512

Sangmin Seo

Adrian Castelld

1

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.3, MARCH 2018

Argobots: A Lightweight Low-Level Threading
and Tasking Framework

, Member, IEEE, Abdelhalim Amer™, Member, IEEE, Pavan Balaji, Senior Member, IEEE,

Cyril Bordage, George Bosilca™, Alex Brooks, Graduate Student Member, IEEE, Philip Carns,

, Graduate Student Member, IEEE, Damien Genet", Thomas Herault, Shintaro lwasaki,

Prateek Jindal™, Laxmikant V. Kalé, Fellow, IEEE, Sriram Krishnamoorthy, Senior Member, IEEE,
Jonathan Lifflander, Huiwei Lu, Esteban Meneses, Member, IEEE, Marc Snir™, Fellow, IEEE,

Yanhua Sun, Kenijiro Taura™, Member, IEEE, and Pete Beckman

Abstract—In the past few decades, a number of user-level threading and tasking models have been proposed in the literature to address
the shortcomings of OS-level threads, primarily with respect to cost and flexibility. Current state-of-the-art user-level threading and tasking
models, however, either are too specific to applications or architectures or are not as powerful or flexible. In this paper, we present Argobots,
a lightweight, low-level threading and tasking framework that is designed as a portable and performant substrate for high-level programming
models or runtime systems. Argobots offers a carefully designed execution model that balances generality of functionality with providing a
rich set of controls to allow specialization by end users or high-level programming models. We describe the design, implementation, and
performance characterization of Argobots and present integrations with three high-level models: OpenMP, MPI, and colocated I/O services.
Evaluations show that (1) Argobots, while providing richer capabilities, is competitive with existing simpler generic threading runtimes;

(2) our OpenMP runtime offers more efficient interoperability capabilities than production OpenMP runtimes do; (3) when MPI interoperates
with Argobots instead of Pthreads, it enjoys reduced synchronization costs and better latency-hiding capabilities; and (4) I/O services with
Argobots reduce interference with colocated applications while achieving performance competitive with that of a Pthreads approach.

Index Terms—Argobots, user-level thread, tasklet, OpenMP, MPI, I/O, interoperability, lightweight, context switch, stackable scheduler

<+

INTRODUCTION

FFICIENTLY supporting massive on-node parallelism
demands highly flexible and lightweight threading and

e S.Seo, A. Amer, P. Balaji, P. Carns, and P. Beckman are with the Argonne

National Laboratory, Lemont, IL 60439.
E-mail: {sseo, aamer, balaji, carns, beckman}@anl.gov.

o C. Bordage is with the Inria Bordeaux, Talence 33405, France.
E-mail: cyril.bordage@inria.fr.

e A. Brooks, P. Jindal, L.V. Kalé, and M. Snir are with the University of
Illinois at Urbana-Champaign, Champaign, IL 61820.

E-mail: {brooks8, jindal2, kale, snir)@illinois.edu.

e G. Bosilca, D. Genet, and T. Herault are with the University of Tennessee,
Knoxville, TN 37996. E-mail: {bosilca, dgenet, herault)@icl.utk.edu.

o S. Iwasaki and K. Taura are with the University of Tokyo, Bunkyo, Tokyo
113-8654, Japan. E-mail: {iwasaki, tau |@eidos.ic.i.u-tokyo.ac.jp.

e A. Castello is with the Universitat Jaume I, Castellon de la Plana,
Castellén 12071, Spain. E-mail: adcastel@uji.es.

e S. Krishnamoorthy is with the Pacific Northwest National Laboratory,
Richland, WA 99354. E-mail: sriram@pnnl.gov.

o |. Lifflander is with the Sandia National Laboratories, Livermore, CA
94551-0969. E-mail: jliffl2@illinois.edu.

e H. Lu is with Tencent, Shenzhen 518057, China.

E-mail: huiweilv@tencent.com.

o E. Meneses is with the Costa Rica National High Technology Center, San
José 10109, Costa Rica, and with the Costa Rica Institute of Technology,
Cartago 30101, Costa Rica. E-mail: esteban.meneses@acm.org.

o Y. Sun is with the Google, Mountain View, CA 94043.

E-mail: sun51@illinois.edu.

Manuscript received 20 Dec. 2016; revised 12 Oct. 2017; accepted 15 Oct.
2017. Date of publication 24 Oct. 2017; date of current version 9 Feb. 2018.
(Corresponding author: Sangmin Seo.)

Recommended for acceptance by D. Padua.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2017.2766062

tasking runtimes. OS-level threads have been long recog-
nized to be inadequate in this regard, primarily owing to
their heavy-handed approach in managing arbitration and
synchronization, as well as their inflexibility in adapting
to the specialization requirements of specific applications.
As aresult, over the past few decades, a number of user-level
threading and tasking abstractions have emerged as more
practical alternatives.

These lightweight abstractions have successfully served
as building blocks for several parallel programming sys-
tems and applications. Current state of the art, however,
suffers from shortcomings related to how these abstractions
handle generality and specialization. Existing runtimes tai-
lored for generic use [1], [2], [3], [4], [5], [6], [7], [8], [9] are
suitable as common frameworks to facilitate portability and
interoperability but offer insufficient flexibility to efficiently
capture higher-level abstractions. This lack of flexibility
often takes the form of transparent decisions on behalf of
the user that incur undesired costs or inefficient resource
usage. For instance, these runtimes implement transparent
and rigid scheduling decisions (e.g., random work stealing)
that incur costs (e.g., shared thread pool accesses) and pro-
vide no guarantee for optimal scheduling. Unfortunately,
these runtimes provide little to no control to the user to
overcome these inefficiencies. Specialized runtimes are ori-
ented to a specific environment, for example, runtimes tar-
geted at OS task management [10], [11], network services
[12], [13], [14], compiler frameworks [15], specific hardware
[16], and parallel programming runtimes [17], [18], [19],

1045-9219 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9515-9836
https://orcid.org/0000-0002-9515-9836
https://orcid.org/0000-0002-9515-9836
https://orcid.org/0000-0002-9515-9836
https://orcid.org/0000-0002-9515-9836
https://orcid.org/0000-0001-5856-0172
https://orcid.org/0000-0001-5856-0172
https://orcid.org/0000-0001-5856-0172
https://orcid.org/0000-0001-5856-0172
https://orcid.org/0000-0001-5856-0172
https://orcid.org/0000-0003-2411-8495
https://orcid.org/0000-0003-2411-8495
https://orcid.org/0000-0003-2411-8495
https://orcid.org/0000-0003-2411-8495
https://orcid.org/0000-0003-2411-8495
https://orcid.org/0000-0002-8576-8451
https://orcid.org/0000-0002-8576-8451
https://orcid.org/0000-0002-8576-8451
https://orcid.org/0000-0002-8576-8451
https://orcid.org/0000-0002-8576-8451
https://orcid.org/0000-0003-0808-0984
https://orcid.org/0000-0003-0808-0984
https://orcid.org/0000-0003-0808-0984
https://orcid.org/0000-0003-0808-0984
https://orcid.org/0000-0003-0808-0984
https://orcid.org/0000-0001-9524-2341
https://orcid.org/0000-0001-9524-2341
https://orcid.org/0000-0001-9524-2341
https://orcid.org/0000-0001-9524-2341
https://orcid.org/0000-0001-9524-2341
https://orcid.org/0000-0002-3504-2468
https://orcid.org/0000-0002-3504-2468
https://orcid.org/0000-0002-3504-2468
https://orcid.org/0000-0002-3504-2468
https://orcid.org/0000-0002-3504-2468
https://orcid.org/0000-0001-5224-382X
https://orcid.org/0000-0001-5224-382X
https://orcid.org/0000-0001-5224-382X
https://orcid.org/0000-0001-5224-382X
https://orcid.org/0000-0001-5224-382X
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

SEO ET AL.: ARGOBOTS: A LIGHTWEIGHT LOW-LEVEL THREADING AND TASKING FRAMEWORK 513

[20]. These are heavily customized with a rich set of capabil-
ities. Such abstractions, however, are virtually unusable out-
side the target environment because they were not meant
for general use. They are often not portable (e.g., targeted to
specific hardware) and do not offer sufficient user control
outside the target environment. The Intel OpenMP Run-
time [17] and Nanos++ [18], for instance, are efficient back-
end runtimes for OpenMP compilers but are hardly usable
outside this scope.

We propose, in this paper, to fill this gap with Argobots,
a lightweight, low-level threading and tasking framework.
Argobots not only offers a portable library interface that is
broadly applicable to a number of target domains but also pro-
vides a rich set of controls to allow specialized runtime man-
agement by the user. The first goal of Argobots is to expose
sufficient information and capabilities for users to efficiently
map high-level abstractions to low-level implementations.
The second goal is to allow different software packages to
interoperate through Argobots as a lightweight substrate
instead of relying on OS-level interoperation.

Argobots honors this high degree of expressibility
through three key aspects. First, Argobots distinguishes
between the requirements of different work units, which are
the most basic manageable entities. Work units that require
private stacks and context-saving capabilities, referred to as
user-level threads (ULTs, also called coroutines or fibers), are
fully fledged threads usable in any context. Tasklets do not
require private stacks. They are more lightweight than
ULTs because they do not incur context saving and stack
management overheads. Tasklets, however, are restrictive;
they can be executed only as atomic work units that run to
completion without context switching. This distinction
allows users to create the work unit type that fits their pur-
pose. When tasklets are sufficient, performance gains over
ULTs are certain. Second, work units execute within
OS-level threads, which we refer to as execution streams
(ESs). Unlike existing generic runtimes, ESs are exposed to
and manageable by users. This added level of control offers
opportunities for affinity and interoperability improve-
ments (e.g., avoiding oversubscription of OS-level threads).
Third, Argobots allows full control over work unit manage-
ment. Users can freely manage scheduling and mapping of
work units to ESs and achieve the desired behavior.

In order to ensure fast critical paths despite the rich set of
capabilities, Argobots was designed in a modular way to offer
configuration knobs and a rich API that allow users to trim
unnecessary costs. An in-depth critical path characterization
study is also provided, which involved investigating every
cache miss and translation lookaside buffer (TLB) miss that
occurs on critical paths. In a fully optimized state, Argobots
achieved unprecedented performance in the context of light-
weight runtimes. Indeed, evaluating Argobots against several
highly performing generic lightweight threading libraries,
such as Qthreads [5] and MassiveThreads [4], showed that
Argobots incurs little overhead and scales better than the
other libraries while achieving sustainable performance.

To evaluate the adequacy of Argobots as a substrate run-
time and its interoperability capabilities, we present proto-
type integrations with the most widely used programming
systems in high-performance computing (HPC)—OpenMP
and MPI—as well as a use case in colocated I/O services.

[qn@@n@h

ES,

Fig. 1. Argobots execution model. An ES (curved arrow) is a sequential
instruction stream that consists of one or more work units. S); denotes the
ES’s main scheduler. S/, in ES; has one associated private pool, Py,
and Sy, in ES; has two private pools, Py and Pyo. Arrows indicate
associations between schedulers and pools. Ps is shared between ES;
and ES,, and thus both S, in ES; and Sy, in ES; can access the pool to
push or pop work units. P denotes an event pool. S; and S, in Py; are
stacked schedulers that will be executed by the main scheduler Sy, .

