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Abstract—MPI is the most prominent programming model
used in scientific computing today. Despite the importance of
MPI, however, how scientific computing applications use it in
production is not well understood. This lack of understanding is
attributed primarily to the fact that production systems are often
wary of incorporating automatic profiling tools that perform such
analysis because of concerns about potential performance over-
heads. In this study, we used a lightweight profiling tool, called
Autoperf, to log the MPI usage characteristics of production
applications on a large IBM BG/Q supercomputing system (Mira)
and its corresponding development system (Cetus). Autoperf
limits the amount of information that it records, in order to keep
the overhead to a minimum while still storing enough data to
derive useful insights. MPI usage statistics have been collected for
over 100K jobs that were run within a two-year period and are
analyzed in this paper. The analysis is intended to provide useful
insights for MPI developers and network hardware developers for
their next generation of improvements and for supercomputing
center operators for their next system procurements.

Index Terms—MPI, monitoring, Autoperf, core-hours

I. INTRODUCTION

Optimizing scientific computing applications to run on large
supercomputing systems is a complicated process. Effective
utilization of communication resources is vital for application
performance and scaling efficiency. MPI [1] is the predominant
parallel programming model for scientific computing today,
making it a key technology to be optimized so that scien-
tific computing applications can take full advantage of the
supercomputing system that they use. Optimization requires a
detailed understanding of the usage characteristics of applica-
tions on production supercomputing systems. Unfortunately,
such a usage characterization does not exist today, at least
not on large production systems. This situation is attributed
primarily to the fact that production systems are often wary
of incorporating automatic profiling tools that perform such
analysis, because of concerns about potential performance
overheads.

In this paper, we analyze the MPI usage characteristics of
applications on production supercomputers. To this end, we
first present a lightweight profiling tool, called Autoperf, that
we developed as a mechanism for automatically profiling the
MPI usage of applications executing on a large supercomput-
ing system. Autoperf is a PMPI-based tool that transparently
traps MPI calls and gathers various statistics on the MPI
calls. It restricts the data gathered to simple summaries of
the statistics, rather than detailed traces, in order to keep the

overhead—in terms of both cycle count and memory/cache
footprint—to a minimum.

Using Autoperf, we have captured the MPI usage char-
acteristics of production applications on a large IBM BG/Q
supercomputing system (Mira) and its corresponding develop-
ment system (Cetus). Mira is a 786,432-core (10 petaflop)
supercomputer that is ranked 11th in the November 2017
Top500 ranking. Cetus is a 65,536-core supercomputer. Hav-
ing a development system corresponding to a production
supercomputer has become increasingly common in the past
decade. These development systems are smaller-scale versions
of the larger production machine, typically with an identical
hardware and software infrastructure. They are meant to be
used as early development or performance-tuning platforms
for applications that are eventually intended to be executed
on the full production machine. A side-by-side comparison of
both these systems over the same period gives an indication of
the MPI usage characteristics of the applications during their
development time as well as during their production runs.

MPI usage statistics have been collected for over 100K jobs
that were run within a two-year period and are analyzed in this
paper. The bulk of our analysis filters out jobs that are known
MPI microbenchmarks, jobs that are known test applications
(meant for development or profiling), and jobs that are not
long enough in terms of their runtime to be considered real
applications. This filtering was done in order to avoid diluting
our results with such jobs. It leaves us with only those jobs
that we consider are solving real science problems and are
thus the true intent for the usage of the supercomputer.

We present a detailed analysis of the MPI usage logs that
were gathered using Autoperf. In particular, some of the key
(and surprising) insights that we gathered are listed below.

1) The fraction of time used by the MPI library is much
larger than what was previously assumed by most su-
percomputing centers. While most centers realize the
importance of MPI, the general assumption has been that
most production applications tend to spend less than a
quarter of their time in MPI. Our analysis shows that
this is not true even for large production applications.
In fact, a reasonably high number of applications spend
more than half their time in MPI.

