue where pop and steal operations are done in a single
chunk. In addition to this modification, we implemented the
work-stealing queue in a list of fixed-size arrays in order to
increase the size of the queue dynamically, as in the previous
work [17]. Profiled loop information also stores created chunks
in the same size of fixed arrays, which makes the copy of the
profiled information simple.

Single-producer, 2 Consumers(thief), number of chunks: 16 Producer e
@ Get an array. In this fig, the size of the array is 8. Consumer (Thief) __,
@ Set fixed block size(8 / 3 -> 3) and split the queue into two subqueues(bulk chunks / residuals). Push

2)-1 Head @-2Tail -3 Head -4 Tail is full, add a new array and repeat @, @
1z ~ T3
S — -— e - = a @' - == == _—
A |
|—®4 - —®— —_—m e = = Tail array ptr
il Head array ptr — ® <«
| @1 @~ @3 @)-2 ®-2 @-1
i 3
1 A A OF
1oyl | 3 |
-1 — — N — — — e . A — -

@ Producer pops chunks starting from tail array
with tail index. Producer also pops chunks first from
bulk subqueue and then residuals.

@ Thief steals chunks starting from head array with
head index. Each first steals chunks in bulk space
and then residual space.

(® When the current array becomes empty, thief updates head array ptr while producer updates tail ptr

(® When thief and producer contending on the same chunks (in either bulk or residual queue), atomic
operation is used as in Chase-Lev algorithm

Figure 4: Dynamically increasing work-stealing queue with
bulk pop/steal operations

5 APPLICATION STUDY

We use the following four benchmarks to study the per-
formance of our user-defined scheduling: MiniMD from the

RIGHTSE LI MN iy

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Mantevo benchmark suite [18] and the BFS, PageRank (PR),
and Connected Components (CC) kernels from the GAP
benchmark suite [4], each with six different datasets.

We ran all four benchmarks on a single compute node
consisting of two Intel Skylake 8180M processors (located
at the Joint Laboratory for System Evaluation in Argonne
National Laboratory). This processor has 28 cores and 56
hardware threads. All the benchmarks were compiled by
Intel Compiler 18.0.1 with -O8 and executed with compact
affinity as the selected configuration for OS thread scheduling.
We compared the performance of our approach, usersched
and usersched(prof), with multiple commonly used OpenMP
scheduling pragmas (static, dynamic, guided) as well as the
static steal approach from recent work [20]. The usersched
label refers to our user-defined scheduling approach, and the
usersched(prof) label refers to our approach with profiling
enabled. We used the same user function shown in Listing 2
with replacing indegree(i) with corresponding load function
for each application. For MiniMD), the load function is neigh(s)
and for CC, it is outdegree(i). BF'S uses the same function as
PageRank.

5.1 MiniMD

MiniMD is a miniapp version of LAMMPS [30] in the Man-
tevo suite [18], which is one of the most popular molecular
dynamics simulations and is developed by Sandia National
Laboratories. It has most of the characteristics of LAMMPS
and makes it easier to understand molecular dynamics sim-
ulations in a few hundreds of lines source code. Regarding
the selection of MiniMD over others in the Mantevo suite,
we note that the suite has four applications that are written
in C/C++ and OpenMP. MiniTri is a duplicate of Trian-
gle Counting, which we study in the GAP suite, and both
HPCCG and MiniFE have no need for user-defined schedul-
ing since they already exhibit good load balance with their
default OpenMP pragmas. For this reason, we chose MiniMD
as the only benchmark to evaluate from the Mantevo suite.

MiniMD can compute forces across neighboring atoms in
two ways: embedded atom method and Lennard-Jones (LJ).
We optimized the Lennard-Jones force computation kernel
with the user function described above. Figure 5 shows the
performance improvement in force computation and total
execution time of MiniMD with user-defined scheduling. We
used 56 threads for the size 10 input and 112 threads for the
size 20 input. In the LJ force computation, we achieve 14.99%
improvement compared with the best-performing standard
configuration and 13.81% improvement compared with the
static steal scheduling configuration from recent work [20],
which leads to 11.38% and 10.17% improvement in total ex-
ecution time respectively with size 10 input. With size 20
input, the improvement in force computation is 24.0% and
17.5% compared with static and static steal, which results
in 15.83% and 11.54% improvements in total execution time.
For MiniMD, static works with the default chunk size better
than dynamic and guided do, which means the application
has relatively minor load imbalance compared with graph
applications. Thus, other dynamic schedules such as dynamic

ICPP 2019, August 5-8, 2019, Kyoto, Japan

1?8 e . . Foréé(LJ)“ . 1.20 -

1o Force(LJ) mmmmm
Others N .