Py Py Pun ES; Bvn Pw» ES;
® O o O
Scheduler Pool ULT Tasklet Event

Our OpenMP runtime over Argobots avoids OS-level
thread interoperability issues that arise from nesting
OpenMP-based software. We demonstrate that OpenMP
over Argobots can scale significantly better than existing
OpenMP runtimes with synthetic benchmarks and in a fast
multipole method (FMM) implementation that suffers from
nested parallelism when offloading computation to an
external OpenMP-based parallel library. We also show that
when interoperating with MPI, Argobots can enable
reduced synchronization costs and better latency-hiding
capabilities, compared with Pthreads. Moreover, unlike
with Pthreads, we show that I/O services over Argobots
can readily decouple tuning the level of CPU and I/O con-
currency. Consequently, the resulting I/O services lower
interference with colocated applications by reducing CPU
consumption while achieving performance competitive
with that of a Pthreads approach.

2 DESIGN AND IMPLEMENTATION OF ARGOBOTS

This section presents the key components of Argobots.

2.1 Execution Model

Fig. 1 illustrates the execution model of Argobots. Two lev-
els of parallelism are supported: ESs and work units. An ES
maps to one OS thread, is explicitly created by the user, and
executes independently of other ESs. A work unit is a light-
weight execution unit, a ULT or a tasklet, that runs within
an ES. There is no parallel execution of work units within a
single ES, but work units across ESs can be executed in par-
allel. Each ES is associated with its own scheduler that is in
charge of scheduling work units according to its scheduling
policy. The scheduler also handles asynchronous events
periodically. Argobots provides some basic schedulers, and
users can also write their own.

ULTs and tasklets are associated with function calls and
execute to completion. However, they differ in subtle
aspects that make each of them suited for distinct program-
ming motifs. A ULT has its own stack region, whereas a
tasklet borrows the stack of its host ES’s scheduler. A ULT

514 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.3, MARCH 2018

is an independent execution unit in user space and provides
standard thread semantics at a low context-switching cost.
ULTs are suitable for expressing parallelism in terms of per-
sistent contexts whose flow of control can be paused and
resumed. Unlike OS-level threads, ULTs are not intended to
be preempted. They cooperatively yield control, for exam-
ple, when they wait for remote data or let other work units
make progress for fairness. A tasklet is an indivisible unit of
work with dependence only on its input data, and it typi-
cally provides output data upon completion. Tasklets do
not yield control and run to completion before returning
control to the scheduler that invoked them.

2.2 Scheduler

Argobots provides an infrastructure for stackable or nested
schedulers, with pluggable scheduling policies, while
exploiting the cooperative nonpreemptive activation of
work units. Localized scheduling policies such as those
used in current runtime systems, while efficient for short
execution, are unaware of global policies and priorities.
Plugging in custom policies enables higher levels of the soft-
ware stack to use their special policies while Argobots han-
dles the low-level scheduling mechanisms. In addition,
stacking schedulers empowers the user to switch schedulers
when multiple software modules or programming models
interact in an application. For example, when the applica-
tion executes an external library that has its own scheduler,
it pauses the current scheduler and invokes the library’s
scheduler. Doing so activates work units associated with
the invoked scheduler. The control returns to the original
scheduler upon completion.

Argobots allows each ES to have its own schedulers. To
execute work units, an ES has at least one main scheduler
(Su). A scheduler is associated with one or more pools
where ready ULTs and tasklets are waiting for their execu-
tion. Pools have an access property, for example private to
an ES or shared between ESs. Sharing or stealing work units
among schedulers (or ESs) is done through shared pools.
Each ES also has a special event pool (Pg) for asynchronous
events. The event pool is meant for lightweight notification.
It is periodically checked by a scheduler to handle the
arrival of events (e.g., messages from the network).

When a work unit is in a pool that is associated with a
running or stacked scheduler, it is considered ready to exe-
cute. Thus, Argobots does not control dependencies
between work units. The control is done in the application
itself through mechanisms provided by Argobots, such as
waiting for completion and synchronization. In order to
ensure a particular affinity of a work unit to some data, the
application can use the appropriate pool when pushing the
work unit. Thus, the work unit will be executed on the ES
(or a group of ESs) that pops it from that pool.

Stacking schedulers is achieved through pushing schedu-
lers into a pool. In other words, schedulers in a pool are
regarded as schedulable units (e.g., S in Fig. 1 is a stacked
scheduler that will be executed by Sj;1). When a higher-
level scheduler pops a scheduler from its pool, the new
scheduler starts its execution (i.e., scheduling). Once it com-
pletes the scheduling, control returns to the scheduler that
started the execution. To give control back to the parent
scheduler, a scheduler can also yield. To support plugging

in different scheduling policies, all schedulers, including
the main scheduler, and pools are replaceable by user-pro-
vided alternatives.

2.3 Primitive Operations

Argobots defines primitive operations for work units. Since
tasklets are used for atomic work without suspending,
most operations presented here—except creation, join, and
migration—apply only to ULTs.

Creation. When ULTs or tasklets are created, they are
inserted into a specific pool in a ready state. Thus, they will
be scheduled by the scheduler associated with the target
pool and executed in the ES associated with the scheduler.
If the pool is shared with more than one scheduler and the
schedulers run in different ESs, the work units may be
scheduled in any of the ESs.

Join. Work units can be joined by other ULTs. When a
work unit is joined, it is guaranteed to have terminated.

Yield. When a ULT yields control, the control goes to the
scheduler that was in charge of scheduling in the ES at the
point of yield time. The target scheduler schedules the next
work unit according to its scheduling policy.

Yield_to. When a ULT calls yield_to, it yields control to a
specific ULT instead of the scheduler. Yield to is cheaper
than yield because it bypasses the scheduler and eliminates
the overhead of one context switch. Yield to can be used
only among ULTs associated with the same ES.

Migration. Work units can be migrated between pools.

Synchronizations. Mutex, condition variable, future, and
barrier operations are supported, but only for ULTs.

2.4 Implementation
We have implemented Argobots in the C language.' An ES is
mapped to a Pthread and can be bound to a hardware proc-
essing element (e.g., CPU core or hardware thread). Context
switching between ULTs can be achieved through various
methods, such as ucontext, setjmp/longjmp with
sigaltstack [21], or Boost library’s fcontext [22]. Our
implementation exploits fcontext by default and provides
ucontext as an alternative when the user requires preserv-
ing the signal mask between context switches. Indeed,
fcontext is significantly faster than ucontext mostly
because it avoids preserving the signal mask, which requires
expensive system calls. The user context includes CPU regis-
ters, a stack pointer, and an instruction pointer. Whena ULT
is created, we create a ULT context that contains a user con-
text, a stack, the information for the function that the ULT
will execute, and its argument. A stack for each ULT is
dynamically allocated, and its size can be specified by the
user. The ULT context also includes a pointer to the sched-
uler context in order to yield control to the scheduler or
return to the scheduler upon completion. Since a tasklet does
not need a user context, it is implemented as a simple data
structure that contains a function pointer, argument, and
some bookkeeping information, such as an associated pool
or ES. Tasklets are executed on the scheduler’s stack space.

A pool is a container data structure that can hold a set of
work units and provides operations for insertion and

1. The reader can find the Argobots implementation and examples
at https://github.com/pmodels/argobots.

https://github.com/pmodels/argobots

SEO ET AL.: ARGOBOTS: A LIGHTWEIGHT LOW-LEVEL THREADING AND TASKING FRAMEWORK 515

deletion. Argobots defines the interface required to imple-
ment a pool, and our implementation provides a first-in,
first-out (FIFO) queue as a pool implementation. A sched-
uler is implemented similarly to a work unit; it has its own
function (i.e., scheduling function) and a stack. Since a
scheduler is regarded as a schedulable unit, it can be
inserted into a pool and executed as a work unit.

Argobots relies on cooperative scheduling of ULTs to
improve resource utilization. That is, a ULT may voluntarily
yield control when idle in order to allow the underlying ES
to make progress on other work units. Idling occurs when
executing blocking operations. Yielding control can be
achieved either implicitly, through Argobots synchroniza-
tion primitives, or explicitly by calling yieldoryield_to.
Some Argobots synchronization primitives, such as mutex
locking or thread join operations, automatically yield con-
trol when blocking is inevitable. ULTs that interact with
external blocking resources (such as network or storage
devices) are expected to explicitly context switch by using
yield or yield_to. Furthermore, synchronization primi-
tives can be used to resume execution upon completion of
external resource operations. This capability will be illus-
trated in Section 5.3 when coupled with I/O operations.

3 CRITICAL PATH COST ANALYSIS

Argobots is intended for fine-grained dynamic environ-
ments, where work unit creation, destruction, and context-
switching take place at high frequencies. The rich set of
capabilities that Argobots offers, however, can clutter and
slow the critical path of Argobots applications. Indeed, sup-
porting such capabilities would require longer code paths
and more complex data layouts than a simpler threading
runtime would. To allow high flexibility without sacrificing
performance, Argobots offers build-time configuration fea-
tures and advanced API routines that allow capturing
efficiently higher-level software requirements. When these
features are exploited properly, Argobots’ critical path
can be competitive or outperform state-of-the-art simpler
threading runtimes.

This section presents a cost analysis of basic work unit
management primitives, such as creation, joining, and
destruction operations, which are found on the critical path
of Argobots applications. The goal is for the Argobots user
to relate features to costs on the critical path as well as
understand the favorable conditions that would bring
down these costs. We present experimental results only
with ULTs; similar observations apply to tasklets. The
exceptions are the join features in Section 3.4, which are
applicable only to ULTs since tasklets are not allowed to
join other work units, and the data structure organization in
Section 3.3, which is insensitive for a tasklet descriptor
because it can fit in one cache line.

Methodology. We follow an incremental approach that
starts with a basic Argobots implementation and then grad-
ually incorporates features that lower the costs on the criti-
cal path. Each step involves a cost analysis and the
corresponding feature to lower the cost. In the following,
we begin by describing our testbed, a simple microbe-
nchmark that allows us to profile in isolation ULT opera-
tions, and then present details about the baseline Argobots
implementation.

Create &zzzm
6000 T T T T T T T T T T T

5000

4000

% o
QAR

R
%
QK

%
SRR
SIS
oot
X
oo

%
%
o

S

8%

2%

058!
REREERS

3000

%
Sotasores
QALK
5
R RRBRARKE

LR

3
3
oot

2000

%
X
%
oo
%S
X

doeoatorst
L

55K

X

Latency (cycles)

%
%3
SRR

R
%5
o

%

1000

.,.
o
55
5
R

3
%
5
8%

s
PR
e s s
0% 0%

o
15

%3
35
o

oo 5

b 08 SaR0setetes Sotutoreset satotessted Sotetotet %

OOty SStostate stetetorey s totetete RRPSIKI
R R SREIIIEKES

%S
%

%%
%
%

5%
o

; 3%
o o o
oo

oo

RRITRKS
RITZRK:
%S

5

5
3%

5 SRS
0202000208 D004 PRI (%39 o20T0 020%0 20202070207 o 02020202 26202020 10% 20et

X

Number of ULTs

Fig. 2. Performance of the baseline implementation. Create, Join, and
Free represent the time spent in creating, executing and joining, and
destroying ULTs, respectively. Each bar represents the average latency
(arithmetic mean) per iteration per ULT. The standard deviation of the
mean is less than 5 percent.

