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Abstract—Casper is a process-based asynchronous progress model for MPI one-sided communication on multi- and many-core

architectures. The one-sided communication is not truly one-sided in most MPI implementations: the target process still relies on

software progress to complete incoming operations. Casper allows the user to specify an arbitrary number of cores dedicated to

background ghost processes and transparently redirects the RMA operations to ghost processes by utilizing the PMPI redirection

and MPI-3 shared-memory technologies. Although Casper benefits applications that suffer from lack of asynchronous progress, the

operation redirection design might not support complex multiphase applications effectively, which often involve dynamically changing

communication density and computing workloads. In this paper, we present an adaptive mechanism in Casper to address the

limitation of static asynchronous progress in multiphase applications. We exploit two adaptive strategies, a user-guided strategy and

a fully transparent and automatic strategy based on self-profiling and prediction, to dynamically reconfigure the asynchronous

progress in Casper according to real-time performance characteristics during multiphase execution. We evaluate the adaptive

approaches in both microbenchmarks and a real quantum chemistry application suite, NWChem, on the Cray XC30 supercomputer

and an Intel Omni-Path cluster.

Index Terms—MPI, multiphase, one-sided, RMA, adaptation, asynchronous progress
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1 INTRODUCTION

ADVANCES in high-end computing systems enable scien-
tists to solve complex and large-scale problems with

the integration of various fundamental solvers and algo-
rithmmodules. Tuning the configuration of runtime systems
is a nontrivial task for obtaining highly efficient application
performance. This task can be particularly challenging in
multiphase applications because of their dynamically chang-
ing characteristics of communication and computation dur-
ing the execution of multiple internal phases, especially
when some of the internal phases prefer exactly opposite
runtime configurations.

MPI is the dominant parallel programming model on dis-
tributed-memory systems. The one-sided communication
model (also known as remote memory access, or RMA)
allows one process to specify all communication parameters
for both the sending and receiving sides. Thus, a process
can access a memory region of another process without the

target process explicitly needing to receive the message.
This asynchronous feature of RMA potentially provides a
natural model for some applications that rely on irregular
data movement [1], [2], [3], [4]. In practice, however, the
RMA communication is not truly asynchronous in most
MPI implementations. The reason is that even on RDMA-
supported networks such as InfiniBand and the Cray Aries
interconnect, most ACCUMULATE operations still have to
be handled in MPI software because of the limitations in
hardware and MPI semantics. The completion of software-
handled operations relies on explicit progress polling on the
target process (e.g., making MPI calls). Consequently, an
arbitrarily long delay in communication can occur if the tar-
get is busy in computation outside MPI.

The traditional approaches to ensure asynchronous prog-
ress for MPI communication have relied on twomodels. One
is to utilize the background threads dedicated to each MPI
process in order to handle incoming messages from other
processes [5]. This model is widely provided in mainstream
MPI implementations [6], [7], [8], [9]. However, the funda-
mental limitation of using this model in real applications is
that the thread-based concept requires as many background
threads as MPI processes on the system node. Thus, the user
has to choose either to lose half of the computing cores or to
enable expensive core oversubscription. In addition, this
model requires MPI multithreading safety, which is known
to be expensive because of the internal thread synchroniza-
tion [10]. The other model of asynchronous progress is to uti-
lize hardware interrupts to awaken a kernel thread on the
target side and process the incoming RMA data within the
interrupt context. The interrupt-basedmodel can be found in
Cray MPI [24] and in IBM MPI on the Blue Gene/P [12,
Chapter 7]. Using this model, however, is limited in that an
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interrupt has to be generated on the target side to process
each incoming data item, which can be expensive.

In our previous work, we proposed an alternative model
for asynchronous progress in MPI one-sided communica-
tion, called Casper [13]. Casper enables users to specify a
small number of cores as background “ghost processes”; it
then transparently intercepts all RMA communication calls
to the application processes and redirects them to the hid-
den ghost processes. Thus, the data movement can be com-
pleted by the ghost processes asynchronously while the
application processes are tied up by computation outside
MPI. Unlike the traditional models, such a process-based
model can avoid expensive overheads from either multi-
threading safety or system interrupts. More important, it
allows the user to control the number of cores being utilized
for asynchronous progress, which we believe is a more suit-
able solution for applications running on multi- and many-
core architectures.

The basic concept of Casper is to redirect the RMAcommu-
nication to a few ghost processes. This is suitable for common
cases that need only a few cores to trigger data movements
while the other resources are used to accelerate computing
tasks. However, this design raises a potential bottleneck in
that a large number of software-handled operations, which
were handled by multiple cores on the node, are aggregated
to only one or a few “asynchronous cores” in Casper. Such a
small number of progress resources might not be able to com-
plete intensive operations quickly. In particular, when the
application does not involve heavy computation and commu-
nication becomes dominant, this bottleneck might even coun-
teract the benefit of asynchronous progress and result in poor
performance. For single-phase applications, the user of Cas-
per can adjust the number of cores according to theworkloads
of communication and computation. This method becomes
impractical, however, when the application comprises multi-
ple phases, some of which even indicate opposite perfor-
mance patterns. That is, the computation-dominant phases can
benefit from asynchronous progress with only a small number of
asynchronous cores, but some other communication-intensive
phases might suffer performance degradation because of the overag-
gregated operations in Casper. Thus, there is no way to deliver
optimal performance for overall execution.

To address such complications, we present an adaptive
mechanism in this paper that allows Casper to dynamically
reconfigure the asynchronous progress during the execution
of an application’s multiple phases. We analyze the perfor-
mance trade-off with regard to RMA progress, and we
design the adaptation to pursue the optimal performance
for the overall execution of multiphase applications. We
exploit two strategies. One is a user-guided strategy where
the user can trigger reconfiguration in every application
phase through MPI info hints. The other is a fully transpar-
ent strategy that involves automatic self-profiling and per-
formance prediction at application runtime.

We design the framework to ensure strict correctness in
accordance with MPI-3 semantics. We evaluate the proposed
adaptive approaches through a set ofmicrobenchmarks and a
real application suite on a Cray XC30 supercomputer and an
Intel Omni-Path Fabric-based cluster. We conclude that the
process-based asynchronous progress model is a highly effi-
cient, flexible, and portable approach forMPI RMA.

2 BACKGROUND

In this section, we briefly introduce the MPI RMA commu-
nication model and its implementation limitations on mod-
ern network architectures. Here we highlight the important
semantics on which this work highly relies. A comprehen-
sive description of RMA semantics can be found in the MPI
standard [14] and past papers (e.g., [15]).

MPI RMA Semantics: MPI RMA is introduced in the
MPI-2 and MPI-3 standards. To initialize an “RMA con-
versation,” every process in the communicator collectively
creates a window as the exposure of its local memory region,
and a data-transferring phase (called epoch) is opened and
closed by a set of synchronization calls. During the epoch, a
process can access the memory region on a remote process
by issuing an RMA operation.

MPI defines an active-target synchronization mode, which
includes the fence and post-start-complete-wait (PSCW) epochs,
and a passive-target mode, which includes the lock and lockall
epochs. A fence epoch requires all processes in the window to
make the MPI_WIN_FENCE synchronization call; a PSCW
epoch requires the processes in the origin group and those in
the target group to make the MPI_WIN_START|COMPLETE

and MPI_WIN_POST|WAIT calls, respectively; the lock or
lockall epoch requires only the origin process to make the
MPI_WIN_LOCK|UNLOCK{ALL} calls.

The data movement in RMA is defined through the
operation calls including PUT, GET, and a set of
ACCUMULATE operations (i.e., ACCUMULATE, GET_
ACCUMULATE, FETCH_AND_OP, and COMPARE_
AND_SWAP, denoted by ACC, GET_ACC, FOP, and
CAS, respectively). The ACCUMULATEs guarantee strict
ordering and atomicity for element-wise atomic access to
remote memory locations (see page 461 in [14]). A clos-
ing synchronization call or an MPI_WIN_FLUSH{ALL}

call in the passive target mode ensures the completion of
operations.