2) MPI collectives take a significantly larger fraction of
time compared with point-to-point (send, receive) op-
erations, in terms of both the number of calls and the
total time spent. In fact, the few applications that are
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dominated by point-to-point operations are those that per-
form structured nearest-neighbor communication. Private
discussions with these application developers indicate that
the general goal is to replace the point-to-point operations
with neighborhood collective operations that were intro-
duced in MPI-3. This replacement was not done on Mira
and Cetus, however, because the MPI implementation on
those machines supports only MPI-2.1. Nevertheless, this
trend makes point-to-point operations even less critical in
the future.

3) Hybrid MPI+OpenMP (or pthreads) applications are more
widely used than we expected. In particular, we were
surprised to see that approximately 30% of the pro-
filed jobs used MPI_THREAD_MULTIPLE mode where
multiple threads were issuing MPI calls simultaneously.
Although this trend might be exaggerated by the fact that
IBM BG/Q is one of the few machines that provide an
efficient MPI_THREAD_MULTIPLE implementation, it
does point to a general trend in what applications would
like to use if it were sufficiently optimized.

4) Small message (≤ 256 bytes) MPI_Allreduce opera-
tions are, by far, the most heavily used part of MPI, in
terms of both the number of times the reduction function
is called and the total amount of time spent in it. This
is a reasonably well-understood fact. The surprising part,
however, is that nearly 20% of the jobs use very large
message (≥ 512-Kbyte) MPI_Allreduce operations.

The intent of this analysis is multifold. For MPI developers,
these insights are valuable for better aligning their feature
development roadmaps. For network hardware developers, the
insights point to the usage characteristics of the network
subsystem and help estimate the network efficiency of the
systems. For operators of supercomputer centers, these insights
can provide critical help in administering the current systems
and, more important, in making optimal system design deci-
sions for future procurements.

The insights presented from this study would be similar to
any other system that is of same large scale as BG/Q. At this
scale, the applications tend to use more communication and
parallelism. While the insights at a finer level vary from Mira
to Cetus owing to the way these machines operate and their
scales, at a high-level, the key take aways from the MPI usage
patterns remain the same between these two systems. On a
different system with a different application workload set, we
could potentially notice a different set of insights. However, we
expect that the large collection of data analyzed in this study
repesents the diversity of workload set used by the scientific
community, and thus the insights are of general relevance.

The rest of the paper is organized as follows. The design
of the Autoperf tool along with an assessment on its overhead
is provided in Section II. Section III provides an overview of
all the jobs run on Mira and Cetus in the two-year time frame
considered in this study. Section IV discusses the MPI usage
across all the Autoperf jobs. Other literature related to this
paper is presented in Section V, and our concluding remarks
are presented in Section VI.

II. AUTOPERF: LIGHTWEIGHT MPI PROFILING

Autoperf is a lightweight profiling library for the automatic
collection of hardware performance counters and MPI statis-
tics. The library transparently collects performance data from
a running job, using PMPI redirection for MPI and hardware
counters for processor usage data, and stores this information
as log files at job completion. Autoperf output is in plain text
format and includes MPI usage and performance information
indicating which MPI routines were called, how many times
each routine was called, the time spent in each routine, and the
number of bytes sent or received, where applicable. Data from
the hardware performance counters such as instruction counts,
flop rates, and memory usage is also collected and recorded
in the log.

To collect performance data and generate performance
data files, the program must use MPI, call MPI_Init and
MPI_Finalize, and terminate without error. Logs are gen-
erated at MPI_Finalize so applications that fail to reach
MPI_Finalize will not record a log.

Autoperf records MPI usage statistics from all MPI pro-
cesses. However, in order to reduce memory footprint and
compute overhead, data from only four processes is written to
the log file. These four processes are the process with MPI
rank zero, the process that takes maximum MPI time, the
process that takes minimum MPI time and the process that
takes MPI time close to the average MPI time across all the
ranks. While the data from these four ranks can be used to
approximate the load imbalance in the total MPI communi-
cation, the tool does not capture latency distribution across
the different calls for a specific collective, hence, we can’t
differentiate the collectives actual latency vs. synchronization
overhead due to load imbalance. Unless otherwise noted, the
data reported by the process with average MPI time is used
for further analysis in this study.