3.1 Experimental Setup

For all experiments, we used a 36-core (72 hardware
threads) machine, which has two Intel Xeon E5-2699 v3
(2.30 GHz) CPUs and 128 GB of memory and runs Red Hat
Linux (kernel 3.10.0-327.el7.x86_64) 64-bit. We used gcc
4.8.5 for compiling and PAPI [23] for collecting the neces-
sary hardware counter values.

3.2 Baseline and Benchmark Description

Baseline. The baseline Argobots implementation is character-
ized by use of the default system memory management (i.e.,
system malloc/free and normal pages); semantic organi-
zation of data structures (that is, data fields are grouped
according to their functionality); a fully fledged context
switch mechanism; and a shared pool. Moreover, all Argo-
bots features are build-time enabled.

Benchmark. For simplification, the analysis focuses on
spawning and joining ULTs on one ES. That is, we create a
large number of ULTs and push them to a shared pool in a
bulk-synchronous fashion, join them by the main ULT,
destroy them, and repeat the process over 1,000 iterations.
Each ULT is created with 16 KiB of stack space. Although
this section uses a single ES, our experiments showed simi-
lar observations when scaling ESs up to 72; for brevity, we
omit including these results. In the following, we report
latency results in CPU cycles and show memory-related
hardware counters where needed.

Fig. 2 shows the performance of our baseline implemen-
tation according to the number of ULTs that are created in
the benchmark. For example, forking and joining 64 ULTs
take 2,443 cycles (1.064 us) for each ULT, where 1,837, 212,
and 394 cycles are spent in Create, Join, and Free, respec-
tively. In most cases, about 75 percent of the time is used for
creation, and about 15 percent of the latency is used for
destruction. These results hint at memory management
issues and are investigated in the next section.

3.3 Memory Management

Work units in Argobots are meant for dynamic fine-grained
concurrency. Thus, thread creation and destruction would be
frequent. Further analysis of Create and Free reveals that
memory allocation and deallocation contribute to 93 and
84 percent of each latency, respectively. These significant

516 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.3, MARCH 2018

Create Join Free

e
[=]
ES

" Baseline ——
MemPool ——
HugePages

W

=k

01 I I I I I I) L I I I I I
26 58 510512514516 518 56 58 510512514 516518 6 58 510512514516 518
Number of ULTs

-
o
w

-
o
N

Latency per ULT (cycles)

Fig. 3. Effects of using memory pools and huge pages.

overheads of memory management come from the fact that the
baseline implementation relies onmalloc and free functions
provided in glibc to handle dynamic memory allocation.

We developed a custom memory allocator that reduces
system calls and thread synchronization overheads. This
allocator maintains a memory pool that grows in size with
the number of spawned work units. After a work unit termi-
nates, its memory resources are added to the pool or
returned to the system if the pool has reached a certain
threshold. Since the scalability of a dynamic memory alloca-
tor is limited mostly by synchronizations on the shared
heap [24], each ES keeps a private memory pool for allocat-
ing work units, in order to reduce the number of accesses to
the global heap. Basically, if creation and destruction of a
work unit occur in the same ES, no synchronization is
involved. If the creation and destruction of a work unit take
place on different ESs, however, we combine fast-path
accesses to local memory pools for scalability and slow-path
accesses to remote or global memory pools for load balanc-
ing to avoid the heap-blowup problem [25]. Our memory
management system also allows the possibility of reducing
memory address translation overheads by configuring Argo-
bots to use huge pages. This is achieved by allocating 2 MiB
huge pages, instead of the normal 4 KiB pages, by using
mmap until the system runs out of huge pages for explicit
allocation. Then, the system reverts to the transparent huge
page support [26]. This allows eliminating most of the TLB
misses and the corresponding expensive page walks and
eventual memory accesses to the page table.

We experimented with the new memory management
system and show the latency results in Fig. 3. The results
are presented incrementally, with the huge pages feature
(HugePages) implemented on the top of the custom alloca-
tor MemPool. We observe a substantial benefit of the new
memory management system, especially for Create and
Free, compared with Baseline. Join is less sensitive to these
changes because object creation and destruction do not take
place on its critical path. We found out, however, that it is
sensitive to the layout of critical data structures. Our investi-
gation showed that a performance-oriented data layout®
could fit critical data in fewer cache lines than a semantic-
oriented layout® could. Our experiments showed that this

2. A layout that focuses on gathering data according to their contri-
bution to the scheduling critical path.

3. A layout that focuses on gathering data with close semantics or
functionality (e.g., identification, scheduling, migration).

Join Latency LLC Misses
400 T ——T T T 6
— Baseline —+—
$ 350 LastCtxSkip —<— 15 o
9 SchedBypass o
& 300 JoinMany .
[
5 250 a
2 | 138 g
I3 200 k »
> / 42 =
o 150 o
7] 4]
= 3 41 4
= 100 /
50 Il Il Il Il Il J " k k k k] Il
26 08 510 512 514 516 51856 8 510 512 14 516 518

Number of ULTs

Fig. 4. Effects of the performance improvement techniques for Join.

optimization lowers the Join latency by up to 7 percent,
which corresponds to the reduction in last-level cache
(LLC) misses.

3.4 Context Switching

Suspending and resuming control of a thread are frequent
operations in threaded environments when yielding control
explicitly or implicitly through blocking or synchronization
operations. In this section, we investigate the fundamental
costs of context switching in Argobots in the context of the
Join operation and hint to other operations, such as yield
when appropriate.

Context of a Terminating ULT. Context switching comprises
two steps: saving the context of the current ULT, which
wants to suspend its execution, and restoring the context of
the next ULT, which will resume execution. These two steps
are usually necessary, but the first step can be omitted if the
current ULT terminates, because its context will no longer be
used. For this case, we perform only the second part of con-
text switching to execute the next ULT. Since ULTSs terminate
immediately after they get started in the benchmark, this
technique (LastCtxSkip in Fig. 4) reduces on average
100 cycles, 45 percent of the Join latency from Baseline (after
the memory optimizations of Section 3.3).

Scheduler Involvement. Since the joiner ULT cannot prog-
ress beyond the Join synchronization point until the ULT
being joined terminates, it can be blocked and directly con-
text switched to the next ULT to be joined, instead of going
through the scheduler. In this case, when the joinee ULT is
completed, the control is switched back to the joiner ULT.
That is, we can bypass the scheduler in Join. SchedBypass
in Fig. 4 shows how this modification outperforms
LastCtxSkip. The improved version removes context
switches from and to the scheduler. In addition, since the
joiner ULT can check the state of the joinee ULT right after it
is terminated, its data structure is accessed only once by the
joiner ULT whereas it is touched twice in the LastCtxSkip
version by the scheduler and the joiner ULT. The effect of
this technique can be seen as lower LLC miss rates in Fig. 4.
This approach does, however, have a limitation: it can be
applied only to ULTs in the same ES like the yield_to opera-
tion (Section 2.3). Although this idea is similar to that pre-
sented in [27], the main difference between two approaches
is that the target of context switching in our approaches is
determined by the user, not the library or kernel.

Joiner ULT Involvement. With the previous improvement
on Join, 2 x N context switches are needed in order to join
N ULTs, because joining one ULT requires two context

SEO ET AL.: ARGOBOTS: A LIGHTWEIGHT LOW-LEVEL THREADING AND TASKING FRAMEWORK 517

Create Join

8 600 T T T T T 250
o SharedPool —+— I
) L PrivatePool —— °
H 500 NoMigration % 4200 Z
S5 400 f 5
9] 4 150 >
5 300 g
e 1100 3
£ 200 5
- ©
S 100 | 4 50 3
8 0 'ﬁ\/\/\”\ Il Il Il Il J L Il Il Il Il Il 0 %
o 26 08 510 512 514 516 51856 o8 510 512 514 516 518

Number of ULTs

Fig. 5. Effects of using a private pool and disabling migration.

switches. To further reduce the number of context switches
when joining multiple ULTs at the same time, we devised
the join_many operation. This operation takes a list of ULTs
to join and enables each ULT in the list to check the state of
the next ULT and to context switch to the next one if it has
not finished. Since the join_many operation does not return
to the caller until all ULTs in the list terminate and each
ULT does only one context switch to the next one, this oper-
ation reduces the number of context switches from 2 x N to
N +1 and also decreases N Join function calls to a single
join_many call. The performance effect of the join_many
operation is illustrated in Fig. 4 as JoinMany. It reduces the
Join latency by an average of 19 cycles from that of
SchedBypass.

3.5 Pool Sharing

All experiments so far used a shared pool, which is created
by default, even though only one ES was used. The Argobots
API exposes pool sharing control to users; a user can chose
how many ESs are allowed to push and pull from a pool. If
there is no sharing between ESs or only one ES is created, the
pool can be created as a private one, which is intended for
only sequential access and thus does not use any mutex or
atomic instructions in the implementation. Since Create and
Join include pushing a ULT to the pool and popping a ULT
from the pool, respectively, their latency is improved with
the private pool (PrivatePool in Fig. 5). On the other hand,
Free is not affected by the access property of the pool
because it does not involve any pool manipulation.

3.6 Feature Selection

Not all features provided by Argobots are necessarily
needed by a user. For instance, Argobots could be packaged
into other software that requires only a subset of Argobots
features. Unused features may affect the application’s per-
formance if their related code (e.g., branches) is part of the
performance-critical path although it does nothing useful.
To address this issue, Argobots provides configuration
options to disable some features, for example, migration and
stackable scheduler support. We observed that in the current
implementation, disabling migration reduced around
20 cycles in the Join latency (NoMigration in Fig. 5); disabling
other features was insignificant for this benchmark.

3.7 Cost Analysis Discussion

From the preceding sections, we notice that using memory
pools is the most effective for Create and Free while all

methods introduced in the preceding sections collectively
influence the performance of Join. Because of the nature of the
benchmark (i.e., it is designed to exercise bulk-synchronous
ULT operations, and each ULT does nothing in its function),
cases with a small number of ULTs can be considered as best
scenarios where data structures and stacks fit in the LLC.
Those results are difficult to tie to real applications, however,
since they might not exhibit such high degrees of cache reuse.
We consider the large number of ULT runs more insightful
because there is almost no cache reuse, since the working sets
do not fit in the LLC and hence reflect a worst-case scenario.

4 EVALUATION

We evaluated our Argobots implementation by comparing
with two ULT libraries, Qthreads 1.10 and MassiveThreads
0.95, in terms of performance and scalability in the same envi-
ronment described in Section 3.1. We chose them because
they are among the best-performing lightweight threading
packages currently used in the HPC community and are avail-
able as independent libraries. Moreover, they have been sub-
ject to thorough studies by previous works and compared
with other lightweight runtimes [4], [5]. All libraries were
compiled with -O3 -ftls-model=initial-exec flags. The other
build settings of Qthreads and MassiveThreads were left as
default; in particular, both libraries maintain their own mem-
ory pools and use shared thread pools, which are hidden
from the user. Qthreads uses the Sherwood hierarchical
scheduler [28], which is locality aware and adopts work steal-
ing for load balancing, and MassiveThreads relies on a Cilk-
like last-in, first-out scheduling within a worker and FIFO ran-
domized work stealing between workers [4].

4.1 Create/Join Time

We compared the time taken to create and join a ULT or a
tasklet with respect to the number of ESs. For Qthreads and
MassiveThreads, the number of workers was set to the
same as that for ESs; and one worker in Qthreads was
mapped to one shepherd.* We created one ULT for each ES,
and that ULT repeated 1,000 times creating 256 work units,
pushing them to the pool associated to its ES, and then join-
ing them. We performed the same pattern for Qthreads and
MassiveThreads.