Others

:‘5‘

8

()

©

o 1.00 1.00
£ 090 0.90
2 080 0.80
el

g 070 0.70
T 060 0.60
5 050 0.50
£ 040 0.40
£ 030 0.30
& 020 0.20
3 010 0.10
X 0.00 0.00
w

F PP LS F LRSS
& ~\°® ® ¢ & N & A‘\(D & & & X
s & &€ ® &
)
¥ ¥
Size 10 Size 20

Figure 5: Performance of MiniMD with size 10/20 input data

and guided make the performance worse by the loss of data
locality. The static steal configuration improves the perfor-
mance marginally for MiniMD, but it cannot achieve an
improvement in load imbalance by adjusting iterations in
each subspace because each subspace has the same number of
iterations in static steal. The usersched and usersched(prof)
configuration achieves better load balance than the other con-
figuration deos, by leveraging user-defined functions to create
chunks that process close to an equal number of neighbors.
With concurrent profiling in usersched(prof), each thread
starts with a better initial load balance, which improves
the performance by further reducing load imbalance while
maintaining locality.

5.2 GAP Benchmark Suite: BFS, CC, and PR

The GAP Benchmark Suite [4] consists of six graph compu-
tation kernels written in C++ with OpenMP constructs. It
extends prior work for graph evaluation with more diverse in-
put datasets and, like MiniMD, provides a robust and credible
baseline for our performance evaluations. Of the six kernels,
we focused our evaluation on the three kernels BFS, CC, and
PR that are implemented by using the pull-based approach,
since pull-based implementations of graph kernels are more
amenable to our user-defined approach than are push-based
implementations. The Between Centrality (BC) and Single
Source Shortest Path (SSSP) kernels use the push-based
approach, which keeps updating the active set of vertices,
thereby making it unsuitable for our user-defined scheduling
approach. Triangle Counting (TC) has extreme control di-
vergence in three levels of nested loops with a conditional
statement in each level, thereby making it less amenable for
our user-defined scheduling approach because of the difficulty
in predicting the load for each iteration of a parallel loop.
We ran the three kernels with six real datasets, as shown in
Table 1.

The user function for BFS, CC and PR is the same as in
Listing 2 with the corresponding load function as described
in the beginning of Section 5. CC and PR contain one main
parallel region for the computation, whereas BFS uses a
hybrid combination of bottom-up (BU) and top-down (TD)
steps [3]. We optimized only the bottom-up step using our
approach because the top-down step repeatedly changes the

RIGHTS LI N '-"l}

Seonmyeong Bak, Yanfei Guo, Pavan Balaji, and Vivek Sarkar

Category Wikipedia Internet Topo Patents Citation
Graph Wiki-2007 [13] Skitter [23] Patents [16]

of Vertices 3.57TM 1.70M 3.77TM

of Edges 45.01M 22.19M 16.52M
Category Social Network USA Road Web Crawl
Graph LiveJournal [39] Road [9] Web [6, 7]

of Vertices 4.00M 23.95M 50.64M

of Edges 69.36M 57.71M 1.93B

Table 1: Graph datasets used for GAP Benchmark Suite

number of chunks in the parallel loop, thereby making it less
amenable to our approach.

Table 2 shows the performance (speedup) of each sched-
ule normalized to the default static schedule, for the BFS,
CC, and PR kernels, each evaluated with six graphs. For
each schedule on each application, we determined the best
geometric mean chunk size across all six inputs and used
it for all. The chunk sizes we used are also represented in
Table 2. For usersched and usersched(prof), the chunk size
means the numbers of indegree/outdegree for each chunk.
So, each chunk may have a different number of outer itera-
tions, as depicted in Figure 3. For all experiments on GAP,
we used 112 threads, the scale limit of all the applications
on our machine. For BFS, the performance improvement of
user-defined scheduling is marginal or worse than the best-
performing standard policy because we optimized only the
BU step of the BFS algorithm in GAP. The BF'S algorithm in
GAP switches search direction between BU and TD by com-
paring the outdegree of the source vertex with heuristic value.
Thus, user-defined scheduling shows marginal improvement,
4.4% compared with static steal in the Web dataset which
have relatively larger number of outdegrees than the heuristic
value so incurs BU steps many times. For other graphs, user-
defined scheduling works close to the best-performing policy.
CC and PR show a huge improvement in performance with
usersched and usersched(prof) compared with all the other