RMA Implementation: The one-sided semantics enables
MPI runtime developers to offload the data movement to
the hardware of remote direct memory access (RDMA)-sup-
ported networks such as InifiBand, Cray Aries, and Fujitsu
Tofu. However, the state-of-the-art implementations are
usually limited by two factors. First, most RDMA networks
are able to process only simple data formats because of the
limited processing power on the network interface control-
ler. Complex operations such as computing a multidimen-
sional noncontiguous double array still have to be handled
by CPUs in the MPI software. Second, the RMA semantics
force the runtime to guarantee ordering and atomicity
among ACCUMULATE operations. Thus, none of the
ACCUMULATEs can be offloaded as long as a data format
is unsupported in hardware. Consequently, the MPI imple-
mentations for RDMA networks (e.g., MVAPICH, Cray
MPI) usually only offload PUTs and GETs with simple data
formats to the hardware and keep the handling of other
operations in MPI stack.

3 CASPER OVERVIEW AND CHALLENGE

In this section, we present a brief overview of the Casper
framework [13], [16] and discuss the challenge we observed
in multiphase applications.
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3.1 Overview

Casper is a process-based asynchronous progress model for
MPI RMA on multi- and many-core architectures [13], [16].
It allows a few user-defined cores to be kept aside as back-
ground “ghost processes,” which are dedicated to helping
the asynchronous progress for the application processes on
the same node.

Casper is designed as an external library through the
PMPI name-shifted profiling interface of MPI and transpar-
ently provides asynchronous progress for any RMA com-
munication by overloading the necessary MPI functions.
This design allows Casper to be platform and MPI imple-
mentation independent and enables the user to easily link
Casper into the application binary.

When an application process tries to allocate an RMA
window, Casper intercepts this call and internally allocates
a shared-memory window for all application processes and
the ghost processes that are on the same node, using the
portable MPI-3 MPI_WIN_ALLOCATE_SHARED function.
Thus, the ghost processes are able to access the window
region located in the memories of the application processes.
Then whenever a process tries to issue an RMA operation to
the target process, Casper intercepts the call through PMPI
and transparently redirects this message to a ghost process
on the target node. The ghost processes simply wait in an
MPI_RECV loop. Therefore, the MPI runtime can quickly
make progress for any operations that are handled in the
software stack of those ghost processes, and RMA opera-
tions that are offloaded to hardware see no difference in the
way they behave.

The optimal number of ghost processes is platform specific
and application specific. Choosing the optimal configuration
is essentially a trade-off between the number of resources
assigned for computation and that assigned for RMA prog-
ress. In practice, using one ghost process per node or one
per socket is sufficient for most scientific applications run-
ning on CPU cores. This allows the remaining cores to be
used to fulfill the heavy computing tasks.

3.2 Challenge in Multiphase Applications

Although using only one or a few asynchronous cores is
suitable for most applications, such a small number of prog-
ress resources might also lead to a performance bottleneck
in some cases. That is, intensive software-handled RMA
operations that were completed by a number of application
cores on a node are redirected to a few cores in Casper. This
processing of overaggregated operations can be slow and
might eventually degrade the overall performance of an
applications if the following two conditions are met: (1) the
portion of computation is less significant than the data
movement cost, and (2) the number of dedicated cores is
much smaller than that of the remaining computing cores.

In most single-phase applications, the user of Casper can
empirically adjust the number of cores for ghost processes in
order to avoid the second condition. Such a method becomes
impractical, however, when the application involves multiple
internal phases and especiallywhen some of the heavy phases
perform opposite performance characteristics. For instance,
an internal phase may perform extremely expensive compu-
tation with little data movement, but the other phase may be
dominated by enormous communication. It can be optimal to

the former if redirecting communication to only a single asyn-
chronous core in Casper, since the majority of core resources
are still used to accelerate the computation; but such a setting
can cause a severe overaggregation bottleneck in the latter
phase. Unfortunately, a performance trade-off must be made
for overall execution.

To provide the optimal overall performance, we need an
adaptive mechanism in Casper that dynamically updates
the message redirection for different application phases.
Specifically, we need to address the following questions.

Q-1. When does an adaptation become necessary?
Q-2. How can we make the adaptation?
Q-3. Where can the adaptation be taken?

4 DECOMPOSING RMA PROGRESS

To answer Q-1, we need first to understand the MPI internal
overhead for RMA communication. Because the asynchro-
nous progress is needed only when the target process can-
not make progress (e.g., computing outside MPI), we
consider the simple scenario where the origin process initi-
alizes and completes the RMA conversation (e.g., issuing an
ACC and waiting in a flush) and the target process does
computation. Fig. 1 demonstrates the lifetime of such an
RMA progress.

We decompose the completion of an RMA conversation
into four portions: the operation issuing taken by the origin
process, the network transfer between the origin and the tar-
get nodes, the operation handling on the target side, and the
local completion on the origin side (e.g., receiving an ACK
message in the software handled operation). We abbreviate
the cost of each portion as Tis, Tnt, Thd, and Tdn, respectively.
Moreover, we consider the worst case that the message
arrives on the target just when the target process joined a
computation task that takes Tcomp time; thus the message
cannot be handled until the target computation finishes.
Consequently, we can formulate the execution time of the
original case as Toriginal ¼ Tis þ Tnt þ Thd þ Tcomp þ Tdn.

We then formulate the cost when Casper is involved.
Unlike the original case, Casper redirects the message to a
ghost process. Thus themessage can be immediately handled.
Therefore, the execution time is Tcsp ¼ Tis þ Tnt þ Thd þ Tdn.

One might expect that Tcsp should be always smaller than
Toriginal. In practice, the relationship is actually more compli-
cated. An important factor is that we always have a number
of processes and take away only a few of them as ghost pro-
cesses. Therefore, a ghost process might receive messages
instead of multiple target processes, leading to the aggrega-
tion of Thd. Let us set the ratio of target processes to a ghost
process as r. Thus we finalize the cost with Casper as
Tcsp ¼ Tis þ Tnt þ rThd þ Tdn.

Now we can conclude that when the aggregated message
handling cost in Casper (rThd) is less significant than the target
computation (Tcomp), the Casper redirection should improve

Fig. 1. Decomposing RMA progress.
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performance; in contrast, when rThd becomes more expensive than
Tcomp, then the overaggregation bottleneck appears.

Ideally, one would like to measure and compare the
overhead of each portion during the execution. However,
the MPI standard does not expose a portable interface
that allows the user to insert timers and query the infor-
mation for an arbitrary internal step. Obtaining the cost
of the RMA message handling has to rely on the
implementation-specific support of MPI tools interface
(MPI_T).

5 ADAPTABLE ASYNCHRONOUS PROGRESS

In this section, we focus on Q-2 and Q-3 through the design
and implementation of the adaptive mechanism in Casper.

5.1 Principle of Adaptation

When the overaggregation risk appears, one way to imple-
ment adaptation in Casper is to dynamically assign more
resources to asynchronous progress. Thus the aggregated
handling cost can be eliminated (i.e., reduced r, the ratio of
target processes to a ghost process). The obvious drawback,
however, is that we need to dynamically transfer some
application processes to the “ghost group,” which will
result in heavy data repartitioning, or we have to make
expensive process oversubscription through MPI dynamic
process.1

To minimize the overhead of adaptation, we choose a
more lightweight approach. That is, we disable the redirection
when the overaggregation issue becomes significant, so that the
operation messages can be handled by sufficient processes; when
the overaggregation issue disappears and the delay caused by com-
putation becomes dominant, we re-enable the redirection (Q-2 is
answered).

We notice that this strategy has two potential issues
when the redirection becomes disabled. The first is that the
messages may suffer from the lack of asynchronous prog-
ress again, since they are now handled by the application
processes. Given that the disabled setting is needed only
when communication becomes dominant, we believe the
application processes should be able to make sufficient
progress by themselves. The second issue is that the cores
dedicated to ghost processes are unutilized. Since the num-
ber of dedicated cores is usually small, we consider that this
limitation is acceptable.