A. Overhead of Autoperf
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Fig. 1: Ping-pong latency with and without using Autoperf

An important aspect of any profiling tool is that it should not
deviate significantly from the nonprofiled execution. Thus, the
overhead added by Autoperf—in terms of both performance
and memory/cache usage—is important. Before we analyze
this overhead, we briefly describe the operations involved in a
typical Autoperf execution. Autoperf’s MPI function wrapper
performs the following operations in each call:



Log Data Job Count Core-Hours Executables

RAW data (All jobs) 682255 (100%) 11.6 Bi (100%) 1450
INCITE+ALCC jobs 505648 ( 74.1%) 11.1 Bi ( 95.6%) 819
Jobs after Filtering (Filtered jobs) 405100 ( 59.3%) 10.6 Bi ( 91.1%) 110
Filtered Jobs with exit status 0 or > 255 337942 ( 49.5%) 6.4 Bi ( 54.8%) 105
Filtered Jobs with exit status ≥ 1 & ≤ 255 67158 ( 9.8%) 4.2 Bi ( 36.2%) 110
Filtered Jobs with Autoperf log (Autoperf jobs) 86490 ( 12.6%) 2.6 Bi ( 23.0%) 64

TABLE I: Overview of jobs on Mira for two-year period

Log Data Job Count Core-Hours Executables

RAW data (All jobs) 914419 (100%) 736 Mi (100%) 4352
INCITE+ALCC jobs 148494 ( 16.2%) 191 Mi ( 25.9%) 651
Jobs after Filtering (Filtered jobs) 100442 ( 10.9%) 172 Mi ( 23.3%) 28
Filtered Jobs with exit status 0 or > 255 81839 ( 8.9%) 83 Mi ( 11.2%) 28
Filtered Jobs with exit status ≥ 1 & ≤ 255 18603 ( 2.0%) 88 Mi ( 12.0%) 28
Filtered Jobs with Autoperf log (Autoperf jobs) 34012 ( 3%) 35 Mi ( 4.7%) 15

TABLE II: Overview of jobs on Cetus for two-year period

1) Obtain the time stamp at the start of the call.
2) Convert the MPI data type to a size in bytes.
3) Add the resulting number to the accumulated byte total

for the MPI function.
4) Increment the call counter for the MPI function.
5) Get the time stamp at the end of the call.
6) Subtract from the start time, and add the result to accu-

mulated time for the MPI function.

To understand the overhead associated with the above
sequence of steps, we first performed a simple ping-pong
benchmark to measure the overhead caused by Autoperf. The
results in Figure 1 show that Autoperf adds less than 0.2
us overhead on the performance for latency-sensitive small
message sizes, that is, around 300 processor cycles per MPI
call. When the message size is 512 bytes or larger, the
overhead from Autoperf is not noticeable. We also analyzed
the overhead of Autoperf with several real applications, where
the overhead was negligible. For instance, with the Nek5000
and VSVB applications and the Nekbone miniapp, autoperf
adds less than 0.05% overhead when running on 256 nodes.
Apart from the overhead coming the PMPI instrumentation,
the only other overhead comes from the statistics aggregation
phase (MPI_Reduce) onto selected ranks. Irrespective of the
number of ranks used in the application, the overhead from
this phase is negligible.

With respect to its memory and cache footprint, Autoperf
adds around 200 KB of data per process and collects only
profile data. Profile size is fixed and is not dependent on
the characteristics of the process. This includes storage for
the hardware performance counters as well as that for MPI
functions. The active memory footprint, which is the amount of
data that is fetched and processed during most of the execution,
is just three data entities, timestamp (64-bit int), call count
(64-bit int) and total bytes (double), for each monitored MPI
function. All data should fit into a single cache line, thus,
minimizing cache pollution and allowing for efficient access.

B. Limitations of Autoperf

Although Autoperf is commissioned in production to cap-
ture MPI usage data for all the jobs, not all the jobs would
have an Autoperf log. To determine the reasons for missing
coverage of Autoperf for some executables, we used multiple
sources, including surveying the users with a questionnaire and
parsing through the logs of Tracklibs (a tool linked by default
with all executables that logs the set of libraries linked). The
reasons gathered are provided in the appendix A.