BFS Chunk size Wiki-2007 Skitter Patents LiveJournal Road Web
static__default 1.000 1.000 1.000 1.000 1.000 1.000
static 1024 0.998 1.151 1.000 0.987 1.001 1.178
dynamic 2048 0.988 1.036 0976 0.981 0.979 1.124
guided 4096 0.943 0.963 1.025 0.897 0.988 0.872
static_steal 256 1.009 0912 1.051 1.044 0.986 1.322
usersched 8192 0991 1018 1000 1.053 0978 1.331
usersched (prof) 8192 0.959 0.892 1.025 0.953 1.003 1.381
CC Chunk size Wiki-2007 Skitter Patents LiveJournal Road Web
static__default 1.000 1.000 1.000 1.000 1.000 1.000
static 1024 1.690 1.872 1.078 2.111 1.089 1.151
dynamic 512 1.625 2.454 1.058 2,021 0.985 0.669
guided 512 1.250 1.499 0.993 1.368 1.069 0.713
static_steal 256 1.787 2.193 1.055 2.299 0992 1.237
usersched 81927 1796 2568 1048 2152 1074 1.144
usersched (prof) 8192 1.855 3.012 1.080 2281 1.043 1.282
PR Chunk size Wiki-2007 Skitter Patents LiveJournal Road Web
static__default 1.000 1.000 1.000 1.000 1.000 1.000
static 256 5.009 2.402 1.167 2.512 0.681 1.059
dynamic 512 4.083 2.240 1.175 2.538 0.663 0.819
guided 1024 1.288 1.345 1.150 1.463 0.766 0.806
static__steal 64 7.688 2.507 1.085 2.901 1.093 1.332
usersched 8192 9985 2645 1335 2651 1.004 1.407
usersched (prof) 8192 11.326 2.845 1.289 3.156 1.147 1.410

Table 2: Performance (speedup) of BFS, CC, and PR with 6
different graphs (normalized to static default)

Speed up(compared to 'static' default)

RIGHTS LI N

Optimized Execution of Parallel Loops via User-Defined Scheduling Policies

schedules on various graphs. Both apps run one parallel main
loop repeatedly to reach termination condition. Therefore,
creating chunks having an equal amount of load by inner loop
info and profiling the groups of chunks after concurrent load
balancing make the loop run with better load balance multi-
ple times. For this characteristic, CC works best or closest to
best across all input graphs with usersched(prof), improving
the performance by 37.3% and 22.7% on Skitter compared
with static steal and the best standard schedule, dynamic.
For other graphs, usersched(prof) works better than static
steal by 3~5%, while static shows the best performance on
Road compared with others, but the performance difference
is marginal. PR, with usersched(prof), shows 47.3%, 13.5%,
18.9%, 8.8%, 4.9%, and 5.8% compared with static steal on
corresponding graphs in Table 2. For Patents, static steal
works worst among all the policies. Thus, compared with
the best-performing standard policies, our approach achieves
9.7% improvement
For all the graphs and applications we tested, usersched(prof)

works best or near to the best-performing policies we com-
pared. Even though some graphs and applications work better
with different schedules, our schedule with concurrent profil-
ing performs close to the best without significant degradation.
In addition, usersched shows the best geometric mean per-
formance with the same chunk size, while others require
different chunk sizes on each application. This consistency
reduces tuning efforts. In the following section, we analyze the
benefit of our approach in terms of performance variability,
load imbalance, and cache performance. Following this anal-
ysis, we will show the applicability of our approach to graph
domain-specfic languages (DSLs) by showing a performance
improvement of Graphlt PR with user-defined scheduling.

5.2.1 Performance Variability by Chunk Size. Figure 6 shows
the performance variance of PR with different chunk size and
schedules on Wiki-2007 and LiveJournal graphs. On Wiki-
2007, all the schedules show the best performance with 64
chunk size. On LiveJournal, however, 512, 1024, and 2048
chunk sizes are optimal for static steal, static, and dynamic,
respectively. The guided schedule does not show much vari-
ance because the chunk size determines only the minimum
chunk size created by the scheduling, which does not affect
most of the chunks created other than last few chunks. The
usersched schedule shows a consistent performance trend and

static —+— static steal —©— static —+— static steal —S—
dynamic —>¢— usersched —¥— dynamic —¢— usersched —¥—
12.00 guided usersched(prof) 3.30 guided usersched(prof)

11.00
10.00
9.00
8.00
7.00
6.00
5.00
4.00
3.00
2.00

3.00
270
2.40
2.10
1.80
1.50.F
1.20
0.90]
0.60
1.00% 0.30

0.00 ! ! ! ! ! ! 1 0.00 1 1 1 1 1 1 |
default 64 256 512 1024 2048 4096 8192 default 64 256 512 1024 2048 4096 8192

Chunk Size(for usersched, in/out-degrees)

Figure 6: Performance variance of PR with Wiki-2007 and
LiveJournal (normalized to static default)

Chunk Size(for usersched, in/out-degrees)

ICPP 2019, August 5-8, 2019, Kyoto, Japan

performs best with the biggest chunk size we tested on both
graphs. The reason is that our chunk size is the indegree/out-
degree of each chunk, which is proportional to the amount
of load for each chunk. This makes all the chunks have an
approximately equal amount of load, and runtime requires
only a certain size large enough to alleviate overhead from the
extremely fine-grained size of the chunk. This characteristic
makes usersched perform best on various input graphs with
less tuning effort.