Fig. 6 illustrates the average create and join time per ULT
for each library from 10 runs of the benchmark. Since Massi-
veThreads by default utilizes the work-first scheduling pol-
icy [29] (i.e., pushes the creator to the scheduling queue and
executes the spawned thread first), while Qthreads and
Argobots adopt the help-first principle [30] (i.e., create all
threads first), we include results for both the work-first and
help-first versions of MassiveThreads. An exhaustive explo-
ration of all combinations of Argobots configurations and
features would be excessive; thus we narrow the space
exploration to a handful of combinations that incrementally
reduce costs: from the baseline Argobots with ULTs, shared
pools, and random work stealing, to using private pools,
using all the optimizations in Section 3, and using tasklets
instead of ULTs.

4. The default hierarchical configuration of one shepherd per chip
and one worker per core showed worse results.

5

-
[e)

Qthreads —+—
MassiveThreads (H) —>—
MassiveThreads (W)
Argobots (ULT, baseline + shared pools)
Argobots (ULT, baseline + private pools)
Argobots (ULT, optimized + private pools) —e—
Argobot§ (Tas[«let, optimizgd + p‘rivate‘pools) -

Create/Join Time per ULT (cycles)

0 | |
10
1 2 4 8 16 24 32 36 40 48 56 64 72

Number of Execution Streams

Fig. 6. Average create and join time per ULT with Qthreads, MassiveTh-
reads, and Argobots. The join operation includes both joining a ULT and
destroying it. MassiveThreads results include the default work-first
scheduling (W) and the help-first scheduling (H) variations. Argobots
was run with several variations to cover optimization levels, pool-sharing
properties, and work unit types (ULT or Tasklet). These results were pre-
sented in a top-down cost-reducing order. Shared pools in Argobots
imply random work stealing.

Ideally, if the ULT runtime is perfectly scalable, the time
should be the same regardless of the number of ESs. Usu-
ally, however, that is not the case because hardware resour-
ces, such as caches, memory, or physical CPU cores, are
shared between ESs and synchronizations might exist
between ESs to protect shared data. In this benchmark,
thread pools are the major resource being shared and thus a
potential source of contention.

At the lowest degree of concurrency (i.e., one ES),
Qthreads and the baseline Argobots perform the worst. The
Argobots optimizations bring down the cost to be competi-
tive with MassiveThreads. At the highest degree of concur-
rency (i.e., 72 ESs), all help-first scheduling runtimes that
use shared pools scale poorly. Argobots, however, performs
slightly better than the other runtimes despite not having
the optimizations enabled. MassiveThreads with work-first
scheduling performs the best in this high-contention
regime, thanks to memory optimizations and optimized
thread pool manipulation. We observe, however, that all
experiments that use shared pools with some form of work
stealing exhibit the worst scalability. While this overhead is
out of the user’s control in Qthreads and MassiveThreads,
Argobots offers means to eliminate such interference
through private pools, which results in almost perfect scal-
ability. The slight scalability loss starting from 40 ESs is due
to hardware threads sharing hardware resources on the
same core. With private pools in Argobots, as long as

B 8000 g @ {200 [y
g min-max g min-max

& 5ggo | average —— 721 & 1000 | average ——

5 5

S 4000 > 800

5 /LEEE 5

o 3000 o 600

g Va g]

- L =

'~ 2000 \/ '~ 400 L

S S

3 1000 ff 3 200

5 5

Q 1 1 1 1 1 1 1 1 1 9 1 1 1 1 1 1 1 1 1
o o 1 2 4 81624323672

1 2 4 81624323672
Number of Shepherds

(a) Qthreads

Number of Workers
(b) MassiveThreads (W)

Fig. 7. Create/join time tolerance.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.3, MARCH 2018

schedulers or ULTs in different ESs do not share a pool or
data, there will be almost zero synchronization (even no
atomic instructions) between ESs. We also observe that the
optimizations in Argobots reduce the overheads by an order
of magnitude and that the tasklet abstraction brings down
costs even further, making Argobots in this case the fastest
and most scalable runtime.

4.2 Create/Join Time Tolerance

We also measured the minimum, maximum, and average
time for each ULT on each ES to create and join another ULT.
The results are summarized in Fig. 7. Because of space limita-
tions, we show only two Argobots combinations: the baseline
with shared pools and the optimized setting with private
pools. First, percentage-wise MassiveThreads shows the high-
est degree of variation, followed by Qthreads and the Argo-
bots baseline, which are comparable, and finally by the
optimized Argobots, which shows the lowest relative varia-
tion. Second, from an absolute variation perspective, Massi-
veThreads remains the highest (up to 740 cycles), followed
closely by Qthreads and the baseline Argobots (up to 400
cycles). The optimized Argobots with private pools incurs the
lowest variation, with less than 20 cycles variation across the
board. We conclude that Argobots is the only runtime that
can achieve both low overheads and sustainable performance;
that is, ESs do not interfere with each other without explicit
user-controlled interaction. Workers in Qthreads, MassiveTh-
reads, and ESs in Argobots with shared pools interfere with
each other; thus, the create/join time per ULT varies signifi-
cantly when multiple workers or ESs are running, even
though they do not interact at all in the user code. These
results imply that the design of Argobots can enable users to
build their higher-level software without worrying about
unnecessary interference caused by the underlying threading
runtime from a scheduling perspective.

4.3 Yield Time

The yield time contributes to the ULT create/join time as
well. When a ULT tries to join a newly created ULT, it needs
to yield control to the scheduler in order to execute the new
ULT. The yield latency is also critical for applications that
require frequent context switches. We measured the yield
overhead for each library with respect to the number of ESs
and show the results in Fig. 8. For Argobots, we used the
same configuration and feature combinations as in
Section 4.1 with the exception of omitting tasklet experi-
ments because, conceptually, a tasklet cannot yield. Since

§4000 ,,,,,ryyyr§3oo
min-max min-max

& 3500 average —— F 18 59 L average —— ==l

5 3000 5

g 2500 A 7 EJZ-E'Z@

o 2000 o o 150 o

£ £

£ 1500 - E 100

= =

£ 1000 5

2 < 2 50

B 500 [)

o 12 4 81624323672 O 1 2 4 81624323672

Number of Execution Streams Number of Execution Streams

(c) Argobots (ULT, baseline + shared (d) Argobots (ULT, optimized + private
pools) pools)

SEO ET AL.: ARGOBOTS: A LIGHTWEIGHT LOW-LEVEL THREADING AND TASKING FRAMEWORK 519

10*

W

10°
//\/ Vﬁ)/y\ B .
DD S Sy e ———
102 s e
1 Qthreads —+—

MassiveThreads (H) —<—
MassiveThreads (W

Yield Latency (cycles)

)
101 E Argobots (yield, baseline + shared pools) 3
Argobots (yield, baseline + private pools)
Argobots (yield, optimized + private pools) —e—
100 ‘ Argobot§ (yielq_to, qptimizgd + p‘rivate‘ pools) e
1 2 4 8 16 24 32 36 40 48 56 64 72

Number of Execution Streams

Fig. 8. Yield operation time.

Argobots supports the yield to operation as well as yield
(Section 2.3), we included results with the yield to opera-
tion. At low concurrency, Qthreads incurs the highest over-
head, followed by Argobots with its normal yield interface.
In this case, both Qthreads and Argobots suffer from extra
context switches to the scheduler (called master thread in
Qthreads). MassiveThreads and Argobots with the yield_to
interface are the fastest. These bypass the scheduler and
effectively reduce the number of context switches by two-
fold, which can be observed when comparing Argobots
with its yield operation variations. At higher degrees of con-
currency, we observe similar scalability losses as in Section
4.1. In particular, contention for the Argobots shared pools
adds significant overhead. The benefits of the Argobots
optimizations are not as pronounced as with the create and
join operations, but they are still significant. The yield_to
operation reduces the overheads by a constant factor, two-
fold, regardless of the number of ESs.

4.4 XSBench

XSBench [31] is a proxy application that models the calcula-
tion of macroscopic neutron cross-sections of OpenMC, a
Monte Carlo particle transport simulation code [32]. The
kernel that XSBench simulates is the most computationally
intensive part in OpenMC and takes around 85 percent of
the total runtime of OpenMC, according to its documenta-
tion. It is written in the C language and is parallelized with
OpenMP.

We port the main simulation part of XSBench, namely,
the cross-section lookup loop, to Argobots by dividing the
iterations of the lookup loop evenly among ESs. One ULT
(main) per ES is created, and it creates as many work units
as the number of lookups that are assigned to the ES. Each
work unit performs one cross-section lookup. Since we
noticed that the cross-section lookup code suffers from
cache misses due to its irregular memory accesses, our
Argobots version takes data locality into account, instead of
simply executing the loop iterations as done in the original
OpenMP code. We implemented a custom scheduler, using
the Argobots scheduler framework (Section 2.2), that exe-
cutes work units according to the order of the energy indi-
ces, which are random values but critical to the memory
access pattern. Specifically, main ULTs sort the iterations in
ascending order of energy indices and push them to their
respective main pools. A scheduler then pulls and executes
work units in order, to preserve the energy indices order for
better locality. The scheduling begins after creating a certain

50 ‘ ‘

45 - Qthreads —— i
MassiveThreads (H) —<—

40 - MassiveThreads (W) 7

35 | Argobots (ULT)

30 L Argobots (Tasklet)

o5 OpenMP —e—

Speedup

10 : —
5 7 —

20 L
15 -

0 = = I
1 2 4 8 16 32 64

Number of Execution Streams

Fig. 9. XSBench performance results.

number (here, 8,192) of work units. Sorting all iterations
and creating work units for each iteration at once can lead
to significant overhead in the memory usage and thus
impact the performance. When its main pool is empty, a
scheduler adopts work stealing from neighbors to reduce
load imbalance and preserve data locality.

We also implemented XSBench using Qthreads and Mas-
siveThreads. However, since they do not provide the flexi-
bility of writing a user-defined scheduler as Argobots does,
we sort the energy indices before creating ULTs (note that
Qthreads and MassiveThreads do not support tasklets) and
create ULTs according to the energy indices sorted. Then,
we rely on their schedulers for the execution.

Fig. 9 shows performance results of our XSBench imple-
mentations in Argobots, MassiveThreads with the work-
first policy, and Qthreads, along with the original OpenMP
implementation as a reference. The baseline XSBench used
is version 13, dated May 2014; and we used the “large”
input size having the default configuration of 355 nuclides,
11,303 grid points per nuclide, and 15 million lookups. Each
version was run 12 times, with 5 iterations per run exclud-
ing warm-up steps. The figure shows the average result per
iteration. The speedups in the graph are obtained by com-
paring execution times with that of the sequential code
without OpenMP pragmas. Execution times with a single
ES (OpenMP thread or worker) are 47.94 (Argobots
(Tasklet)), 49.96 (Argobots(ULT)), 47.90 (MassiveThreads
(W), 52.04 (MassiveThreads (H)), 57.24 (Qthreads), 51.14
(original OpenMP without presorting), and 47.41 (sequen-
tial with presorting) seconds. The results in the figure show
that all implementations scale well but that Argobots
(Tasklet) achieves the best scalability. MassiveThreads (W)
performs better than MassiveThreads (H) and indicates
that MassiveThreads suffers in this case from the help-first
policy, which stresses thread pool operations and schedul-
ing more than a work-first policy would. Despite Argobots
adopting a help-first policy, however, it performs compara-
bly to MassiveThreads with its work-first policy, thanks to
data locality scheduling and better pool access performance.