III. OVERVIEW OF JOBS

In this section we first describe the characteristics of all
the jobs run on Mira and Cetus over the past two years. We
also demonstrate later that the jobs monitored by Autoperf
are representative of all jobs of significance on the respective
systems.

A. Control System

The BG/Q nodes are stateless with no embedded read-only
memories or resident basic input/output system. When the
node hardware is reset, the control system server [2] loads
the OS into the memory of each compute node and boots
the nodes. The control system server, encompassing multiple
software components for managing the hardware resources,
is run on the service node and provides an interface to the
hardware-level system components. Users access the control
system primarily through a job scheduler, whereas system
administrators can log all the requests processed by the control
server. The BG/Q job schedulers use the runjob [2] interface
for job submission. The control system logs includes all
the runjob commands processed on the system. We use the
control system log data pertaining to the two-year time frame
and process these logs to determine the jobs that were run
successfully and the jobs that were aborted. If a job fails to
start or exits because of any signal, the nonzero exit status
will be between 1 and 255 inclusive [2]. A zero exit status
or an exit status of more than 255 corresponds to a normally
exited job, and these jobs should potentially go through the



Autoperf summarization step in MPI_Finalize and thus
should ideally have an Autoperf log.

B. Summary of Jobs

Table I summarizes all the jobs run on Mira in the two-
year time frame (years 2016 and 2017). The total core-hours
consumed on the system for these two years account for
around 11.6 billion core-hours spread across 1,450 unique
executables. These jobs come from the different compute
time allocations on Mira including major scientific compute
allocations such INCITE [3] and ALCC [4] as well as smaller
experimental allocations. The INCITE and ALCC allocations
cater to grand challenge investigations in science and technol-
ogy that have the potential for impact at the national and global
scale. To ensure that our observations and insights in this
study are based on real scientific codes and not on benchmark
codes, we first filter out the jobs belonging to allocations other
than INCITE and ALCC as they generally do not represent
scientific production simulations. By applying this filtering,
although we lose 25.9% of the jobs in terms of job count, only
4.4% of the core-hours are lost. However, we still have around
819 unique executables, which possibly include executables
corresponding test and debug runs. Hence, we apply another
filtering criterion, removing jobs belonging to executables that
take less than 0.1% of the total (11.6 Bi) core-hours. With this
filtering, we are left with around 405K jobs accounting for
around 10.6 Bi core-hours. We now have only 110 executables,
and these executables belong to various science domains, with
lattice QCD (18), molecular dynamics (11), computational
fluid dynamics (11) and quantum chemistry (9) being the
prominent domains. While 47 of these 110 executables have no
Autoperf coverage, around 30 executables have more than 50%
of their core-hours logged by Autoperf. The reason for this
missing coverage from Autoperf was discussed in Section II-B.

Table I categorizes these jobs based on their exit status.
Not all the jobs that exit cleanly have an Autoperf coverage,
with only 23% of the total core-hours covered by Autoperf. A
high-level summary of jobs on Cetus is provided in Table II.
Owing to its mode of usage as a test and development
resource, filtered jobs (applying the same filtering criteria as
applied earlier) on Cetus come from a smaller number (15) of
applications.

The following terminology is used for the different sets of
jobs analyzed in this study: All jobs: all the jobs logged by the
Control system; Filtered jobs: jobs after removing the those
that do not meet the filtering criteria (jobs corresponding to
applications that take less than 0.1% of the total core-hours and
belonging to an ALCC or INCITE allocation); and Filtered
Autoperf jobs: filtered jobs that have an Autoperf log.