5.2.2 Load Imbalance and Cache Performance Analysis. We
measured the amount of load imbalance with Equation 1 [28].
mazL and medL represent maximum and median load of
threads in a OpenMP team for the parallelized loops, respec-
tively. We used median instead of average to measure the
imbalance more accurately.

maxL
A= (med B

1) x 100% 1)

Table 3 shows the improvement of PR in the load imbalance
factor with all the input graphs. We included the result of
static default to show how much load imbalance exists for
each graph on PR. In Table 3, Wiki-2007 has the highest load
imbalance. Skitter, LiveJournal, and Web also have consider-
able load imbalance, while Patents and Road have relatively
small imbalance. dynamic shows the greatest reduction in
load imbalance on most graphs over all the schedules. The
usersched(prof) schedule achieves a remarkable reduction in
load imbalance compared with static steal. This metric, how-
ever, measures the difference in the median and maximum
load of threads in the same OpenMP team. Thus, the smaller
value can lead to worse performance due to loss of data lo-
cality by excessive migration of data. Hence, while reducing
load imbalance for high performance, one also must keep in
mind locality.

schedule Wiki-2007 livejournal Skitter Patents Web Road
static_default 1242.310 245.320 327.263 56.938 111.484 26.136
static 127.309 7.364 22.727 18.140 32.882 6.054
dynamic 2.941 1.045 2.308 8.162 1.048 1.834
guided 106.489 18.182 21.552 9.026 1.004 0.477
static_ steal 4.878 1.271 10.702 28.717 37.324 2.559
usersched 4331 1674 16.190 7.272 17506 2.518
usersched(prof) 2.155 1.843 6.762 13.157 11.813 2.712

Table 3: Load imbalance factor of PR (%)

To clarify how much locality is maintained with our ap-
proach, we collected hardware counters by PAPI using na-
tive events on PR with the Wiki-2007 graph. We chose
three counters to measure total, stall, and cache miss cycles:
CPU_CLK_UNHALTED, CYCLE__ACTIVITY:STALLS _
TOTAL, and CYCLE_ACTIVITY:STALLS_L1D_ MISS
(all cycles from L1D to LLC miss) [25]. Table 4 shows cache
miss cycles, other stall cycles (total stall - cache miss), and
productive cycles (total - (other stall+cache miss)). The dif-
ference in the total number of cycles may not correspond to
the performance improvement in the earlier figures because
of Turbo Boost, which makes the measurement of cycles inac-
curate. However, we can see the approximate trend of cache
misses and others considering the inaccuracy. In Table 4,

ICPP 2019, August 5-8, 2019, Kyoto, Japan

Seonmyeong Bak, Yanfei Guo, Pavan Balaji, and Vivek Sarkar

Cache miss Productive Other stall Total

static_ default 0.0439 0.1630 0.7931 1.0000
static 0.0586 0.0354 0.1147 0.2087
dynamic 0.0683 0.0372 0.1251 0.2306
guided 0.0599 0.1216 0.5722 0.7537
static_ steal 0.0566 0.0225 0.0451 0.1242
usersched 0.0652 0.0164 0.0073 0.0889
usersched(prof) 0.0554 0.0152 0.0037 0.0743

Table 4: Performance counter results (average of per-thread
cycles) of PR with Wiki-2007 dataset (normalized to static
default)

dynamic notably increases cache misses, whereas other sched-
ules have a modest increase in cache misses. Our approach
shows minimum cache miss cycles among all the schedules
other than static default, but it reduces nonmemory stall
cycles and productive cycles by removing load imbalance re-
markably. From the results in Tables 3 and 4, we can see that
our approach successfully maintains locality while improving
load imbalance.

5.2.3 Applicability to Graph DSL (Graphlt). Graph is the
most popular domain in DSLs. These DSLs generate task-
/loop-level parallel codes using Cilk or OpenMP. Among
popular graph DSLs, Graphlt [40] is the most recent work
for graphs; it provides a separate interface for algorithms
and schedules and performs well compared with previous
DSLs. Graphlt generates OpenMP codes from high-level
DSLs, which use omp parallel for for loop-level parallelism.
We chose PR with the dense parallel pull schedule and op-
timized the generated code by user-defined scheduling with
the similar function we had used for GAP PR. Exploiting
Graphlt’s schedule-tuning feature, we also ran Graphlt PR
with dense pull and segmentation, which performs better than
the PR with only dense pull. For comparison of GAP and
Graphlt, we also normalized the performance of GAP PR
to the Graphlt PR Pull with static default. We made both
Graphlt and GAP PR run the same number of iterations for
each experiment.