5 HIGH-LEVEL RUNTIMES

We present here three use cases of Argobots for high-level
runtimes: an OpenMP runtime implementation that integra-
tes Argobots as the threading layer, an MPI runtime
implementation that interoperates with Argobots, and colo-
cated I/0 services that utilize Argobots for better resource

520 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.3, MARCH 2018

management. Hyperthreading is disabled hereafter because
it did not have any positive effects on the experiments
that follow.

5.1 OpenMP Over Argobots

OpenMP implementations, such as GCC OpenMP [33] or
Intel OpenMP [17], perform poorly with nested parallel
regions, like the case shown in Listing 1, because they use
OS-level threads underneath (e.g., Pthreads); performance
can drop significantly if the total number of OpenMP
threads used for the nested parallel regions is larger than
that of CPU cores (i.e., oversubscription). The common
workaround found in practice is to avoid oversubscription
by suppressing one level of parallelism. However, sup-
pressing parallelism may lose opportunities for perfor-
mance improvement or hinder programmers from using
external libraries that internally use OpenMP. For example,
consider Listing 1 that emulates an OpenMP user code
(lines 1-4) calling a library routine (1ib_comp) that inter-
nally uses OpenMP. Let us assume that the user uses all
processing elements of the machine for the application, as is
often the case in practice. In most production OpenMP run-
times, both parallel regions (at lines 1 and 7) would spawn
an OpenMP team equal to the full machine size, resulting in
a 2x oversubsctiption factor. This issue could be tackled by
reducing the size of OpenMP teams. However, tuning the
size of the team in the user code as well as in external
dependencies to avoid oversubscription while fully utiliz-
ing the machine is a daunting challenge.

Listing 1. Example of OpenMP nested parallelism

1: #pragma omp parallel for
cfor (inti=0; 1 <N; i++) {
lib_comp (i, range[i], in, out);

o}

2
3
4
5:
6: void 1lib_comp (i, max, in[][], out[]1[]) {
7 #pragma omp parallel for

8 for (int k=0; k <max; k++)

9 out[i] [k] = compute (in[i] [k]);

0

10:

We designed an OpenMP runtime that exploits Argobots
to better deal with nested parallelism. In our runtime, all par-
allel regions are mapped to Argobots work units (ULTs by
default) regardless of the level of nesting. Furthermore, cre-
ating many work units does not add much overhead as long
as the number of ESs is kept within the number of cores. Our
runtime creates at most as many ESs as there are cores. Each
ES features a customized scheduler that has one private pool
and one shared pool. The private pool is used to schedule
work units in an ES in a FIFO manner; the shared pool is
used for sharing work units between ESs. ULTs for the first-
level parallel regions are distributed to the private pool of
each ES. ULTs for the nested parallel regions are pushed to
the shared pool of the ES, where the master ULT in the team
is running, but they can be stolen by other ESs if there is load
imbalance between ESs. This hierarchical scheduling struc-
ture enables locality to be improved by binding the first-level
ULTs to distinct ESs and enables the workload of ESs to be
balanced through work stealing.

10°
_ 10
)
2 10° ///‘—M
[] e %
§10 e
3 a2
S 10
Q
R GCC —+—
107 IntelOMP —— .4
AbtOMP
AbtOMP with tasklet
104 I ; .

2 4 8 12 16 20 24 28 32 36
Number of Threads for the Inner Loop

(a) Execution time of a nested parallel for loop. The number of threads
for the outer loop was fixed at 36, and that for the inner loop was
varied. The number of iterations for both outer and inner loops was
2,240, and static scheduling was used. GCC, IntelOMP, AbtOMP, and
AbtOMP with tasklet represent results with gecc 6.1.0, Intel compiler
17.0.0 with Intel OpenMP runtime, the same Intel compiler with our
OpenMP runtime using only ULTs, and using ULTs for the outer loop
and tasklets for the inner loop, respectively.

14
IntelOMP:core-close s
— 12 } IntelOMP:core-true
) IntelOMP:no-binding ——
- AbtOMP ——
o 10
E
= 8
c
o T
= 6 e
2 -
8 47
x
L 2+
0
1 2 4 8

Number of Threads for Intel MKL

(b) Execution time of the Downward stage in KIFMM with AbtOMP and
IntelOMP with different thread bindings. OMP_NUM_THREADS was set to
9, and MKL_NUM_THREADS was varied.

Fig. 10. Performance results of OpenMP nested parallel loops.

To reduce thread management overheads, our OpenMP
runtime, with a user hint, can generate tasklets for compute-
only loops, which do not contain any blocking functions call
or OpenMP synchronization (e.g., critical or barrier).
In other words, if the code has no possibility of context switch-
ing occurring during the execution, the runtime creates task-
lets instead of ULTs, since using ULTs adds unnecessary
overhead from managing contexts and stacks. We currently
provide an API function for the user to give our OpenMP run-
time a hint of whether it is compute-only or not. We plan to
develop compiler techniques so that this process is automated
and thus the advantages of tasklets can be easily accessible.
We note that while some previous work used ULTs to over-
come nested parallelism issues [28], [34], [35], [36], our work
exploits tasklets as well as ULTs and a custom scheduler that
is specialized for OpenMP nested parallelism.

We prototyped our OpenMP runtime by modifying the
open-source version of the Intel OpenMP runtime [37] and
kept the application binary interface so that it can be used
with existing compatible OpenMP compilers, such as Intel
compiler, GCC, and LLVM clang. We also evaluated our
implementation using one microbenchmark and a work-
sharing-based implementation of FMM [38] on the machine
described in Section 3.1.

The microbenchmark measures the execution time of a
nested parallel loop, which is similar to the code in Listing 1.
Fig. 10a illustrates the average execution times over 100 runs.
As expected, our OpenMP runtime outperforms other

SEO ET AL.: ARGOBOTS: A LIGHTWEIGHT LOW-LEVEL THREADING AND TASKING FRAMEWORK 521

OpenMP implementations because of using lightweight work
units. The results imply that utilizing ULTs to implement
parallel regions is efficient, and exploiting tasklets further
reduces the overhead when it is possible. GCC shows the
worst performance because the GCC OpenMP does not reuse
threads and instead spawns threads every time it encounters
the parallel region. IntelOMP achieves better performance
than does GCC by reusing threads, but it has more overhead
than our runtime does because of the heavy cost of managing
Pthreads and real oversubscription of the machine.

Real-World Case. We present here results with a highly
tuned implementation of the FMM, a method to solve N-
body problems, called kernel-independent FMM (KIFMM).
We used the variant that implements each of the five stages
that constitute the entire flow using OpenMP work-sharing
constructs [38]. KIFMM offloads some compute-intensive
operations, such as matrix-vector multiplications (dgemv)
and fast Fourier transformations, to external libraries. These
external packages are free to generate additional paralleliza-
tion levels that might cause nested parallelism. Here, we
focus on one of the stages (Downward) that is sensitive to
data locality and has parent-children dependencies result-
ing from the hierarchical domain decomposition. It is also
compute intensive and relies extensively on dgemv opera-
tions computed by linear algebra packages.

KIFMM offloads dgemv operations to the Intel Math
Kernel Library (MKL) [39] shipped as part of the Intel com-
plier suite. MKL also employs OpenMP internally, but this
behavior is disabled if MKL detects that it is being called
within an OpenMP parallel region. This is the default behav-
ior and can be overridden by the user with appropriate envi-
ronment variables. To evaluate the efficiency of the nested
parallelism support in IntelOMP and AbtOMP during the
Downward stage, we used 9 OpenMP threads for the applica-
tion (outer parallel region) and varied the number of MKL
threads (inner parallel region). This approach effectively
allows a gradual shift from a non-oversubscribed regime
(9 threads on 36 cores) to an oversubscribed one (72 threads
on 36 cores). Fig. 10b shows different trends for the OpenMP
runtimes and binding strategies. IntelOMP clearly performs
poorly as performance degrades with more MKL threads. We
note that all binding policies result in some degree of oversub-
scription except when left to the OS (no binding) with
IntelOMP. AbtOMP, on the other hand, scales slightly, then
stagnates. One factor that affects both runs is the poor data
locality resulting from offloading dgemv data to other threads
that potentially run on remote cores. A second factor is the
high thread management overhead, which includes oversub-
scription, of IntelOMP. We also note that using more than one
MKL thread improves scalability over a single-threaded MKL
with AbtOMP. Thus, MKL’s default strategy of disabling
nested parallelism loses parallelism opportunities that could
be exploited with an efficient OpenMP runtime.

5.2 Interoperability with MPI

Most MPI implementations interoperate with OS-level
threads, such as Pthreads, to comply with MPI’s threading
support requirements. Consequently, shared-memory pro-
gramming systems, including OpenMP, whose runtimes
rely on OS-level threads underneath can interoperate with
most MPI runtimes. This coarse-grained interoperability

128

T
ES:36 ULT:H —+— _//)
64 | ESB6ULT:2 —x—
ES:36 ULT:4
32 | ES:B6ULT:8

ES:36 ULT:16
16 | ES:36 ULT:32 —e—
ES:1 ULT:1 —e—

2
1 M 1
0.5
0.25 : : : :
1 16 256 4096 65536

Message Size (bytes)

Fig. 11. MPI latency between two Haswell nodes interconnected with a
Mellanox FDR fabric. One node hosts a single-threaded sender process
while the other hosts a 36-way multi-ES receiver process.

level is heavy, however, and does not allow exploiting
upper-layer runtime information to improve synchroniza-
tion and scheduling decisions. For instance, with existing
MPI runtimes, an OpenMP task blocked for MPI communi-
cation cannot context switch to another task; thus it loses the
opportunity to better utilize computational resources,
because these runtimes are oblivious of OpenMP tasks. If the
programming system shares a more lightweight and flexible
common runtime with MPI, new synchronization and sched-
uling improvement opportunities will be exposed.

In this work, we investigated an MPI runtime that intero-
perates with Argobots ULTs instead of OS-level threads. The
runtime is based on MPICH 3.2, a fully thread-compliant MPI
implementation. MPICH 3.2 drives communication through a
single communication context and ensures thread safety with
a coarse-grained critical section. The runtime has been shown
to be subject to lock management issues, which can signifi-
cantly degrade performance [40]. The major interoperability
challenge is handling thread safety. We exploit in the runtime
a custom locking method tailored for Argobots’ expressive
capabilities and the needs of the MPI runtime. Our lock has
three primary components. First, it is built on the advantages
of the two-level prioritization scheme described in our prior
work [40]; ULTs that are in a waiting state, which occurs in
routines with blocking semantics, are demoted in favor of
other ULTs in order to avoid waste and improve progress.
Second, lock acquire and release operations avoid contention
on the critical path. This feature is achieved by blocking a
ULT with an unsuccessful acquisition in a low-contention
queue corresponding to the ES and the priority level of the
ULT. Third, we expose an API routine in Argobots to allow a
lightweight lock ownership passing between ULTs in the
same ES. Since such ULTs are sequential, lock ownership can
be passed with mostly a simple context switch without an
expensive fully fledged lock release operation.