Following the basic adaptive approach, we then imple-
ment the mechanism in two directions. We first study a
strategy based on user guidance. The assumption is that the
user knows the performance characteristics of each internal
phase; thus the user can request Casper to enable or disable
redirection for each particular phase by passing hints to
Casper at the beginning of that phase. The simplified solu-
tion allows us to concentrate on the important semantics
correctness according to the MPI standard. As the second
direction, we design a fully automatic strategy based on the
idea of self-profiling. In the following sections, we describe
the design of each strategy separately.

5.2 User-Guided Adaptation

Casper is required to maintain the consistency of message
redirection over all processes in an RMA window. The rea-
son is that any simultaneous operations issued to the same
target in that window must always be handled only by a
single process, in order to ensure the ordering and atomicity
of ACCUMULATEs. Therefore, we allow the user to recon-
figure through an MPI call only when the call guarantees
that all window-wide outstanding operations are completed and
all application processes in the window can collectively apply the
same change. Specifically, the reconfiguration can be done
either at a window allocation or at a window-wide synchro-
nization call that meets both conditions (Q-3 is answered).
Therefore, we consider three levels of granularity.

Global Configuration: The user can specify a global config-
uration applied to the entire execution through the environ-
ment variable CSP_ASYNC_CONFIG with two possible
values, ON or OFF, to enable or disable the redirection in
Casper.

Window Configuration: Whenever a process allocates awin-
dow, the user can pass theMPI info hint async_config=ON|
OFFto reconfigure for the communication performed through
that window.

Sync-Phase Configuration: Epochs are the natural synchro-
nization phases. However, not all the epochs can perform
adaptation. For instance, the synchronization calls in PSCW
and the passive target epochs involve only partial processes
of the window. Thus, updating in those calls can break the
correctness. We can safely reconfigure only in fence. Users
can pass the async_config info hint for a fence epoch by
inserting MPI_WIN_SET_INFO before the starting fence
call. We require the value of this info to be identical across
all processes. Additionally, we propose a new “collective”
info hint symmetric=true|false that users can pass in
MPI_WIN_SET_INFO. The symmetric=true hint is
parsed in Casper, meaning that the user ensures that all out-
standing operations in the window have been completed
and all processes have arrived at this call. This allows Cas-
per to trigger an adaptation in MPI_WIN_SET_INFO; thus it
is useful especially within the passive target epochs. For
instance, it can be used after a flush_all-barrier, which com-
monly exists in passive target programs.

5.3 Transparent Profiling-Based Adaptation

We next introduce techniques to enable the fully automatic
adaptation. Instead of user guidance, we want to dynami-
cally predict the impact of redirection in Casper for an
application phase. This is based on the notion that the appli-
cation usually performs a similar communication/computa-
tion pattern at a certain period of execution time (e.g., in the
same solver). Therefore, we can study the performance of a
recent period of execution, assume that the pattern contin-
ues for the upcoming period, and use the pattern to trigger
adaptation in the Casper runtime.

The key challenge of this approach is that, in order to
ensure portability of Casper, we need to obtain the perfor-
mance information under the constraint that we utilize only
the PMPI layer resources. Moreover, we need to address a
second challenge, namely, that the dynamically predicted
results are applied to all processes in the window consis-
tently. Similar to the user-guided approach, we rely on a

1. The MPI dynamic process concept allows a program to spawn
additional MPI processes during execution. However, the support of
dynamic process is limited on HPC systems; for example, the MPICH
implementation supports it only on TCP networks.

1978 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 29, NO. 9, SEPTEMBER 2018

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on October 05,2020 at 05:37:39 UTC from IEEE Xplore.  Restrictions apply. 



collective synchronization at the window allocation or syn-
chronization calls for updating the redirection. Although
this solution does not show any problem in the user-guided
approach, it can result in failure of adaptation in the profil-
ing-based solution if the timing of the synchronization in
the application code does not match the change of perfor-
mance. For instance, the computation can become heavy
after a window is allocated, but there may not be any MPI
call that allows Casper to perform the synchronization.

In the remainder of this section, we describe our solution
as separated into three key components: the self-profiling
and local prediction, a basic window-wide synchronization
framework, and a special ghost-offloaded synchronization.

5.3.1 Self-Profiling and Local Prediction

Through only the timers inserted in PMPI layer, it is imprac-
tical to measure the time of RMA internal portions because
they can be processed internally at arbitrary MPI calls.
Therefore, instead of focusing on only the message-han-
dling cost rThd, we try to obtain an approximate relationship
between the computation time Tcomp and the overall com-
munication time Tcomm. Theoretically, in a specific pattern
(e.g., the same operations with the same data size and for-
mat), the proportion of Thd related to the other internal por-
tions should be the same on a system with the same MPI
environment. Therefore, if rThd > Tcomp, we should be able
to obtain xTcomm > Tcomp, where the value of parameter x is
approximately identical for a specific pattern.

This notion allows us to build an approximate prediction
model. We define a communication percentage rate criterion
CR ¼ Tcomm=ðTcomm þ TcompÞ to indicate the proportion of
communication time Tcomm in the overall execution time
ðTcomm þ TcompÞ. We note that Tcomp includes any time that is
spent outside MPI (e.g., computation, I/O). We employ an
offline preprocessing step to determine the reference values
of CR that indicate that the communication with asynchro-
nous progress redirection takes the same amount of time as
redirection disabled for different communication patterns
and for different system deployments. We store the CR ref-
erence values for a system and use them as the threshold of
real-time adaptation. When the user executes an applica-
tion, the Casper runtime can perform online profiling and
periodically predict the setting based on a corresponding
threshold. Below, we describe each step.

Offline Preprocessing: In this step, we design benchmarks
to simulate various communication patterns and estimate

the CR rate when the condition ðTcomm ¼ Toriginal ¼ TcspÞ is
met. The RMA overhead construction can vary depending
on several factors as listed in Table 1. Thus our preprocess-
ing experiments must cover many different sets of those val-
ues in order to reduce the deviation. The second column in
the table shows the input matrices generated in our bench-
mark. In Section 7.2 we describe the benchmark details and
study the results obtained on our test platforms.

Online Profiling: During the application execution, we peri-
odicallymeasure the real-timeCR rate for every period of exe-
cution. We insert timers in every MPI function through the
PMPIwrapper inCasper to accumulate the time spent in com-
munication Tcomm and the overall execution time
ðTcomm þ TcompÞ. As shown in Fig. 2a, we locally calculate the
rate of CR on every process for the period during two predic-
tion points by using the accumulated times. For instance, a 75
percent rate is obtained on P0 in the example.

Local Prediction: The next step is to locally predict the new
configuration for the upcoming period of a process based on
the latest real-time CR rate and the threshold obtained off-
line. A rate higher than the threshold means that the time
the process makes progress in the MPI stack should be suffi-
ciently long to potentially cause operation overaggregation
if redirection is enabled (i.e., rThd > Tcomp). Conversely, a
rate lower than the threshold indicates a large proportion of
computation (i.e., rThd < Tcomp) on this process; enabling
asynchronous progress in this case becomes more beneficial.
We further use a two-level threshold HIGH_CR and LOW_

CR to avoid frequent fluctuations among large varieties of
communication patterns and data characteristics. To ensure
a sufficient base of profiling time for every prediction, we
also define the threshold PREDICT_INT in order to control
the interval between two predictions.