Table 5 shows the normalized performance (speedup) of
Graphlt and GAP PR with Wiki-2007 and LiveJournal. The
segmentation schedule improves the performance of PR Pull
on both graphs. However, it also requires parameter tuning to
find the optimal number of segments for each dataset. With
our manual tuning, static, dynamic, and static steal perform
better than segmentation. The usersched(prof) schedule im-
proved the Graphlt PR much further. We achieved 48.97%
and 58.5% speedup compared with the Graphlt PR with
segmentation on Wiki-2007 and LiveJournal. Compared with
static steal, we improved 29.3% and 7.3% on both graphs.
For the standard schedules, we used different chunk sizes for
Graphlt and GAP PRs, while static steal and usersched(prof)
used the same chunk size. The results show that our approach
can substantially improve the generated OpenMP codes by
graph DSLs with less parameter tuning. Our improvement
in Graphlt PR on LiveJournal is smaller than in GAP PR
because Graphlt generates several fine-grained parallel loops,
whereas GAP PR runs in a single big parallel loop, which

RIGHTSE LI MN iy

Wiki-2007 Graphlt GAP LiveJournal Graphlt GAP

segmentation 4.840
static default 1.000 1.096

segmentation 1.639
static default 1.000 1.316

static 5.127 5.590 static 2.130 3.307
dynamic 5.576 4.476 dynamic 2.018 3.341
guided 1.271 1.412 guided 1.320 1.926
static_ steal 4.802 8.428 static_ steal 2.419 3.819
usersched 7.193 10.947 usersched 2357 3.490
usersched(prof) 7.210 12.416 usersched(prof) 2.598 4.154

Table 5: Performance (speedup) of Graphlt PR Pull with dif-
ferent schedules and graphs (normalized to Graphlt static de-
fault)

has more room for improvement by load balancing. This coa-
lesced parallel loop in GAP also makes its base performance
better than that of Graphlt.

5.3 Overhead Analysis

Since our approach changes runtime flow with user functions,
significant overhead may be incurred. To measure the runtime
overhead accurately, we used a simple flat parallel loop and
user functions that create a certain size of chunks specified
by the user. Each iteration in this simple flat loop executes
10 integer additions into a local variable to remove any cache-
related variables. To minimize load imbalance, we set the
number of iterations for the loop to be divisible by the number
of threads of the machine, which is 17922 (1792/112=16). We
executed this example 300 times for each run with variable
chunk sizes from 1 to 1024. We used the LLVM OpenMP
internal statistics module (LIBOMP_STATS=1) to measure
per-thread runtime overhead and the median of the per-
thread value.

Figure 7 shows the normalized overhead of the simple

flat loop with variable chunk sizes, where each value is com-

T'sched,chunk
Tstatic,1

more overhead than do static steal and usersched because of

huge contention on the shared index by atomic operations;
static shows minimum overhead as expected; guided does
not change much because the chunk size determines only the
minimum size of chunk; and usersched shows slightly more
overhead than does static steal because of the user functions
called. The overhead incurred by user functions is removed
by concurrent profiling, which makes usersched(prof) almost
similar to static steal. Work stealing incurs some overhead

102 :
static —+—
dynamic —>é—

puted by . The dynamic schedule always incurs

usersched —¥—
usersched (prof)

10 b usersched(prof,nosteal) —&—

Normalized runtime overhead
(compared to 'static, chunk 1', log scale)

1 2 4 8 16 32 64 128 256 512 1024
Chunk Size

Figure 7: Runtime overhead time of simple flat loop with dif-

ferent chunk sizes (normalized to static, chunk 1)

Optimized Execution of Parallel Loops via User-Defined Scheduling Policies

in this load-balanced example because atomic operations are
called waiting for others. This overhead is incurred regardless
of the size and number of chunks, thus making the overhead
more obvious between usersched and static with bigger chunk
sizes. With work stealing off, our approach shows the closest
overhead to that of static. This experiment shows that our
approach is efficiently implemented with more flexibility to
OpenMP compared with other dynamic schedules.

5.4 Applicability of Our Approach

In the previous sections, our approach improved irregular par-
allel loops where each iteration has variable amount of load.
User functions enable more optimal chunking and schedul-
ing of iterations. However, our approach still has limitations
in its applicability. First, if the affected loop is not used
repeatedly, it cannot benefit from the concurrent profiling.
For example, BF'S is improved only when their algorithm
selects pull-based approach running same loop repeatedly. In
addition, our approach is not amenable to improve parallel
loops with extreme control divergence in multiple nested par-
allelism which is hard to predict as described in Section 5.2
with Triangle Counting.