To evaluate this runtime, we ran a benchmark that
stresses communication latency between two MPI pro-
cesses: a sender and a receiver. The sender issues a stream
of blocking send operations, and the receiver consumes the
messages with blocking receive operations. The sender is sin-
gle-threaded (i.e., one ULT in one ES), and the receiver is
multithreaded with Argobots. The goal of this benchmark is
to stress the capability of the receiver to keep pace with the
sender. Fig. 11 shows latency results between two Haswell
nodes (Section 3.1) with 36 ESs at the receiver side while

522 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.3, MARCH 2018

© 0On ¢

Scheduler Pool ULT Tasklet
Executed within
calling U‘LT on ES;
ABT_io_open:
ABT_eventual_create();|
ABT_task_create(); l
ABT_eventuaI_wait();‘ rackict .
return; asklet:
\ open(); A//
- = /ABT_eventual_set();
.~ | service routine:
calculation();
abt_io_open();----4-- Executed within
. abt_io_pwrite(); new tasklet on
P “-..._| abt_io_close(); ES P N
B abt-io[1-n] ;
ESl 1 Written by abt-io ES |_‘_—
/O service daemon Service developer ||\ o library abt-io[1-n]

Fig. 12. The abt-io library architecture. Conventional POSIX I/O function
calls such as open () would block progress of all ULTs on an execution
stream. The abt-io library avoids this by delegating these operations to a
separately provisioned pool of execution streams, thereby allowing the
caller to yield until the operation is completed.

scaling the number of ULTs per ES. We observe that the
response time of the receiver improves with the number of
ULTs per ES until saturation. A total of 288 ULTs (8 ULTs
per ES) are sufficient to reach the lowest latency in the multi-
threaded setting and approach the single-threaded receiver
latency. A single ULT per ES results in OS-level threading
interoperability, but such an interoperability level is limited
by the performance of the lock implementation. The extra
benefits obtained from having more ULTs per ES can be
obtained only through the interoperation of MPI with an
expressive and lightweight runtime that can reduce synchro-
nization costs and improve latency hiding, a feature of great
importance for emerging hybrid MPI+threads applications.

5.3 Colocated I/O Services

This section demonstrates the flexibility of Argobots when
leveraged by colocated /O services: distributed 1/O service
daemons that are deployed alongside application processes.
This service model can be used to provide dynamically pro-
visioned, compute-node-funded services [41], in situ analy-
sis and coupling services [42], or distributed access to on-
node storage devices [43]. The key challenge in this pro-
gramming model use case is that it must balance three com-
peting goals: programmability (i.e., ensuring that the
service itself is easy to debug and maintain), performance
for concurrent workloads, and minimal interference with
colocated applications.

The most straightforward way to utilize Argobots within
an I/O service daemon is to create a new ULT to service
each incoming I/O request. Unlike conventional OS-level
threads, ULTs are inexpensive to create and consume mini-
mal resources while waiting for a blocking 1/O operation.
Each ULT can cooperatively yield when appropriate so that
other ULTs (i.e., concurrent requests) can make progress,
thereby enabling a high degree of 1/O operation concur-
rency with minimal resource consumption. This architec-
ture is designed to realize the performance advantages of
an event-driven model while retaining the programmability
advantages of a conventional thread model.

We implemented two small extension libraries to help
support this use case. The first, abt-io, provides thin wrap-
pers for common POSIX I/O function calls such as open (),
pwrite(), and close(). From the caller’s perspective,

these wrappers behave exactly like their native POSIX coun-
terparts. Internally, the wrappers delegate blocking system
calls to a separate Argobots pool as shown in Fig. 12. The
calling ULT is suspended while the I/O operation is in
progress, thereby allowing other service threads to make
progress until the I/O operation completes.

The delegation step is implemented by spawning a new
tasklet that coordinates with the calling ULT via an even-
tual, an Argobots future-like synchronization construct.
The tasklets are allowed to block on system calls because
they are executing on a dedicated pool that has been desig-
nated for that purpose. This division of responsibility
between a request servicing pool and an I/O system call ser-
vicing pool can be thought of as a form of 1/O forwarding
that allows I/O resources to be provisioned independently
without interfering with execution of the primary applica-
tion routine. This same technique could be applied to any
blocking I/O resource. If the I/O resource provides a native
asynchronous API (such as the Mercury RPC library [44]),
then one need not delegate operations to a dedicated pool;
the resource can use its normal completion notification
mechanism to signal eventuals.

The second extension library, abt-snoozer, implements an
I/O-aware Argobots scheduler that causes the ES to block
(i.e., sleep) when no work units are eligible for execution
and wake up when new work units are inserted. It therefore
exchanges a modest latency cost for the ability to idle grace-
fully when ULTs are waiting for external I/O events, which
in turn minimizes interference with other tasks. The sched-
uler can use the epoll () system call to block, and the pool
can write() to an eventfd() file descriptor to notify it
when new work units are added. The abt-snoozer library
uses the libev [45] event loop and asynchronous event
watchers to abstract this functionality for greater portability.
The abt-io library does not require the use of the abt-snoozer
scheduler, but it reduces resource consumption for work-
loads in which the I/O pool is sometimes idle.

We implemented a synthetic I/O service daemon to
serve as a benchmark for empirical comparison of Pthreads
and Argobots. The benchmark concurrently executes multi-
ple instances of the service routine shown in Listing 2.

Listing 2. Benchmark service routine pseudocode

1: calculation (buffer);
2: fd = open (path);

3: pwrite (£fd, buffer);
4: close (fd);

The service routine contains a sequence of computation,
metadata, and I/O steps that are carried out to service each
client request. The calculation step in a real-world service dae-
mon may include checksumming, compression, or parity
encoding; but in the synthetic benchmark we represent it with
RAND_bytes function from libcrypto [46], which fills the
buffer with a random sequence of bytes. I/O is performed in
synchronous, direct I/O mode. In the Pthreads version of the
benchmark, a dedicated Pthread is assigned to execute each
service routine in its entirety. The Argobots version of the
benchmark differs by executing each service routine in a ULT
rather than a Pthread and using abt-io wrappers together
with the abt-snoozer scheduler to perform I/0O.

SEO ET AL.: ARGOBOTS: A LIGHTWEIGHT LOW-LEVEL THREADING AND TASKING FRAMEWORK 523

70 [160

Pthreads ———

60 Argobots —<— -4 140
= 120 &
£ * 100 §8
= 40 ﬁ‘g
5 80 S
= 30 = r
3 60 g%
9] L >
g 2 {40 5§

10 | 4 20

. . P . . . 0

oL . . .
12 36 60 84 108 132 12 36 60 84 108 132
Number of Pthreads or ULTs running Service Routines

(a) The benchmarks use all 12 CPU cores.

70 160

Pthreads —+—

60 Argobots —x— 1 140
@ 120 &
2 % 100 §8
-E 40 ﬁ‘i
c 80 N&»
S 39 =
3 60 29
2 20} >3
2 140 §

10 4 20

oL) 0

12 36 60 84 108 132 12 36 60 84 108 132

Number of Pthreads or ULTs running Service Routines

(b) The benchmarks are constrained to two CPU cores.

Fig. 13. Execution time and CPU utilization for a synthetic benchmark that represents the workload of a colocated I/O service.

We executed the benchmark on a 12-core, 2.4 GHz
E5-2620 compute node containing a pair of mirrored
Seagate ST9500620NS (500 GiB SATA) disk drives. The
benchmark was configured to execute 2,048 ULTs, with
each ULT processing 1 MiB of data. Therefore, in aggregate
it produced and wrote 2 GiB of random data.

Fig. 13a shows the results of executing this experiment as
we vary the number of Pthreads or ULTs that are allowed
to execute simultaneously. In the Pthreads case, the number
of threads determines not only the request servicing concur-
rency but also the compute concurrency and I/O con-
currency. Those three parameters cannot be tuned
independently. In the Argobots case, the number of threads
determines only the request servicing concurrency. The
ULTs are executed on a pool shared with 4 ESs (i.e., the
desired level of CPU concurrency), and the abt-io tasklets
are executed on a pool shared with 36 ESs (i.e., the desired
level of I/O concurrency) in all cases. Argobots provides
the unique ability to tune these parameters independently
without altering the actual ULT service routines.

In the left portion of Fig. 13a we see that the Pthreads and
Argobots implementations achieve similar performance.
Both improve as more concurrent threads are used, until
roughly 60 threads are engaged. In the right portion of the
graph, however, we see that the Pthreads version consumes
significantly more CPU time to achieve this level of perfor-
mance. The discrepancy grows as more threads are used,
because of higher context switching cost and OS overhead
in the Pthreads implementation. This is a key metric for I/O
services that will be colocated with applications because it
directly impacts how much CPU time is available to appli-
cation processes. We measured the CPU time using the
GNU time command line utility to collect the number of
CPU-seconds consumed by the benchmark itself (“User”
time) plus the CPU-seconds consumed by the operating sys-
tem on behalf of the process (“System” time).

Fig. 13b shows the outcome of the same experiment when
the Linux taskset utility is used to constrain the benchmark
to use only the first 2 of 12 cores. This configuration reflects a
deployment scenario in which the I/O service is pinned to
dedicated cores in order to avoid interfering with application
tasks. Performance is degraded slightly in comparison with
Fig. 13a, but the Pthreads variant is more severely impacted,
in some cases taking nearly 8 seconds longer to complete the
benchmark. The Pthreads implementation also continues to
consume more CPU time than the Argobots implementation
does, even though the total CPU consumption is capped by
the number of cores assigned to the service.

Overall, Argobots maintains programmability (by
expressing I/O service routines as straightforward sequen-
tial functions), achieves performance competitive with that
of Pthreads, and produces consistently lower resource
consumption to minimize interference with co-located
application tasks. We note that the Pthreads service imple-
mentation could likely be optimized with a more sophisti-
cated threading model (for example, offloading I/O work to
a dedicated thread pool). Doing so, however, would require
decomposing the service routines into smaller discrete
event-driven routines with disjoint stacks, a technique
known as stack ripping [10]. By maintaining a sequential
control flow in each service routine, we significantly reduce
the development, debugging, and maintenance burden for
system services [47], [48]. The Argobots model accom-
plishes these tasks while also enabling fine-grained division
of work, customizable scheduling policies, and interopera-
bility with a variety of application programming models.

6 RELATED WORK

We discuss here related work in generic threading runtimes
and specialized ones for on-node concurrency.

In the generic runtimes category, we find several thread-
ing and tasking packages developed as independent librar-
ies similar to Argobots. Some libraries, such as GnuPth [1]
and StackThreads [2], provide ULTs but only within a single
OS-level thread. Recent packages, such as Marcel [3], Massi-
veThreads [4], Qthreads [5], TBB [8], and StackThreads/
MP [6], allow scheduling of ULTs on multiple OS-level
threads. MPC [9] uses ULTs to support MPI and OpenMP
and provides a lightweight Pthreads interface. While these
packages are generic and often efficiently execute certain
type of algorithms, such as divide-and-conquer, they pro-
vide little control to the user. They often handle scheduling
transparently, hide thread pools from the user, and give no
control over stack and context-switch requirements of work
units. Converse [19], which is still being used as a ULT sub-
system in Charm++ [49], inspired the design of Argobots. It
was one of the early systems to support ULT abstraction
separated from its scheduler and to support scheduling of
tasklets and ULTs via a common scheduler. However, it
lacks several features—for instance, stackable schedulers,
pluggable strategies, ULT migration, and scheduler bypass—
and thus is less flexible than Argobots.