5.3.2 Window-Wide Synchronization

After the local prediction on every target process, we need
to coordinate with the origin side. Thus, the origin process
can decide whether to redirect to a ghost process when issu-
ing operation to that target. Similar to the restriction in the
user-guided approach, the window-wide synchronization
must be done with either a window allocation or special
synchronization calls such as MPI_WIN_FENCE or MPI_

WIN_SET_INFOwith a symmetric hint.
This component is implemented in a straightforward

way such that every process in a window collectively
exchanges the last predicted configuration by using
MPI_ALLGATHER and stores the exchanged data in a local
array, as demonstrated in Fig. 2b. Therefore, when the next

TABLE 1
Important Factors for RMA Overhead Construction

Factor Sample Inputs Used in Offline Preprocessing

Data size Data size in bytes.
Datatype Contiguous: double; Strided: 3D subarray

(double).
Operation type PUT; GET; ACC; GET_ACC; FOP; CAS.
Blocking pattern Blocking: flush for every OP;

Nonblocking: flush for multiple OPs.
Target pattern (t) All-to-1-node: Everyone issues OP to the

procs on one node;
All-to-all: Everyone issues OP to all procs.

Num of procs (n) Total number of processes.
Num of ghosts (g) Number of ghost processes on a node.

Fig. 2. Self-profiling adaptation.
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communication starts, any two operations issued to the
same target on the window must both be redirected to the
ghost process or issued to the original target process.

5.3.3 Ghost-Offloaded Synchronization for PUT/GET

Although thewindow-wide synchronization ensures seman-
tics correctness, it also limits the adaptation to be valid only
at several MPI calls. Unlike ACCUMULATEs, PUT and GET
do not require ordering or atomicity. Thus they should be
adapted in a more flexible way that does not rely on the exis-
tence of special MPI calls in the application code. Therefore,
we further investigate a ghost-offloading approach for PUT
and GETwhere the background ghost processes periodically
perform an asynchronous global synchronization to exchange
the predicted results for all processes. To minimize the over-
head, we carefully decouple the local synchronization
between the application processes and local ghost processes
and the global synchronization among ghost processes, by
utilizing a two-level cache mechanism as shown in Fig. 3.
Below, we describe the detailed implementation.

Two-Level Caches: Every application process allocates the
level-1 cache (denoted by LV1) on its local memory to
ensure lightweight querying at frequent PUT/GET calls; a
shared window is then allocated among the application pro-
cesses and the first ghost process on every node called “sync
ghost” as the level-2 cache (denoted by LV2). Each cache is
an array that stores the latest configuration of all application
processes in the system and is created only once at MPI ini-
tialization. The offset of the configuration for a particular
process is consistent in all processes’ caches. The example
shown in Fig. 3 demonstrates the cache construction of six
application processes distributed on two nodes. Every cache
is a six-integer-elements array, where the elements from off-
set 0 to 5 are responsible for the cached configuration from
process P0 to P5, respectively.

Local Updating: Whenever an application process per-
forms the prediction (see Section 5.3.1) on its local stack, it
immediately updates the result to the corresponding ele-
ment in the LV1 cache. If the value is different from the pre-
vious one (e.g., changed from ON to OFF), the element in the
LV2 cache is also updated by issuing an ACC to ensure
atomicity when accessing the shared window.

Ghost-Offloaded Global Synchronization: Regardless of the
execution on application processes, the sync ghosts perform
a global exchange of the LV2 cache at specific intervals
defined by the threshold GSYNC_INT. Each of the ghost pro-
cesses sends out the elements corresponding to its local
application processes (shown as the solid blue blocks in the
LV2 cache in Fig. 3) and receives remote values from others
through an MPI_IALLGATHER collective call.

Dirty Notification and Reloading: After a global synchroni-
zation, each sync ghost issues a dirty notification to its local
processes in an MPI_IBCAST call that is periodically tested
on each process. Each process then reloads its LV1 data
from the LV2 cache by using an GET_ACC.

Per Operation Query: At the issuing of every PUT or GET,
the origin process queries the latest configuration of its tar-
get through the LV1 cache, in order to decide whether to
redirect that operation.

Performance Optimization: The additional synchronization
can result in extra overhead in both global synchronization
and access to the LV2 caches. Avoiding any unnecessary
synchronization is nontrivial. For example, after a window-
wide synchronization on most processes in the system such
as that with a window allocation call, the first application
process on every node can directly update the synchronized
data into the node’s LV2 cache, and the sync ghosts can skip
the upcoming synchronization.

6 EXPERIMENTAL ENVIRONMENT

We performed our experiments on two platforms: the
NERSC Edison Cray XC30 supercomputer2 and the
Argonne Bebop cluster.3 Table 2 summarizes their hard-
ware and software configuration. We highlight two impor-
tant features: (1) each node of Edison comprises two sockets
of the 12-core Intel Xeon E5-2695 v2 processor (Ivy Bridge)
with hyper-threading (HT) enabled, whereas the Bebop
node uses two sockets of the 18-core Intel Xeon E5-2695 v4
processor (Broadwell) without hyper-threading; and (2) the
Cray MPI 7.6.0 on Edison offloads contiguous PUT and
GET to hardware and handles other operations in software,
whereas the Cray MPI 7.2.1 and the Intel MPI on Bebop han-
dle all operations in software.

For the application case study, we used the large-scale
computational chemistry application NWChem version 6.3,
with MKL (version 11.2.1 and 2017.3.196 on Edison and
Bebop, respectively) as the external math library.

We compare the proposed adaptable Casper with original
MPI and several static asynchronous progress approaches as
defined in Table 3. The approaches with hardware-offloaded
RMA employed the Cray MPI 7.6.0 on Edison; all other

Fig. 3. Ghost-offloaded synchronization.

TABLE 2
Hardware and Software Configuration

on Two Experimental Platforms

CPU Memory Interconnect HT Enabled

Edison
2�12-core

Ivy Bridge
64 GB DDR3 Cray Aries Yes

Bebop
2�18-core

Broadwell
128 GB DDR4 Omni-Path No

MPI RMA Implementation Default Async Casper

Edison
Cray MPI 7.2.1 All SW Thread static/adaptive

Cray MPI 7.6.0 HW contig PUT/GET Thread - �

Bebop Intel MPI 17.0.4 All SW Thread static/adaptive

�Casper cannot execute with the Cray MPI 7.6.0 because of an issue in the
MPI implementation that has been reported and is being fixed. Thus we use
the Cray MPI 7.2.1 as the primary MPI version on Edison.

2. https://www.nersc.gov/users/computational-systems/edison
3. https://www.lcrc.anl.gov/systems/resources/bebop
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approaches used either the CrayMPI 7.2.1 or the Intel MPI as
listed in Table 2. The Cray MPI 7.2.1 supports a DMAPP
mode that executes contiguous PUT and GET in hardware
and provides the interrupt-based asynchronous progress for
other operations. It is omitted in the evaluation because of its
known overhead due to frequent interrupts; and, in fact, this
mode is deprecated in CrayMPI 7.6.0.

7 MICROBENCHMARKS

In this section, we analyze the performance of the adaptive
approaches on five microbenchmarks. We use the Cray MPI
7.2.1 as the primary MPI version on Edison.

7.1 Overhead Analysis

We first evaluated the overheads caused by the proposed
adaptation in comparison with static Casper on Edison. We
ran the experiments on a single node with one ghost process,
andwe varied the total number of application processes.

Window Allocation: Fig. 4a shows the overhead of MPI_-
WIN_ALLOCATE on an application process. Since we focus
only on the fence or lockall synchronization in our evalua-
tion, we set the epoch_type=fence,lockall info at the
allocation call for all the Casper approaches. This allows
Casper to create only one additional internal window, thus
reducing the cost of window allocation (see definition in
[13]). We also pass the async_config hint with either ON or
OFF in the user-guided approaches (denoted by CSP(U,

ON/OFF)). Both adaptive approaches show performance
similar to that of static Casper, delivering about 40 to 100
percent overhead compared with the original MPI imple-
mentation. We note that this overhead is because of the
internal window creation in Casper, which is unrelated to
the proposed adaptation. Although the CSP(U,OFF)
approach disables the communication redirection, it still
suffers from this overhead because we always need to ini-
tialize the internal windows in case the user re-enables redi-
rection in the future phase.