6 RELATED WORK

Many previous works have developed locality-aware load bal-
ancing and scheduling policies in task-level and distributed
parallel programming models. Loop scheduling in particular
has been studied for decades, and most of the well-known
previous works [31, 37, 38] have been implemented in shared-
memory programming models. Hybrid scheduling of static
and dynamic has also been proposed and adopted to improve
load balancing with locality maintained [20]. In addition to
the hybrid algorithm, task-level parallelism such as Cilk [5],
TBB [29], OpenMP 3.0 [27], OmpSs [§], HPX [19], and Ha-
banero [2] have adopted work stealing for load balancing with
optimizations to reduce migration cost and maintain locality.
This locality-aware load balancing has also been studied in
distributed programming models through hybrid program-
ming models and hierarchical load balancing by restricted
load balancing in a region of PEs [21, 24].

The previous approaches based on load information of
PEs incur unnecessary migration and inefficient scheduling.
To overcome this inefficiency, there have been efforts to use
information on application codes. The inspector-executor
model is one of the most well-known approaches in this
direction [22, 32], in which user codes are inspected and
parallelism is extracted from the codes by checking conflicts
on data structures. This model enables efficient scheduling
but it cannot handle performance variance and dynamic load
imbalance efficiently. Our approach also uses inspection but
in a different way, namely, using user functins to look through
user codes for load balancing.

In addition to the efforts in parallel programming models,
domain-specific languages(DSL) have been introduced that
resolve load imbalance and achieve locality. Graph is a pop-
ular domain in the DSLs. The graph DSLs generate codes
in parallel programming languages or lower-level runtime

RIGHTS L1 N Hig

ICPP 2019, August 5-8, 2019, Kyoto, Japan

codes [14, 26, 33, 35, 36, 40, 41]. They provide reasonable
performance and programmability by high-level API but lose
an opportunity to optimize generated codes further when
the applications are written directly in the target parallel
programming languages. Our work shows opportunities to
improve the DSLs with configurable loop parallelism by user-
functions in Section 5.2.3.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed a set of APIs and implementations
to enable user-defined scheduling on parallel loops, handling
load imbalance and performance variance while maintaining
locality. Our proposal uses user functions to inspect each
iteration and store distribution of loads for the target loop
dynamically in runtime after concurrent load balancing for
the future invocations of the loop, reusing the information to
schedule them with better initial load balance for each invo-
cation of the loop. This reuse of the stored information helps
the performance of irregular applications that have different
configurations for optimal performance depending on input
datasets. Through evaluations with the GAP Benchmark
Suite and MiniMD, we show that our approach helps resolve
performance variance and load imbalance on graph appli-
cations as well as scientific applications. Without profiling
enabled (usersched), our approach achieves geometric mean
speedups of 1.11x to 1.48x over four standard OpenMP
schedules and 1.03x over the static_steal schedule. With
profiling enabled (usersched(prof)), our approach achieves
higher geometric mean speedups of 1.16x to 1.54x, and
1.07x, respectively. Furthermore, compared with static steal,
we achieve 17.5% improvement in the LJ force computation
of MiniMD and 47.3% in PR, 37.3% in CC, and 4.4% in
BFS from the GAP suite. In addition, we achieve 49.0% and
58.5% improvements relative to Graphlt’s best-performing
settings for PR on two graphs.

An interesting direction for future research is addressing
the high level of control divergence in applications such as
Triangle Counting. In addition, with configurable subspace
selection, nonsequential selection of subspaces may be benefi-
cial for some irregular applications, relative to our current
static decomposition of subspaces.

ACKNOWLEDGMENT

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. De-
partment of Energy Office of Science and the National Nuclear
Security Administration, and by the U.S. Department of En-
ergy, Office of Science, under Contract DE-AC02-06CH11357.
We gratefully acknowledge the computing resources provided
and operated by the Joint Laboratory for System Evaluation
(JLSE) at Argonne National Laboratory.

REFERENCES

[1] S. Bak, H. Menon, S. White, M. Diener, and L. V. Kalé. 2018.
Multi-Level Load Balancing with an Integrated Runtime Approach.
In 18th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, CCGRID 2018, Washington, DC, USA,
May 1-4, 2018. 31-40.

ICPP 2019, August 5-8, 2019, Kyoto, Japan

(2]

(10]

(11]

(12]

(13]

(14

(15]

(16]

(17

(18]

(19]

(20]

(21]

RIGHTS

R. Barik, Z. Budimlic, V. Cave, S. Chatterjee, Y. Guo, D. Peixotto,
R. Raman, J. Shirako, S. Tagirlar, Y. Yan, et al. 2009. The
Habanero Multicore Software Research Project. In Proceedings
of the 24th ACM SIGPLAN conference companion on Object
oriented programming systems languages and applications. ACM,
735-736.