Several works exist in the specialized category, given
the vast possible environments that require lightweight
execution abstractions. Some operating systems provide

524 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.3, MARCH 2018

Applications

High-Level Parallel Runtimes / Libraries / Languages
(Chapel, Cilk, Go, HC, HJ, HPX-5, OmpSs, OpenMP, TBB, X10,...)

Low-Level Parallel Runtimes
(Converse, Lithe, MPC, Nanos++, OCR, Realm,...)

Other ULT/tasklet Models
(Converse threads, Marcel, MassiveThreads, Qthreads, ...)

Argobots: A Low-Level Threading and Tasking Runtime

Fig. 14. Argobots as a low-level threading and tasking runtime.

lightweight threading alternatives to OS-level threads,
such as Windows fibers [10] and Solaris threads [11].
Capriccio [12], StateThreads [13], and Li and Zdancewic’s
work [14] rely on ULTs to handle concurrent network
services. Maestro [15] is the target of a high-level language
compiler, and TiNy-threads [16] is specialized to map light-
weight software threads to hardware thread units in the
Cyclops64 cellular architecture. These works, however, offer
little control to the user and are not portable outside the
environments they were meant for; we expect significant
efforts will be needed in order to make them portable and
available for generic use.

Other lightweight thread packages are tightly coupled
with their target parallel programming systems. The
Nanos++ runtime [18] provides ULTs that are used to
implement task parallelism in OmpSs [50]. The Realm run-
time [20] of Legion [51] utilizes ULTs for its event-based
tasking model. HPX-5 [52] exposes ULTs for fine-grained
execution. Lithe [53] exploits ULTSs to support multiple con-
texts in a single hardware thread. These threading abstrac-
tions are heavily optimized for the target programming
systems. For instance, threading runtimes under OpenMP
compilers, such as Nanos++, offer means to efficiently
schedule loop iterations and tasks and to map execution
streams to processing units. They also exploit the semantics
of the programming system to avoid stack allocation and
frequently context switching (e.g., iteration loops executed
by multiple OpenMP threads without allocating a stack for
each iteration). Because of their lack of generic abstractions,
however, these runtimes are hardly usable outside the
scope of their programming systems.

From a different perspective, because of the extremely
lightweight nature of its work units and given the rich set of
capabilities that it offers, Argobots could be positioned at
the lowest level in the software stack. We provide Fig. 14 as
a summary. In other words, all the cited related work can
also target Argobots as their underlying runtime. Moreover,
several programming languages, such as Cilk [29], X10 [54],
Habanero-C [55], Chapel [56], Go [57], and Python [58], can
also target Argobots. Cilk, for instance, can map threads
to Argobots ULTs similar to the OpenMP example in
Section 5.1. Arguably, Argobots, unlike runtime systems
such as Realm and HPX, targets exclusively on-node con-
currency and does not address multinode execution. As
exemplified by the MPI integration in Section 5.2, however,
Argobots offers powerful abstractions to efficiently interop-
erate with internode communication runtimes.

7 CONCLUSIONS

We presented Argobots, a lightweight low-level threading
and tasking framework that offers powerful capabilities for
users to allow efficient translation of high-level abstractions to
low-level implementations. We demonstrated that Argobots
can outperform state-of-the-art generic lightweight threading
libraries. We also presented integration of Argobots with
OpenMP and MPI, the most widely adopted programming
systems in high-performance computing, as well as colocated
I/0 services. We showed that our OpenMP runtime over
Argobots handles nested parallelism better than existing run-
times do and that an MPI runtime that interoperates with
Argobots offers more synchronization-reducing and latency-
hiding opportunities than does the commonly adopted inter-
operation with Pthreads. We also demonstrated that an I/O
service with Argobots can manage hardware resources more
efficiently and reduce interference with colocated applica-
tions better than does such a service with Pthreads.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, under contract
number DE-AC02-06CH11357. We gratefully acknowledge
the computing resources provided and operated by the Joint
Laboratory for System Evaluation (JLSE) at Argonne
National Laboratory. This research used resources of the
Argonne Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract
DE-AC02-06CH11357. We gratefully acknowledge the com-
puting resources provided by the Laboratory Computing
Resource Center at Argonne National Laboratory. The
researcher from Universitat Jaume I was supported by Gen-
eralitat Valenciana fellowship programme Vali+d 2015. Pete
Beckman is an IEEE affiliate.

REFERENCES

[1]1 R. S. Engelschall, “GNU Portable Threads.” (1999). [Online].
Available: http:/ /www.gnu.org/software/pth/

[2] K. Taura and A. Yonezawa, “Fine-grain multithreading with
minimal compiler support—A cost effective approach to imple-
menting efficient multithreading languages,” in Proc. ACM
SIGPLAN Conf. Program. Language Des. Implementation, 1997,
pp. 320-333.

[3] S.Thibault, “A flexible thread scheduler for hierarchical multipro-
cessor machines,” in Proc. 2nd Int. Workshop Operating Syst. Pro-
gram. Environ. Manage. Tools High-Perform. Comput. Clusters, 2005.

[4]].Nakashima and K. Taura, “MassiveThreads: A thread library for
high productivity languages,” in Concurrent Objects and Beyond,
Berlin, Germany: Springer, 2014, pp. 222-238.

[5] K.B.Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An API for
programming with millions of lightweight threads,” in Proc. IEEE
Int. Symp. Parallel Distrib. Process., 2008, pp. 1-8.

[6] K. Taura, K. Tabata, and A. Yonezawa, “StackThreads/MP:
Integrating futures into calling standards,” in Proc. ACM
SIGPLAN Symp. Principles Practice Parallel Program., 1999,
pp- 60-71.

[7]1 A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads:
Simplifying event-driven programming of memory-constrained
embedded systems,” in Proc. 4th Int. Conf. Embedded Netw. Sens.
Syst., 2006, pp. 29-42.

[8] C. Pheatt, “Intel threading building blocks.”]. Comput. Sci.
Colleges, Consortium for Computing Sciences in Colleges, vol. 23,
no. 4, p. 298, 2008.

[9]1 M. Pérache, H. Jourdren, and R. Namyst, “MPC: A unified parallel
runtime for clusters of NUMA machines,” in Proc. 14th Int. Euro-
Par Conf. Parallel Process., 2008, pp. 78-88.

http://www.gnu.org/software/pth/

SEO ET AL.: ARGOBOTS: A LIGHTWEIGHT LOW-LEVEL THREADING AND TASKING FRAMEWORK

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

A. Adya,]. Howell, M. Theimer, W.]J. Bolosky, and J. R. Douceur,
“Cooperative task management without manual stack man-
agement,” in Proc. Annu. Conf. USENIX Annu. Tech. Conf., 2002,
pp- 289-302.

SunSoft, Solaris multithreaded programming guide, Prentice-
Hall, Inc., 1995.

R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer,
“Capriccio: Scalable threads for internet services,” in Proc. ACM
Symp. Operating Syst. Principles, 2003, pp. 268-281.

G. Shekhtman and M. Abbott, “State threads library for internet
applications.” (2009). [Online]. Available: http://state-threads.
sourceforge.net/

P. Li and S. Zdancewic, “Combining events and threads for scal-
able network services implementation and evaluation of monadic,
application-level concurrency primitives,” in Proc. ACM SIGPLAN
Conf. Program. Language Des. Implementation, 2007, pp. 189-199.

A. Porterfield, N. Nassar, and R. Fowler, “Multi-threaded library
for many-core systems,” in Proc. IEEE Int. Symp. Parallel Distrib.
Process., 2009, pp. 1-8.

J. D. Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “TiNy threads: A
thread virtual machine for the Cyclops64 cellular architecture,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp., 2005, Art. no. 8.

Intel OpenMP runtime library. (2016). [Online]. Available:
https://www.openmprtl.org/

Nanos++. (2016). [Online]. Available: https://pm.bsc.es/ projects/
nanox/

L. V. Kalé¢, J. Yelon, and T. Knuff, “Threads for interoperable par-
allel programming,” in Proc. Int. Workshop Languages Compilers
Parallel Comput., 1996, pp. 534-552.

S. Treichler, M. Bauer, and A. Aiken, “Realm: An event-based
low-level runtime for distributed memory architectures,” in Proc.
23rd Int. Conf. Parallel Archit. Compilation, 2014, pp. 263-276.

R. S. Engelschall, “Portable multithreading: The signal stack trick
for user-space thread creation,” in Proc. Annu. Conf. USENIX
Annu. Tech. Conf., 2000, p. 20.

Boost.Context. (2009). [Online]. Available: http://www.boost.
org/doc/libs/1_57_0/libs/context/

PAPI: Performance Application Programming Interface. (2016).
[Online]. Available: http:/ /icl.cs.utk.edu/papi/

S. Seo, J. Kim, and J. Lee, “SFMalloc: A lock-free and mostly syn-
chronization-free dynamic memory allocator for manycores,” in
Proc. 23rd Int. Conf. Parallel Archit. Compilation, 2011, pp. 253-263.
E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson,
“Hoard: A scalable memory allocator for multithreaded
applications,” in Proc. Int. Conf. Archit. Support Program. Languages
Operating Syst., 2000, pp. 117-128.

Transparent Hugepage Support. (2016). [Online]. Available:
https://www kernel.org/doc/Documentation/vm/transhuge.txt
K. Elphinstone and G. Heiser, “From L3 to seL.4 what have we
learnt in 20 years of L4 microkernels?” in Proc. ACM Symp. Operat-
ing Syst. Principles, 2013, pp. 133-150.

S. L. Olivier, A. K. Porterfield, K. B. Wheeler, and J. F. Prins,
“Scheduling task parallelism on multi-socket multicore systems,”
in Proc. 1st Int. Workshop Rumtime Operating Syst. Supercomput.,
2011, pp. 49-56.

M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the Cilk-5 multithreaded language,” in Proc. ACM SIGPLAN
Conf. Program. Language Des. Implementation, 1998, pp. 212-223.

Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-
first scheduling policies for async-finish task parallelism,” in Proc.
IEEE Int. Symp. Parallel Distrib. Process., 2009, pp. 1-12.

J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “XSBench - The
development and verification of a performance abstraction for Monte
Carlo reactor analysis,” in Proc. Int. Conf. Physics Reactors, 2014.

P. K. Romano, N. E. Horelik, B. R. Herman, A. G. Nelson, and
B. Forget, and K. Smith, “OpenMC: A state-of-the-art Monte Carlo
code for research and development, Annals of Nuclear Energy,
vol. 82, pp. 90-97, 2015.

GOMP: An OpenMP implementation for GCC. (2015). [Online].
Available: https://gcc.gnu.org/ projects/gomp/

Y. Tanaka, K. Taura, M. Sato, and A. Yonezawa, “Performance
evaluation of OpenMP applications with nested parallelism,” in
Proc. Int. Workshop Languages Compilers Run-Time Syst. Scalable
Comput., 2000, pp. 100-112.

P. E. Hadjidoukas and V. V. Dimakopoulos, “Nested parallelism
in the OMPI OpenmP/C compiler,” in Proc. 14th Int. Euro-Par
Conf. Parallel Process., 2007, pp. 662—-671.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

525

F. Broquedis, N. Furmento, B. Goglin, P.-A. Wacrenier, and
R. Namyst, “ForestGOMP: An efficient OpenMP environment for
NUMA architectures,” Int. |. Parallel Program., vol. 38, no. 5,
pp- 418-439, 2010.