Fence: Fig. 4b compares the overhead at MPI_WIN_FENCE.
The overhead of static Casper compared with the original
MPI is due to the passive mode translation in Casper, as dis-
cussed in our previous work. The user-guided approaches
show performance similar to that of the static version,
because they do not involve any additional communication.
CSP(P) and CSP(GP) result in extra overhead because of the
additional MPI_ALLGATHER that exchanges the value of pre-
dicted new configurations among all processes. Moreover,
we see a consistent gap betweenCSP(P) andCSP(GP) at close
to 1 ms; this is because in CSP(GP) the first application pro-
cess on the node also updates the synchronized data into the
LV2 cache after a window-wide synchronization (see Perfor-
manceOptimization in Section 5.3.3).

Symmetric Info Setting: When the user passes the symme-

tric=true hint into the MPI_WIN_SET_INFO call, we can
also perform adaptation. Fig. 4c compares the associated
overhead. The profiling-based approaches involve addi-
tional MPI_ALLGATHER communication, thus showing
increasing overhead with increasing numbers of processes.
The additional 1 ms overhead of CSP(GP) compared with
CSP(P) is the same as in the fence experiment.

7.2 Offline Estimation for Predictive Threshold

We estimated the thresholds of CR rate in the profiling-
based adaptation through an offline preprocessing step. We
used a benchmark set to demonstrate a common RMA com-
munication pattern where every process performs RMA-
computation-RMA in multiple iterations following with a
barrier. The computation part was simulated as busy wait-
ing, allowing us to flexibly set different computation costs
(Tcomp). The RMA portion was dynamically generated to
cover all the combinations of the factor values as listed in
Table 1. For each test, the program automatically adjusted
the communication cost by increasing the number of opera-
tions until the average execution time with asynchronous
progress redirection in static Casper was more expensive
than the time with redirection disabled. We recorded all

TABLE 3
Definition of Evaluation Approaches

OrigMPI Original MPI with SW RMA and no async support.
OrigMPI/HW Original MPI with partial HW RMA and no async

support.

Static Asynchronous Progress

CSP(g) SW RMAwith Casper static redirection and g number
of ghosts.

TH(D) SW RMAwith thread async, dedicate 50% cores.
TH(O)� SW RMAwith thread async, oversubscribe core.
TH(O)/HW Partial HW RMAwith thread async, oversubscribe

core.

Adaptable Asynchronous Progress

CSP(U) SW RMAwith Casper user-guided adaptation.
CSP(GP) SW RMAwith Casper profiling-based adaptation.
CSP(P) SW RMAwith Casper profiling-based adaptation

(only window-wide sync).

�Because the Cray MPI 7.2.1 was not available when we measured the thread
(O) approach, we used the FALLBACKmode of 7.6.0, which behaves the same
as 7.2.1, handling all operations in software.

Fig. 4. Adaptation overhead at window collective synchronization on Edison (average of ten runs, and 1 ghost process is used in all Casper
approaches; error is less than 3 percent).
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measured CR rates that indicated an execution time differ-
ence in the range of �5 percent. The benchmark set is avail-
able online.4 We note that performing all the benchmarks is
expensive (e.g., consumed close to 260,000 core hours on
Bebop). However, we expect such a step is required only
once for an MPI environment.

We compared the trend of estimated rates with different
sets of factors on both the Edison (with Cray MPI 7.2.1) and
the Bebop platforms. We then devised an approach that cal-
culates the thresholds for later experiments.

Varying Operation Types, Datatypes, and Blocking Patterns:
We first summarize the trends of estimated CR rates when
we change only one of the following factors: operation
types, datatypes, and blocking patterns. Figs. 5a, 5b, 5c and
5f, 5g, 5h show the trends on Edison over 192 cores with 1
ghost process per node (n ¼ 192, g ¼ 1) and the trends on
Bebop with (n ¼ 288, g ¼ 1), respectively. Roughly speak-
ing, the estimated rates on Edison do not show significant
differences for different settings. However, the trends on
Bebop show significant diversity. For instance, the strided
ACCUMULATEs deliver a much higher CR rate than the
other types do, and the change of the blocking patterns with
GET also results in highly different rates.

Obviously, the diversity of CR rates can be highly plat-
form dependent. To make effective predictions for applica-
tions that often involve a mixture of multiple different
patterns, we processed the obtained benchmark results fol-
lowing a simple statistical approach. We calculated the
mean value of the results for each combination (e.g., a non-
blocking strided ACC) called a basic-mean. Then we varied
the process deployment setting (n, g) with different target
patterns and analyzed the distribution of these basic-means.

Varying Process Deployment: Figs. 5d and 5j show the all-
to-1-nodepattern with increasing numbers of n and varying
numbers of g on the test platforms. We notice that the basic-
means on Bebop are clearly distributed into two ranges.
This is the large diversity we observed in the previous

comparison. Figs. 5e and 5k show the same measurement
but with the all-to-all target pattern. We make two observa-
tions from the figures. The first is that the greater the num-
ber of ghost processes, the higher the CR rate that is
required in order to reach a performance bottleneck. This is
because the ratio of target processes to a ghost process
(abstracted as r in Section 4) is reduced, and thus the bottle-
neck becomes harder to reach. The second observation is
that the larger the number of target processes, the higher
the estimated rate. This is because of the reduced proportion
of Thd in the overall communication time.

We defined two strategies that calculate the thresholds.
In the first strategy, we calculate the overall boundaries of
the basic-means for every set of ðn; t; gÞ on the platform.
When the deployment of ðn; t; gÞ is specified, we directly
use the corresponding boundaries. Since t might change in
applications, we also defined a second strategy: taking the
average of all ðn; t; gÞ boundaries for every set of ðn; gÞ.

7.3 Single-Phase Benchmark

Our third set of experiments focused on the usage of static
and adaptive asynchronous progress approaches in two sin-
gle-phase microbenchmarks. Specifically, the first one per-
forms a typical computation-intensive pattern (denoted by
COMP), and the second performs a communication-inten-
sive pattern (denoted by COMM). We defined a phasewhere
every process performs RMA-computation-RMA in 100 itera-
tions following with a barrier. The phase was executed two
times on every process in an all-to-all fashion. In the COMP
benchmark, we computed DGEMM in every iteration with a
total problem size M ¼ N ¼ K ¼ 192000, and we issued a
single GET-flush and ACC-flush in the first and second RMA
steps, respectively. In the COMM benchmark, we reduced
the total size of DGEMM to M ¼ N ¼ K ¼ 9600 and
increased the number of operations to 100 at the RMA steps.
Every RMA operation carries data with a 23 3D subarray on
the 83 window region as the target datatype and 8 contiguous
double elements as the origin data structure.

We measured each experiment on 192 cores (8 nodes) on
Edison. Because the strided operations are handled in

Fig. 5. Analyzing CR rate. (a)–(e)Show the rates measured on Edison, and (f)–(k) show the rates on Bebop. (a)–(c) and (f)–(h) are measured with the
all-to-1-node target pattern. List of acronyms: Ctg is contiguous; Std is strided; Blk is blocking; and NBlk is nonblocking.

4. https://github.com/pmodels/casper-dev/tree/dev-dynamic-
schd/preprocess
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software in all the MPI versions, we omitted the measure-
ments with OrigMPI/HW and TH(O)/HW. The OrigMPI
approach uses 24 processes on every node, and we varied
the number of ghost processes from 1 to 8 in static Casper.
Each serves 23, 22, 20, and 16 application processes per
node, denoted by CSP(1), CSP(2), CSP(4), and CSP(8),
respectively. We specified two ghost processes in each
adaptive approach. To enable adaptation also in the pas-
sive-target communication, we added the win_set_info with
symmetric hint after the barrier call (see Section 5.2). In CSP
(U), we specified the global CSP_ASYNC_CONFIG=ON in the
COMP benchmark and set to OFF in the other one. In CSP
(P) and CSP(GP), we set the CR thresholds to {89%, 95%}
according to the offline estimation for ðn; t; gÞ = ð192; all-to-
all; 2Þ, and we empirically set PREDICT_INT to 1 second
and GSYNC_INT to 2 seconds.