S. Beamer, K. Asanovi¢, and D. Patterson. 2012. Direction-
optimizing Breadth-first Search. In Proceedings of the Interna-
tional Conference on High Performance Computing, Networking,
Storage and Analysis (SC ’12). IEEE Computer Society Press,
Los Alamitos, CA, USA, Article 12, 10 pages.

S. Beamer, K. Asanovic, and D. A. Patterson. 2015.
GAP Benchmark Suite. CoRR abs/1508.03619
arXiv:1508.03619

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. 1995. Cilk: An Efficient Multithreaded
Runtime System. In Proc. 5th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP’95.
Santa Barbara, California, 207-216. MIT.

P. Boldi, M. Rosa, M. Santini, and S. Vigna. 2011. Layered
Label Propagation: A MultiResolution Coordinate-Free Ordering
for Compressing Social Networks. In Proceedings of the 20th
international conference on World Wide Web. ACM Press, 587—
596.

P. Boldi and S. Vigna. 2004. The WebGraph Framework I: Com-
pression Techniques. In Proc. of the Thirteenth International
World Wide Web Conference (WWW 2004). ACM Press, Man-
hattan, USA, 595-601.

J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. M.
Badia, E. Ayguade, and J. Labarta. 2011. Productive Cluster
Programming with ompss. In Euro-Par 2011 Parallel Processing.
Springer, 555-566.

A. G. Camil Demetrescu and D. Johnson. 2006. 9th DIMACS
Implementation Challenge - Shortest Paths. (2006). Retrieved
April 8, 2019 from http://users.diag.uniromal.it/challenge9/

D. Chase and Y. Lev. 2005. Dynamic Circular Work-Stealing
Deque. In Proceedings of the seventeenth annual ACM sym-
posium on Parallelism in algorithms and architectures. ACM,
21-28.

L. Dagum and R. Menon. 1998. OpenMP: an industry standard
API for shared-memory programming. Computational Science &
Engineering, IEEE 5, 1 (1998), 46-55.

J. Dinan, P. Balaji, E. Lusk, P. Sadayappan, and R. Thakur.
2010. Hybrid parallel programming with MPI and unified parallel
C. In Proceedings of the 7Tth ACM international conference on
Computing frontiers. ACM, 177-186.

D. Gleich. 2007. Wiki-20070206. (2007). Retrieved April 08, 2019
from https://sparse.tamu.edu/Gleich/wikipedia-20070206

S. Grossman, H. Litz, and C. Kozyrakis. 2018. Making Pull-based
Graph Processing Performant. SIGPLAN Not. 53, 1 (Feb. 2018),
246-260.

Y. Guo, R. Barik, R. Raman, and V. Sarkar. 2009. Work-first
and help-first scheduling policies for async-finish task parallelism.
In 2009 IEEE International Symposium on Parallel Distributed
Processing. 1-12.

B. H. Hall, A. B. Jaffe, and M. Trajtenberg. 2001. The NBER
Patent Citation Data File: Lessons, Insights and Methodolog-
ical Tools. Working Paper 8498. National Bureau of Economic
Research.

D. Hendler, Y. Lev, M. Moir, and N. Shavit. 2006. A Dynamic-
Sized Nonblocking Work Stealing Deque. Distributed Computing
18, 3 (01 Feb 2006), 189-207.

M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring,
H. C. Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thorn-
quist, and R. W. Numrich. 2009. Improving Performance via
Mini-applications. Technical Report. Sandia National Laborato-
ries.

H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey.
2014. HPX: A Task Based Programming Model in a Global
Address Space. In Proceedings of the 8th International Confer-
ence on Partitioned Global Address Space Programming Models
(PGAS ’14). ACM, New York, NY, USA, Article 6, 11 pages.
V. Kale, A. Randles, and W. D. Gropp. 2014. Locality-Optimized
Mixed Static/Dynamic Scheduling for Improving Load Balanc-
ing on SMPs. In Proceedings of the 21st European MPI Users’
Group Meeting (EuroMPI/ASIA ’14). ACM, New York, NY,
USA, Article 115, 2 pages.

V. Karamcheti and A. A. Chien. 1998. A Hierarchical Load-

Balancing Framework for Dynamic Multithreaded Computations.

The
(2015).

LI P b

Seonmyeong Bak, Yanfei Guo, Pavan Balaji, and Vivek Sarkar

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]
30]

[31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

In SC ’98: Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing. 6—6.

M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala,
and L. P. Chew. 2007. Optimistic Parallelism Requires Abstrac-
tions. In Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI
’07). ACM, New York, NY, USA, 211-222.

J. Leskovec, J. Kleinberg, and C. Faloutsos. 2005. Graphs over
Time: Densification Laws, Shrinking Diameters and Possible Ex-
planations. In Proceedings of the Eleventh ACM SIGKDD Inter-
national Conference on Knowledge Discovery in Data Mining
(KDD ’05). ACM, New York, NY, USA, 177-187.