C. Core-Hours and Runtimes of the Jobs

A more detailed analysis of the jobs in terms of their core-
hour and runtime distributions is provided here. Figure 2
shows the distribution of core-hours across the different al-
location sizes for All jobs, Filtered jobs, and Autoperf jobs
on Mira. It shows that around 10% of the total core-hours

is accounted for by jobs that use around 48K nodes (whole
system) allocation. All jobs, Filtered jobs, and Autoperf jobs
have roughly similar distributions except for 4K jobs, where
Autoperf jobs consume significantly more core-hours. Even
though of 90% (in job count) of the All jobs use 2K or fewer
nodes, they consume only 50% of the core-hours. The rest of
the 10% jobs use more than 2K and up to 48K nodes and
consume the remaining 50% of the total core-hours. Autoperf
has good coverage for these large node jobs. The core-hour
distribution for jobs on Cetus is shown in Figure 3.
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Fig. 2: Job sizes and the corresponding core-hours on Mira
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Fig. 3: Job sizes and the corresponding core-hours on Cetus

Figure 4 shows the cumulative distribution of runtimes
across the jobs on Mira sorted by the runtimes for All jobs,
Filtered jobs and Autoperf jobs. Although the aim of the
filtering criteria is to filter out test and benchmark executables,
which typically have smaller runtimes, no explicit filtering
scheme based on runtimes is used. Hence, some runs of filtered
applications may still have short runtimes; however, these
jobs would not have a meaningful Autoperf log and hence
do not appear in the Autoperf jobs. The range of Autoperf
runtimes starts at a higher value than that of the Filtered jobs,
with 80% of the core-hours corresponding to jobs that take
more than 1,000 seconds. More importantly, the distribution
of runtimes in Autoperf jobs is representative of the runtimes
for the Filtered jobs.

Similarly, the runtime distributions on Cetus are shown in
Figure 5.

Since, Autoperf jobs cover the spread of job sizes possible
on the systems and their runtime and core-hour distributions
are representative of the Filtered jobs, we argue that the
observations we make in the following sections based on



Fig. 4: Runtime distribution across the jobs on Mira

the Autoperf log data have significant merit because they are
representive of the entire systems workload.

Fig. 5: Runtime distribution across the jobs on Cetus

IV. MPI USAGE ACROSS ALL THE APPLICATIONS ON
MIRA & CETUS

This section provides a high-level overview of the MPI us-
age across all the Filtered Autoperf jobs and the corresponding
applications. In this section, the term total jobs refers to the
Filtered Autoperf jobs.

A. Overview of MPI Usage of Autoperf Jobs

Fig. 6: MPI fraction in runtime across the jobs on Mira

An Autoperf log records the time spent in MPI and the
total runtime of the job. The ratio of these two times gives the
fraction of time spent in the communication (MPI) phases of
the application. Figure 6 shows the MPI fraction across all the
jobs on Mira. The CDF (cumulative distribution function) and
the CCDF (complementary cumulative distribution function)

Fig. 7: MPI fraction in runtime across the jobs on Cetus

are shown in Figure 6. It shows that around half of the jobs
have an MPI fraction of 0.3 or more (i.e., 30% of the total
time is spent within MPI). Also, around 20% of the jobs spend
almost no time in MPI, having a MPI fraction of close to zero.
We attribute this behavior to the Monte Carlo applications
such as QMCPACK [5], QWalk [6], and topmon [7]. Further,
around 15% of the jobs have spent more than 60% of the total
time in MPI. While the Figure 6 shows the MPI fraction in
the total time, the constituents parts of the MPI time in terms
of collectives and point-to-point times is shown in the Figures
14 and 24 respectively.

Figure 7 shows the MPI fraction across all the jobs on Cetus.
Around half of the jobs have an MPI fraction of 0.5 or more.
Further, around 10% of the jobs have spent more than 80% of
the total time in MPI.

Roughly 34% of core-hours on Mira are expended in MPI.

In summary, a significant portion of the resource usage
(represented in terms of core-hours) is accounted for by the
time spent in communication and synchronization. One cannot
always decompose this time into constituent parts such as
time spent in the MPI software stack, time spent in the
network interface layer (such as SPI on BG/Q), time delay
on the interconnect network and the time spent waiting due
to application load imbalance. At a high level this suggests
that optimizing MPI could improve the performance of ap-
plications to the extent that the time in MPI is bound by
communication latency, i.e., the MPI time is bound by the
actual communication latency (number of instructions needed
to instruct the hardware to perform communication) rather than
the synchronization time (due to application load imbalance).