Fig. 6 shows the performance results. Static Casper
always reduces the communication cost in the COMP
benchmark (Fig. 6a) because of asynchronous progress, but
it also degrades the computation performance when using
more ghost processes because of losing computing power.
TH(D) delivers even worse performance than that of
OrigMPI because it occupies 50 percent computing cores.
On the other hand, a small number of ghost processes can
result in severe degradation in the COMM benchmark
(Fig. 6b) because of operation overaggregation. Such over-
head can be reduced by using more ghost processes, and
the issue can be completely resolved by disabling the redi-
rection, shown as CSP(U). However, the profiling-based
adaptations, shown as CSP(P) and CSP(GP), deliver signifi-
cant overhead in the COMM benchmark. The reason is that
they can adapt only after the first barrier, although CSP(GP)
can partially help GETs at an earlier time. In both bench-
marks, TH(O) does not show better results because of core
oversubscription.

7.4 Multiphase Benchmark

Although the user can adjust the setting of static Casper for
the executionwith a different pattern, achieving optimal per-
formance is impossible if a single execution contains both
patterns. Our fourth set of experiments used such a multi-
phase benchmark. The benchmark contains two sequential
windows, each consisting of both a heavy-computing period
and a heavy-communicating period (combination of the two

single benchmarks in the preceding experiments). Thus,
every execution contains eight phases.

We used two ghost processes in all Casper approaches.
In CSP(U), we set the user hint async_config=ON at each
window allocation call for the upcoming COMP phases,
and we set async_config=OFF through win_set_info in front
of the third and the seventh phases for the next COMM
phases. The configuration of CSP(P) and CSP(GP) remained
the same as that in the preceding set of experiments.

As listed in Table 4, the three adaptive approaches can
result in different reconfigurations in every internal phase.
To be specific, CSP(U) can deliver the most precise adapta-
tion that enables redirection (ON) in every COMP phase
and disables it (OFF) in every COMM phase. CSP(P), how-
ever, cannot promptly adapt to the third, fifth, and seventh
phases because it cannot apply the new predicted results
until it reaches win_set_info. CSP(GP) partially addresses
this issue; for example, the ghost-offloaded synchronization
disables redirection at the third and seventh phases only
for GETs.

Fig. 7 shows the results. Although the static CSP(2) can
reduce the cost of the COMP phases, it also degrades the
other phases that perform intensive communication, result-
ing in an 11.1 percent degradation compared with that of
OrigMPI. As expected, CSP(U) achieves the greatest
improvement at 54.5 percent; CSP(P) cannot provide appro-
priate adaptation at Phases 3, 5, and 7, as shown in Fig. 7b,
resulting in a 2.2 percent degradation; and CSP(GP) reduces
the overhead at those three phases by adapting GETs. The
thread approaches suffer from additional cost in either the
COMP phases or the COMM phases, similar to our observa-
tion in Fig. 6.

Fig. 6. Performance of asynchronous progress approaches in single-
phase benchmarks over 192 cores on Edison (average of three runs,
and 2 ghost processes are used in CSP(U), CSP(P), and CSP(GP)).

TABLE 4
Expected Adaptation of Casper Configurations (U), (P), and
(GP) in Multiphase Benchmark Involving up to 8 Phases

1 2 3 4 5 6 7 8

Approach COMP COMP COMM COMM COMP COMP COMM COMM

(U) ON ON OFF OFF ON ON OFF OFF

(P) ON ON ON OFF OFF ON ON OFF

(GP) ON ON ON/OFF OFF OFF/ON ON ON/OFF OFF

Fig. 7. Comparison of asynchronous progress approaches in the multi-
phase benchmark over 192 cores on Edison (average of three runs, and
2 ghost processes are used in all Casper approaches).
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7.5 Varying Adaptation Intervals

For our fifth set of experiments, we used the samemultiphase
benchmark to observe the impact of two interval thresholds
in the profiling-based approaches:PREDICT_INT (see Section
5.3.1) and GSYNC_INT (see Section 5.3.3).

Fig. 8a compares the per phase costs with varying PRE-

DICT_INT in CSP(GP) with a fixed GSYNC_INT at 2 sec-
onds. We omit the graph of CSP(P) because of space
limitations. We notice that the smallest interval, 0.1 seconds,
can result in imprecise adaptation especially in the COMP
phases (i.e., Phases 1, 2, 5, and 6 in CSP(GP)). The reason is
that the fragment of the executed period is so short that it
includes only the last few MPI calls; thus the profiling data
cannot represent the heavy computing characteristics. With
increasing internal time, CSP(GP) shows increasing over-
head in Phases 3, 5, and 7, where processes reconfigure for
heavy communication, because of the delay in prediction.

Fig. 8b compares the per phase overhead of CSP(GP)
with varying GSYNC_INT and a fixed PREDICT_INT at 1
second. It indicates a visible overhead in the COMM phases
that are contiguous to the preceding COMP phases (i.e.,
Phases 3 and 7) when a 1-second interval is set, because of
the frequent reloading executed on every application pro-
cess. Increasing the interval can lead to delays in adaptation,
especially in the heavy computing phase (i.e., Phase 5).

8 CASE STUDY: CHEMISTRY APPLICATION

In previous work we evaluated the NWChem application
with static asynchronous progress by focusing on particular
internal phases of the CCSD(T) method [13], [16]. Here we
focus on the overall multiphase execution.

NWChem Background: NWChem [1] is a widely used
computational chemistry application suite [17], [18].
NWChem is developed on top of the Global Arrays [3] tool-
kit over MPI RMA [19]. A typical get-compute-updatemode is
widely used in all the internal phases of NWChem, which
every process essentially performs by varying the size of
matrix-matrix multiplication for multidimensional tensor
contraction by coordinating with others through RMAGET/
ACC operations. Furthermore, NXTASK is the generic task-
scheduling component that assigns the “owner” for subdo-
main computing tasks. It is implemented as a single FOP
operation.

We note that most of the RMA operations in NWChem
exchange the subblocks of the global matrix. The subblock
data is represented as a strided subarray in MPI. Thus, the
hardware-offloaded PUT/GET cannot help performance.

Experimental Setup: We inserted a win_set_info with sym-
metric info at the Global Aarrays GA_SYNC call,5 since its
semantics ensure the completion of all outstanding operations
on all processes. CSP(GP) requires three kinds of predefined
thresholds: LOW|HIGH_CR, PREDICT_INT, and GSYNC_INT.
We used the estimated CR thresholds from the results in Sec-
tion 7.2 following the second strategy; we decided the value
of interval thresholds according to the task execution time
withinOrigMPI. CSP(P) is omitted since it is only for analysis.

We chose two widely used modules of NWChem in our
case study: the single-phase density functional theory (DFT)
and the multiphase CCSD(T).

8.1 Single-Phase DFT

Density functional theory is one of the most broadly used
methods in NWChem. It provides a good mix of efficiency
and accuracy to investigate the structural and electronic
properties of atoms and molecules. It contains only a single
internal phase in the implementation, which follows the get-
compute-updatemode and utilizes NXTASK task scheduling.

We evaluated the DFT calculation for Carbon 240
(denoted by C240) with the 6-31G* basis set. We used one
ghost process in all Casper approaches; we set CSP_

ASYNC_CONFIG=ON in CSP(U); and in CSP(GP) we set
PREDICT_INT to 2 seconds, GSYNC_INT to 120 seconds,
and a CR rate range {75%, 90%}, {75%, 90%}, {80%, 90%}, and
{85%, 90%} for 192, 384, 768, and 1,536 cores, respectively.