LLVM OpenMP project. (2015). [Online]. Available: http://
openmp.llvm.org/

A. Amer, N. Maruyama, M. Pericas, K. Taura, R. Yokota, and
S. Matsuoka, “Fork-join and data-driven execution models on
multi-core architectures: Case study of the FMM,” in Proc. Int.
Conf. Inf. Secur., 2013, pp. 255-266.

E. Wang, et al., “Intel math kernel library,” in High-Performance
Computing on the Intel® Xeon Phi, Switzerland: Springer, 2014,
pp- 167-188.

A. Amer, H. Lu, Y. Wei, P. Balaji, and S. Matsuoka, “MPI+threads:
Runtime contention and remedies,” in Proc. 20th ACM SIGPLAN
Symp. Principles Practice Parallel Program., 2015, pp. 239-248.

Q. Zheng, K. Ren, G. Gibson, B. W. Settlemyer, and G. Grider,
“DeltaFS: Exascale file systems scale better without dedicated
servers,” in Proc. 10th Parallel Data Storage Workshop, 2015, pp. 1-6.
C. Docan, M. Parashar, and S. Klasky, “DataSpaces: An interaction
and coordination framework for coupled simulation workflows,” in
Proc. ACM Int. Symp. High Perform. Distrib. Comput., 2010, pp. 25-36.

Argonne Leadership Computing Facility, “Aurora.” 2016.
[Online]. Available: http:/ /aurora.alcf.anl.gov/

J. Soumagne, et al., “Mercury: Enabling remote procedure call for
high-performance computing,” in Proc. IEEE Int. Conf. Cluster
Comput., Sep. 2013, pp. 1-8.

M. Lehmann, “libev.” 2016. [Online]. Available: http://software.
schmorp.de/pkg/libev.html

OpenSSL Software Foundation, “OpenSSL cryptography and
SSL/TSL Tookit,” 2016. [Online]. Available: https://www.
openssl.org/docs/manmaster/crypto/crypto.html

R. von Behren, J. Condit, and E. Brewer, “Why events are a bad
idea (for high-concurrency servers),” in Proc. USENIX Workshop
Hot Topics Operating Syst., 2003, p. 4.

D. Kimpe, P. Carns, K. Harms, J. M. Wozniak, S. Lang, and
R. Ross, “AESOP: Expressing concurrency in high-performance
system software,” in Proc. IEEE 7th Int. Conf. Netw. Archit. Storage,
2012, pp. 303-312.

L. V. Kale and S. Krishnan, “Charm++: A portable concurrent
object oriented system based on C++,” in Proc. 8th Annu. Conf.
Object-Oriented Program. Syst. Languages Appl., 1993, pp. 91-108.

J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell,
E. Ayguade, and]. Labarta, “Productive programming of GPU
clusters with OmpSs,” 26th IEEE Intl. Parallel and Distrib. Process.
Sympo. (IPDPS), pp. 557-568, 2012.

M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion:
Expressing locality and independence with logical regions,” in
Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2012,
pp. 66:1-66:11.

G.RGao, T. Sterling, R. Stevens, M. Hereld, and W. Zhu, “ParalleX:
A study of a new parallel computation model,” Parallel and Distrib.
Process. Sympo. 2007. IPDPS 2007. IEEE Intl., pp. 1-6, 2007.

H. Pan, B. Hindman, and K. Asanovi¢, “Composing parallel
software efficiently with Lithe,” in Proc. ACM SIGPLAN Conf.
Program. Language Des. Implementation, 2010, pp. 376-387.

P. Charles, et al., “X10: An object-oriented approach to non-
uniform cluster computing,” in Proc. Annu. Conf. Object-Oriented
Program. Syst. Languages Appl., 2005, pp. 519-538.

S. Chatterjee, et al., “Integrating asynchronous task parallelism
with MPL” in Proc. IEEE Int. Symp. Parallel Distrib. Process., 2013,
pp. 712-725.

B. L. Chamberlain, D. Callahan, and H. Zima, “Parallel program-
mability and the Chapel language,” Int. . High Perform. Comput.
Appl., vol. 21, no. 3, pp. 291-312, 2007.

F. Schmager, N. Cameron, and J. Noble, “GoHotDraw: Evaluating
the Go programming language with design patterns,” in Proc.
Eval. Usability Program. Languages Tools, 2010, pp. 10:1-10:6.

C. Tismer, “Continuations and stackless Python,” in Proc. 8th Intl.
Python Conf., vol. 1, 2000.

Sangmin Seo received the BS degree in computer science and
engineering and the PhD degree in electrical engineering and computer
science from Seoul National University, in 2007 and 2013, respectively.
He is an assistant computer scientist in the Mathematics and Computer
Science Division, Argonne National Laboratory. He is a member of
the IEEE.

http://state-threads.sourceforge.net/
http://state-threads.sourceforge.net/
https://www.openmprtl.org/
https://pm.bsc.es/projects/nanox/
https://pm.bsc.es/projects/nanox/
http://www.boost.org/doc/libs/1_57_0/libs/context/
http://www.boost.org/doc/libs/1_57_0/libs/context/
http://icl.cs.utk.edu/papi/
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://gcc.gnu.org/projects/gomp/
http://openmp.llvm.org/
http://openmp.llvm.org/
http://aurora.alcf.anl.gov/
http://software.schmorp.de/pkg/libev.html
http://software.schmorp.de/pkg/libev.html
https://www.openssl.org/docs/manmaster/crypto/crypto.html
https://www.openssl.org/docs/manmaster/crypto/crypto.html

526 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.3, MARCH 2018

Abdelhalim Amer is a postdoctoral appointee in the Mathematics and
Computer Science Division, Argonne National Laboratory. His research
falls generally under the parallel and distributed computing landscape.
He is a member of the IEEE.

Pavan Balaji is a computer scientist in Argonne National Laboratory,
a fellow of the Northwestern-Argonne Institute of Science and Engineer-
ing, Northwestern University, and a fellow of the Computation Institute,
University of Chicago. He leads the programming models and runtime
systems group at Argonne. His research interests include parallel
programming models and runtime systems for communication and 1/0O
on extreme-scale supercomputing systems, modern system architec-
ture, cloud computing systems, data-intensive computing, and big data
science. He is a senior member of the IEEE.

Cyril Bordage received the MSc degree in 2009 and the PhD degree in
computer science from the University of Bordeaux, in 2013. He is a post-
doctoral researcher in the team Tadaam, Inria Bordeaux Sud-Ouest,
in France.

George Bosilca is a research director and adjunct assistant professor in
the Innovative Computing Laboratory, University of Tennessee, Knox-
ville. His research interests evolve around the concepts of distributed
algorithms, parallel programming paradigms, and software resilience,
from both a theoretical and practical perspective.

Alex Brooks received the BA degree in computer science and mathe-
matics from Monmouth College, in 2013. He is working toward the PhD
degree at the University of lllinois at Urbana-Champaign. His current
research interests include parallel programming models, hardware
acceleration, and threading/communication interoperability. He is a
graduate student member of the IEEE.

Philip Carns received the PhD degree in electrical and computer engi-
neering from Clemson University, in 2005. He is a principal software
development specialist in the Mathematics and Computer Science
Division, Argonne National Laboratory, a fellow of the Northwestern-
Argonne Institute for Science and Engineering, and an adjunct asso-
ciate professor of electrical and computer engineering with Clemson
University.

Adrian Castello received the BS degree in computer science and the MS
degree in advanced computer systems from the Universitat Jaume 1, in
2009 and 2011, respectively. He is working toward the PhD degree in the
Departamento de Ingenieria y Ciencia de los Computadores, Universitat
Jaume | de Castell6. He is a graduate student member of the IEEE.

Damien Genet received the PhD degree from the University of Bordeaux,
France, in 2014. He is a postdoctoral researcher in the Innovative
Computing Laboratory, University of Tennessee, Knoxville. His focus is
on parallel programming paradigms for distributed applications.

Thomas Herault received the PhD degree from the University of Paris
Xl, France, in 2003. He is a research scientist in the Innovative Comput-
ing Laboratory, University of Tennessee, Knoxville. His research inter-
ests include fault tolerance, performance modelings, and programming
models for distributed algorithms with emphasis on HPC.

Shintaro Iwasaki received the BS and MS degrees from the University
of Tokyo, in 2015 and 2017, respectively. He is working toward the PhD
degree at the University of Tokyo in Japan. His current research inter-
ests include parallel languages, compilers, runtime systems, and sched-
uling techniques.

Prateek Jindal received the PhD degree in computer science from the
University of lllinois at Urbana-Chanpaign, in 2013. Then he worked on
big data technologies as a software engineer in Yahoo. Subsequently,
he joined UIUC as a postdoc where he contributed to the research
mentioned in this paper.

Laxmikant V. Kalé received the BTech degree in electronics engineer-
ing from Benares Hindu University, India, in 1977, the ME degree in
computer science from the Indian Institute of Science in Bangalore,
India, in 1979, and the PhD degree in computer science from the State
University of New York, Stony Brook, in 1985. He is a full professor with
the University of lllinois at Urbana-Champaign. His current research
interests include parallel computing. He is a fellow of the IEEE.

Sriram Krishnamoorthy is a research scientist and the system
software and applications team leader in PNNL’s High Performance
Computing Group. His research interests include parallel programming
models, fault tolerance, and compile-time/runtime optimizations for high-
performance computing. He is a senior member of the IEEE.

Jonathan Lifflander received the PhD degree from the University of Illi-
nois at Urbana-Champaign, in 2016. He is a research staff in the Sandia
National Laboratories.

Huiwei Lu received the MS and PhD degrees in computer architecture
from Institute of Computing Technology, in 2013. He is a senior software
engineer with Tencent. He was a postdoctoral appointee in the Mathe-
matics and Computer Science Division, Argonne National Laboratory, in
2015.

Esteban Meneses leads the Advanced Computing Laboratory, Costa
Rica National High Technology Center. He also holds a partial appoint-
ment at the Costa Rica Institute of Technology. His research interests
include fault tolerance and programming models for high-performance
computing. He is a member of the IEEE.

Marc Snir is Michael Faiman professor in the Department of Computer
Science, University of lllinois at Urbana-Champaign. He is an AAAS fel-
low, ACM fellow, and a fellow of the IEEE. He has an Erdos number 2
and is a mathematical descendant of Jacques Salomon Hadamard. He
recently won the IEEE Award for Excellence in Scalable Computing and
the IEEE Seymour Cray Computer Engineering Award.

Yanhua Sun received the PhD degree from the University of lllinois at
Urbana-Champaign, in 2015. She is currently a software engineer work-
ing with Google Inc. Her research interests include parallel programming
models, communication optimization, parallel runtime adaptivity, parallel
performance analysis and tuning, and molecular dynamics applications.

Kenijiro Taura received the BS, MS, and DSc degrees from the Univer-
sity of Tokyo, in 1992, 1994, and 1997, respectively. He is an associate
professor in the Department of Information and Communication
Engineering, University of Tokyo. His major research interests include
centered on parallel/distributed computing and programming languages.
His expertise includes efficient dynamic load balancing, parallel and dis-
tributed garbage collection, and parallel/distributed workflow systems.
He is a member of the ACM and the IEEE.

Pete Beckman is the co-director of the Northwestern University /
Argonne Institute for Science and Engineering (NAISE). He leads the
Extreme Computing Group, Argonne National Laboratory.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