B. MPI Collectives and Point-to-Point Operations

Presented here are the usage patterns of collective and point-
to-point operations summarized across all the runs in the
filtered Autoperf logs. The collective operations account for
66% of the total MPI time, whereas the rest is accounted for
by the point-to-point operations.

Collectives are used prominently than point-to-point opera-
tions.

1) MPI Collectives: Figures 8 and 9 show the aggregated
call counts and times (represented in terms of core-hours along
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Fig. 8: MPI collectives call count on Mira
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Fig. 9: MPI collectives time (in terms of core-
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Fig. 10: MPI collectives total bytes (normal-
ized bytes) used on Mira
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Fig. 11: MPI collectives call count on Cetus
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Fig. 13: MPI collectives total bytes (normal-
ized bytes) used on Cetus

Fig. 14: Collectives fraction in total job runtime across the jobs on
Mira

Fig. 15: Collectives fraction in total job runtime across the jobs on
Cetus

with their ratios in total MPI core-hours), respectively, for the
collectives on Mira.
MPI_Allreduce accounts for 19.4% of the total core-

hours in MPI (aggregated across all the jobs) on Mira.
Overall, MPI_Allreduce, MPI_Bcast, MPI_Barrier,
MPI_Alltoallv, and MPI_Reduce are the significant
collectives in terms of time (or core-hours) across all the jobs.

Fig. 16: MPI collectives total accumulated bytes on Mira

Fig. 17: MPI collectives total accumulated bytes on Cetus

The collectives MPI_Exscan, and MPI_Scatter are not
used as often as the rest of the collectives.
MPI_Allreduce is the most significant collective in terms
of usage and time (MPI core-hours).

Figures 11 and 12 provide the call counts and times (repre-
sented in terms of core-hours along with their ratios in total
MPI core-hours) respectively for the collectives on Cetus. Here
again, MPI_Allreduce is the most prominent collective in
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Fig. 18: MPI point-to-point call count on Mira
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Fig. 20: MPI point-to-point total bytes (nor-
malized bytes) used on Mira

terms of call count and time. It accounts for 30.4% of the total
core-hours in MPI. The usage of other collectives is similar
to that observed on Mira.

Autoperf reports the total bytes communicated through all
of the monitored MPI primitives (collectives and point-to-point
operations). Figure 10 shows the total bytes (accumulated
across all the jobs) for both the nonvector and the vector
collectives on Mira. Because of the range of sizes used, a
log scale is used in the figure. While these sizes are not
an exact representation of the eventual data volume on the
physical network due to a collective, this should nevertheless
be helpful in providing a rough estimate. The total bytes
used in the individual collectives across all the Autoperf jobs
can be summed up, and from that a rough estimate on the
bytes used per call (total bytes divided by the call count)
for each collective can be calculated. While MPI_Bcast and
MPI_Reduce potentially use larger buffer sizes compared
with the rest of the nonvector collectives, MPI_Alltoallv
and MPI_Allgatherv potentially use larger buffer sizes
among the vector collectives. Overall, MPI_Alltoall and
MPI_Allreduce are responsible for high data volume on
the network compared to the rest of the collectives. Figure 13
shows the total bytes used for the collectives on Cetus indi-
cating a similar trend to that observed on Mira.

The time spent in collective operations across the jobs
ordered by their respective collectives fraction with respect
to the total application runtime is shown in Figures 14 and
15 for Mira and Cetus respectively. Around 10% of the jobs
spend a large portion of their total runtime within the collective
operations.