Fig. 9a compares the strong scaling of both static and adap-
tive asynchronous progress approaches over a varying num-
ber of system cores. OrigMPI does not scale because of the
significant delay in the blocking FOP operations in NXTASK,
as shown in Fig. 9b. All the asynchronous progress approaches
can eliminate such overhead; however, the thread-based
approaches show increased overhead in computation com-
pared with the Casper approaches as shown in Fig. 9b. This is
because TH(D) occupies 50 percent computing cores and TH
(O) oversubscribes cores. We compare the static and adaptive
approaches in Casper. CSP(1) is clearly the best solution for
the single-phase DFT. CSP(U) gives similar performance, but

Fig. 8. Comparison of varying adapting intervals in the multiphase
benchmark over 192 cores on Edison (average of three runs).

Fig. 9. Single-phaseDFT task for C240with asynchronous progress onEdi-
son. SinceOrigMPI/HWcannot complete in 5 hours, it is omitted. All Casper
approaches use 1 ghost process per node. COMPvalues are shown in (b).

5. GA_SYNC internally calls MPI flush_all on all processes followed
by a barrier.
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CSP(GP) shows visible communication overhead primarily
because of the extra synchronization and prediction error.

8.2 Multiphase CCSD(T)

The coupled cluster theory is one of the most popular
approaches in quantum chemistry for solving electron cor-
relation in atoms and molecules with arbitrary accuracy
requirements. The “gold standard” coupled cluster with sin-
gles and doubles and perturbative triples method, known as
CCSD(T), is one of the most accurate coupled cluster meth-
ods applicable to large molecules to date.

CCSD(T) comprises four internal phases: self-consistent
field (SCF), four-index transformation (4-index), CCSD iter-
ation, and the noniterative (T) portion [20]. The overhead
proportion among these phases can vary in particular
molecular problems. Fig. 10 compares the overhead break-
down of two sets of problems with OrigMPI: the water mol-
ecule (H2O)n problems (n = 5; 10; 14; 16; 18; 21, denoted as
Wn), with the cc-pVDZ basis set, and the Acenes problems,
including naphthalene, anthracene, tetracene, pentacene,
and hexacene (denoted Nap, Ant, Tet, Pent, and Hexa,
respectively) with the aug-cc-pVDZ basis set. Each problem
is measured over the appropriate number of cores fitting its
memory requirement, as listed below the x-axis.

In all thewater problems, the (T) portion consistently dom-
inates the cost of the entire task by close to 80 percent, and the
CCSD iteration takes the other 20 percent; the remaining
phases represent less than 2 percent of the time. The Acenes
series shows a different trend in each problem, where the (T)
portion indicates only a 52 percent cost in Tet and an even
lower proportion in others. Instead, the 4-index contributes
more overhead, representing 26–71 percent of the time. We
note that the SCF always takes less than 1 percent of the cost;
thus it ismerged into the “Others” portion for simplicity.

8.2.1 Analysis with Static Asynchronous Progress

Next we looked into the performance issue of static asyn-
chronous progress. We chose two problem types: large W21
molecule over 1,704 cores and Tet over 240 cores. We compared

the performance impact on each internal phase by utilizing
the static Casper and thread-based approaches. We used
the same total number of cores on every computing node in
all approaches, some of which are dedicated to asynchro-
nous ghost processes/threads.

Trade-Off in Overall Execution: Fig. 11 shows the task execu-
tion time of the Tet problem. CSP(1) delivers the maximum
improvement in the (T) portion by close to 50 percent, but it
also leads to more expensive CCSD iteration and 4-index.
With increasing numbers of ghost processes such overhead is
decreased, but the overhead of the (T) portion increases. TH
(D) follows the same trend, because it occupies half of the
computing cores. The TH(O) approaches do not perform bet-
ter because of core oversubscription.As a result, only an 8 per-
cent improvement is achievable with 8 ghost processes.

The internal phases of W21 indicate trends similar to those
observed in Tet. Static Casper delivers the best improvement
for the overall execution at 28 percent by using 2 ghost pro-
cesses, because the deduction of the degradations in other
phases can be reimbursed by the improvement in the (T) por-
tion, which dominates the entire cost by 80 percent.

Having studied the overall performance trend, we then
analyzed each specific internal phase. Since we observed
similar trends in each phase in both the W21 and Tet prob-
lems, we have omitted the results of W21.

Four-Index Phase: Fig. 12a shows the overhead of the com-
putation and RMA operations in the 4-index phase. The
degradation with small numbers of ghost processes is
caused mostly by ACCs, which degrade performance by
40x with one ghost process; but the GET portion, which
dominates the cost of the 4-index in OrigMPI, can benefit
from the redirection in Casper. After careful code reading
and profiling, we confirmed that this difference is due to the
different target patterns executed in these operations. To be
specific, all ACCs are issued as the all-to-1-node pattern
described in Section 7.2. GETs, on the other hand, are issued
following the all-to-all pattern.

Fig. 10. Internal phases in multiphase CCSD(T) with pVDZ on Edison.

Fig. 11. Trade-off in NWChem CCSD(T) for Tet-aug-cc-pVDZ with static
asynchronous progress over 240 cores on Edison. CSP(g) denotes
Casper with g ghost processes (g=1; 2; 4; 8; 10). The “Task Improve”
rate is calculated based on OrigMPI.

Fig. 12. Profiling multiphase CCSD(T) for Tet-aug-cc-pVDZ with static asynchronous progress over 240 cores on Edison.
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CCSD Iteration Phase: Fig. 12b shows the profiling of the
CCSD iteration phase. Different from the overhead construc-
tion in the 4-index, the numerous all-to-allGETs dominate the
execution time by close to 80 percent, and the DGEMM com-
putation (shown as COMP) takes less than 10 percent. Such
intensive communication can rarely benefit from asynchro-
nous progress if the operations are aggregated to only a few
ghost processes. Thus, four ghost processes are required in
order to balance the overaggregation overhead.

(T) Portion Phase: Fig. 12c shows the overhead profiles of
the noniterative phase: (T). With OrigMPI, the heavy compu-
tation takes 30 minutes, and GETs dominate the other half of
the cost. The overhead of GETs clearly indicates the delay
caused by lack of asynchronous progress. All the static
approaches can asynchronously complete GET operations;
thus such overhead can be eliminated. With more cores dedi-
cated to ghost processes or threads, however, the computation
resources are also reduced, resulting in significant degrada-
tion in the computation. The TH(O) approaches show similar
degradation because of core oversubscription.

8.2.2 Dynamic Adaptation

We next evaluated the dynamic adaptive strategies on both
the Edison and Bebop platforms.

Weak and Strong Scaling: We evaluated CSP(U) and CSP
(GP) in both weak and strong scaling of the Acenes prob-
lems, by comparing them with OrigMPI and the static
approaches studied in the preceding section. In both the
static and adaptable Casper approaches, we specified two
ghost processes per node. In CSP(U), we specified CSP_A-

SYNC_CONFIG=ON and {OFF, OFF, ON} as the value of the
async_config infos passed to three internal phases: 4-
index, CCSD iteration, and (T) portion, respectively. In CSP
(GP), we specified the thresholds as listed in Table 5.

Fig. 13 shows the results on Edison. In the weak-scaling
graph, we increase the problem sizes and numbers of cores.
The static CSP(2) shows significant degradation in the exe-
cution of all multinode problems. TH(D) does not achieve
any improvement. TH(O) improves the execution by up to
20.0 percent at Ant; however, it also shows a 15.5 percent
degradation at Pent. The adaptable CSP(U) and CSP(GP),
on the other hand, consistently improve the execution for
each problem type by up to 23.2 percent at Hexa and 16.3
percent at Tet, respectively. In the strong-scaling graph,
both static Casper and the thread-based approaches show
consistent degradation in performance, while CSP(U) and
CSP(GP) can resolve such inefficiency. CSP(U) delivers the
best performance by utilizing user hints, achieving up to
21.8 percent speedup; CSP(GP) provides a fully automatic

solution; and it improves performance up to 16.3 percent.
When scaling to 3,072 cores, CSP(2) becomes the best option
because the 4-index becomes dominated by numerous all-
to-all GETs that benefit from asynchronous progress with
only two ghost processes.