J. Liflander, S. Krishnamoorthy, and L. V. Kale. 2012. Work
stealing and persistence-based load balancers for iterative overde-
composed applications. In Proceedings of the 21st international
symposium on High-Performance Parallel and Distributed Com-
puting (HPDC ’12). 137-148.

D. Molka, R. Schéne, D. Hackenberg, and W. E. Nagel. 2017. De-
tecting Memory-Boundedness with Hardware Performance Coun-
ters. In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering (ICPE ’17). ACM, New
York, NY, USA, 27-38.

D. Nguyen, A. Lenharth, and K. Pingali. 2013. A Lightweight
Infrastructure for Graph Analytics. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles
(SOSP ’13). ACM, New York, NY, USA, 456-471.

OpenMP ARB. 2008. OpenMP Application Program Interface
Version 3.0. In The OpenMP Forum, Tech. Rep.

O. Pearce, T. Gamblin, B. R. de Supinski, M. Schulz, and N. M.
Amato. 2012. Quantifying the effectiveness of load balance algo-
rithms. In 26th ACM international conference on Supercomput-
ing (ICS ’12). 185-194.

C. Pheatt. 2008. Intel® Threading Building Blocks. Journal of
Computing Sciences in Colleges 23, 4 (2008), 298-298.

S. Plimpton. 1995. Fast Parallel Algorithms for Short-Range
Molecular Dynamics. J. Comput. Phys. 117, 1 (1995), 1 — 19.
C. D. Polychronopoulos and D. J. Kuck. 1987. Guided Self-
Scheduling: A Practical Scheduling Scheme for Parallel Supercom-
puters. IEEE Trans. Comput. C-36, 12 (Dec 1987), 1425-1439.
J. H. Saltz, R. Mirchandaney, and K. Crowley. 1991. Run-Time
Parallelization and Scheduling of Loops. IEEE Trans. Comput.
40, 5 (May 1991), 603-612.

J. Shun and G. E. Blelloch. 2013. Ligra: A Lightweight Graph
Processing Framework for Shared Memory. In Proceedings of the
18th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’13). ACM, New York, NY, USA,
135-146.

L. Smith and M. Bull. 2001. Development of Mixed Mode MPI
/ OpenMP Applications. Scientific Programming 9, 2,3 (Aug.
2001), 83-98.

J. Sun, H. Vandierendonck, and D. S. Nikolopoulos. 2017. Graph-
Grind: Addressing Load Imbalance of Graph Partitioning. In
Proceedings of the International Conference on Supercomputing
(ICS ’17). ACM, New York, NY, USA, Article 16, 10 pages.

N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J.
Anderson, S. G. Vadlamudi, D. Das, and P. Dubey. 2015. Graph-
Mat: High Performance Graph Analytics Made Productive. Proc.
VLDB Endow. 8, 11 (July 2015), 1214-1225.

P. Tang and P. Yew. 1986. Processor Self-Scheduling for Multiple-
Nested Parallel Loops.. In Proceedings of the International Con-
ference on Parallel Processing. IEEE, 528-535.

T. H. Tzen and L. M. Ni. 1993. Trapezoid Welf-Scheduling:
A Practical Scheduling Scheme for Parallel Compilers. IEEE
Transactions on Parallel and Distributed Systems 4, 1 (Jan
1993), 87-98.

J. Yang and J. Leskovec. 2012. Defining and Evaluating Net-
work Communities Based on Ground-Truth. In 2012 IEEE 12th
International Conference on Data Mining. 745—754.

Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S.
Amarasinghe. 2018. Graphlt: A High-performance Graph DSL.
Proc. ACM Program. Lang. 2, OOPSLA, Article 121 (Oct. 2018),
30 pages.

X. Zhu, W. Chen, W. Zheng, and X. Ma. 2016. Gemini: A
Computation-Centric Distributed Graph Processing System. In
12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA,
301-316.

http://arxiv.org/abs/1508.03619
http://users.diag.uniroma1.it/challenge9/
https://sparse.tamu.edu/Gleich/wikipedia-20070206

	Abstract
	1 Introduction
	2 Background
	2.1 Overview of OpenMP Programming Model
	2.2 Scheduling Policies in OpenMP

	3 Design
	3.1 Overview of User-Defined Scheduling for Parallel Loops
	3.2 APIs for User-Defined Scheduling and Example

	4 Implementation
	4.1 Overview of Our Implementation
	4.2 Runtime Profiling: Concurrent Load Balancing
	4.3 Optimizations to Reduce Runtime Overhead

	5 Application Study
	5.1 MiniMD
	5.2 GAP Benchmark Suite: BFS, CC, and PR
	5.3 Overhead Analysis
	5.4 Applicability of Our Approach

	6 Related Work
	7 Conclusion and Future Work
	References