Fig. 14 shows the weak scaling on Bebop. TH(O) delivers
significant overhead because it oversubscribes without
hyper-threading. CSP(GP) shows higher overhead than the
results on Edison because of the overestimated range of CR
thresholds. For instance, the 60 percent LOW_CR used in Ant
was generated by the nonblocking GET patterns in prepro-
cessing (see Fig. 5h), which is never used in the application.
This caused the delay of adaptation in (T).

Internal Phase Overhead: We chose the Tet problem with
240 cores of Edison as the base of our profiling. We first
compared the overhead of each phase with different
approaches. We also added CSP(P) (see definition in Table 3)
in this experiment. As shown in Fig. 15a, both CSP(U) and
CSP(GP) can correctly resolve the overhead in the 4-index
and improve the performance for the (T) portion, but
CSP(P) cannot improve the overall performance because of
the expensive overhead in the (T) portion.

We then compared the overhead distributed in each phase.
Fig. 15b indicates that all the adaptive approaches resolve the
overhead caused by overaggregated ACCs in the 4-index.
With regard to the (T) portion, as shown in Fig. 15c, CSP(U)
behaves the same as CSP(2) because it re-enables the redirec-
tion at the beginning of (T). CSP(P), on the other hand, cannot
reduce the GET overhead because no synchronization call

Fig. 13. Dynamic adaptation with NWChem CCSD(T) on Edison (using 2
ghost processes in all Casper approaches). The unfinished bars in (a)
are because of out-of-memory error.

TABLE 5
Environment Variables for CCSD(T) with

Profiling-Based Adaptation

Edison: {CR(%)}, PREDICT_INT(s), GSYNC_INT(s) Bebop

Nap/24: {81,88}, 60, 2 Tet/240: {75,90}, 240, 2 Nap/36: {54,88}, 60, 2

Ant/96: {78,85}, 120, 2 Tet/384: {75,90}, 240, 2 Ant/72: {60,90}, 120, 2

Pyr/144: {75,90}, 120, 2 Tet/768: {80,90}, 240, 2 Pyr/108: {60,90}, 120, 2

Pent/456: {80,90}, 240, 2 Tet/1536: {85,90}, 60, 2 Tet/288: {60,90}, 240, 2

Hexa/840: {85,90}, 240, 2 Tet/3072: {85,90}, 60, 2 Pent/576: {60,90}, 240, 2

- - Hexa/1008: {65,95}, 240, 2

Fig. 14. Weak scaling for dynamic adaptation with NWChem CCSD(T)
on Bebop (using 2 ghost processes in all Casper approaches).
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exists in the application code. CSP(GP) eliminates the over-
head of GET by re-enabling asynchronous progress through
ghost-offloaded synchronization. In addition, we notice an
overhead of close to 3 minutes in the GET and FOP portions
in CSP(GP) comparedwith CSP(U), because of the interval set
for ghost synchronization.

We also observed that although CSP(GP) predicts on each
process separately, the majority of the processes always make
the same decision (e.g., 99 percent of the processes disabled
redirection in the 4-index, and all of them enabled in (T)).

9 RELATED WORK

In this paper, we focus on the use of Casper in multiphase
applications, and we propose several adaptive methods to
dynamically reconfigure asynchronous progress to resolve
operation aggregation imbalance. We divide the related
work into two broad topics: communication asynchronous
progress and dynamic adaptation for load balancing.

Communication Asynchronous Progress: Thread-based asyn-
chronous progress is considered the most common approach
for supporting software progress and is found in many MPI
implementations such as MPICH and its derivatives [6], [7],
[8]. This model allows every MPI process to utilize a back-
ground thread to asynchronously handle the incoming mes-
sages from other processes. While being a generic approach
for various MPI communication models, this approach also
raises the restriction that a background thread can make
progress only for the process that spawned it. Thus it has to
deploy at least as many background threads as MPI pro-
cesses on every computing node. Consequently, the user
must choose either to dedicate half of the computing res-
ources or to involve expensive core oversubscription.
Furthermore, this model forces MPI runtimes to support
multithreaded safety, which may result in further overheads
because of thread synchronization [10].

PIOMan [21] is a multithreaded communication engine
supporting thread-based asynchronous progress. It divides
rendezvous handshakes into multiple tasks and offloads
them to background threads running only on idle cores. This
approach, however, also suffers from a non-negligible over-
head derived from the necessarymultithreaded safety [22].

Vaidyanathan et al. [23] contributed an approach for
asynchronous progress in the “MPI+X” model by utilizing a
dedicated thread together with a lock-free command queue.
The “MPI+X” model often utilizes multiple threads over
multi- or many-core systems to parallelize computation and
employs only a single MPI process per node for internode
communication. Thus, only a single asynchronous thread is
required per node.

The other well-known approach in the MPI community is
the interrupt-based asynchronous progress, which has been sup-
ported on both Cray [24] and IBM systems [25][26]. This
approach assumes that all processes are busy in external com-
putation, thus utilizing a system interrupt to awaken the ker-
nel thread to asynchronously complete incoming messages.
The design is straightforward; however, the implementation
often relies on a platform-specific lightweight interrupt
engine; otherwise, severe performance degradation might
occur because of frequently issued interrupts [20].

Supporting asynchronous progress is an essential task
for using the portable MPI in other runtime systems. Daily
et al. [27] proposed the approach to build the PGAS ComEX
runtime on top of MPI two-sided model, and they designed
a progress rank engine in ComEX that splits the MPI world
communicator and uses a subset of processes to help com-
munication progress.

Dynamic Adaptation and Load Balancing: Dynamic adapta-
tion is a popular approach to dynamically balance irregular
workloads or adapt heterogeneous execution environment
and communicationmethods in both application and runtime
systems. Flaherty et al. [28] and Biswas et al. [29] introduced
their dynamic load balancer approaches for irregular work-
loads in mesh applications by repartitioning domains. As
examples of runtime-level adaptation, Bhandarkar et al. [30]
proposed an MPI implementation on top of the Charm++
environment that provides support for processor visualiza-
tion and balances the workloads by dynamically measuring
idle time or through user hints. Some researchers [31], [32]
concentrated on generic autonomic runtime management for
workloads on distributed-memory systems by implementing
dedicated systemmodules.

Different from these works, we propose adaptive strate-
gies in a portable MPI asynchronous progress library to
resolve the operation overaggregation imbalance when pro-
viding asynchronous progress.

10 CONCLUSION AND FUTURE WORK

Casper is a portable process-based asynchronous progress
model for MPI RMA on multi- and many-core architectures.
Our previous work presented the basic framework of Cas-
per that sets aside a small number of cores as background
ghost processes and redirects the user RMA operations tar-
geting an application process to the ghost process, thus
enabling asynchronous completion of RMA communica-
tion. This redirection-based design, however, might also
result in operation overaggregation bottlenecks because of
the limited progress resources, especially when communi-
cation becomes dominant. Therefore, a performance trade-
off has to be made in multiphase applications.

Fig. 15. Profiling CCSD(T) for Tet-aug-cc-pVDZ with adaptation over 240 cores on Edison (using 2 ghost processes in all Casper approaches).
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In this paper, we proposed an adaptive mechanism for
Casper that resolves the overaggregation issue by disabling
operation redirection in communication-intensive phases
without affecting the benefit of asynchronous progress in
other computation-heavy phases.

We chose an approximate prediction model in the adap-
tation to detect performance in order to maintain the porta-
bility of Casper. This model relies on offline prepossessing
to sample the system performance matrices from a large set
of benchmarks. However, it might be imprecise if the pat-
tern of an application phase is not covered or large perfor-
mance diversity exists among different patterns such as the
trends observed on the Bebop system. Moreover, the real-
time prediction can be further affected by several factors
such as system noise or temporary network delay. Although
we usually expect such noise to be small on high-perfor-
mance supercomputers, we should give the issue careful
consideration. Therefore, we plan to optimize the prediction
model based on dynamic heuristic in future work.
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