Autoperf records four stats (call count, total cycles, total
bytes, total time) for the MPI collective and point-to-point
interfaces. The total bytes recorded for a collective is the
cumulative sum of the buffer sizes used across the different
calls for that collective on a process. While the tool does not
capture the distribution of buffer sizes used across all the
calls of a collective, the potential buffer size used can be
approximated using the total bytes used and the call count.
While this normalization indirectly includes the job length
attribute, the job size attribute is not considered, thus, the data
can only be used as a representative estimate. Figure 16 shows
the CCDF plot of the normalized bytes (total bytes divided by
call count) used across all the jobs. The figure shows that
around 40% of the jobs use MPI reduction operations with

small messages (possibly buffer sizes less than 256 bytes),
thus emphasizing the importance of small message collectives.
Medium-sized (<=16K) reduction operations are used by
70% of the jobs. Only 5% of the jobs use MPI_Bcast
with messages of 16M bytes or larger. Figure 17 shows the
normalized bytes for the jobs on Cetus. The prominence of
small MPI reductions is even greater on Cetus, with around
85% of the jobs using these. This quantitative data can be used
for choosing the optimal MPI runtime configurable parameters
and for configuring the collective algorithm choices.

Small sized reduction performance is most important.

2) MPI Point-to-Point Operations: MPI supports blocking,
nonblocking, and persistent point-to-point operations. The
point-to-point operation call counts and times (in MPI core-
hours) on Mira are shown in Figures 18 and 19, respectively.
The nonblocking mode of communication (MPI_Isend,
MPI_Irecv, and MPI_Wait operations) is used more
prominently than the blocking mode of communication
(MPI_Send and MPI_Recv). The persistent mode of com-
munication (MPI_Send_init and MPI_Recv_init) is
used as well by some applications. The Wait operations dom-
inate the total time in the point-to-point operations, indicating
that most of the applications are programmed to potentially
exploit the computation and communication overlap. The
operation call counts and times (in MPI core-hours) on Cetus
shown in Figures 21 and 22, respectively, show a similar
behavior.

Nonblocking point-to-point operations are used more fre-
quently than blocking or persistent operations

The bytes communicated per call (normalized bytes) with
the different point-to-point operations for jobs on Mira and
Cetus are shown respectively in Figures 20 and 23. While these
sizes are much lower than those with the collective operations,
these are significant when the corresponding data volume on
the network is considered.

Figure 24 shows the time spent in point-to-point operations
across the Mira jobs ordered by their respective point-to-point
fraction with respect to the total time. Almost 50% of the
jobs do not use point-to-point operations. When compared to
Figure 14, the CCDF in Figure 24 drops more rapidly, thus,
indicating that applications use more time on collectives.
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Fig. 24: Point-to-point fraction in runtime across the jobs on Mira

Fig. 25: Point-to-point fraction in runtime across the jobs on Cetus

The point-to-point fraction for Cetus jobs is shown in Figure
25. Here we can observe a distinctively different behavior from
that noticed on Mira.

C. Applications and Their MPI Usage

Here we present an overview of the MPI usage of the
applications (or unique executables). Table I shows 64 unique
executables on Mira within the filtered Autoperf logs. The total
86K Autoperf logs essentially correspond to the different exe-
cutions of these 64 executables. The aggregated MPI fraction
across the different jobs corresponding to the 64 executables is
shown in Figure 26. The multiple executions of an application
could possibly have differing communication characteristics
owing to the change in the run parameters. The data is arranged
as per the median (across all the runs of an application) MPI
fraction value in decreasing order. The range bars indicate the
IQR (interquartile range) in the MPI fraction value across the
different runs of an application. This range may be due to the
differences in the execution parameters such as the input data
set, runtime parameters and the problem size. An application

may show different communication characteristics at different
scales. We note that 15 of the 64 executables have an MPI
fraction above 0.6, meaning they spend 60% of the runtime in
MPI communication. At least half of the executables have an
MPI fraction higher than 0.4. Figure 26 shows the applications
labeled with their science domains. While no clear correlation
patterns exist between the science domain and the MPI ratio,
we can see that QMC codes have a relatively low MPI portion
whereas the materials (SPH Meso) code QDPD [8] and a
quantum chemistry code VSVB [9] spend 80% of the time
in MPI.

An application could have differing communication charac-
teristics depending on the problem size, input data and execu-
tion parameters. The multi-modal distribution of runtimes (and
the MPI ratios) across the runs is possible due to any of these
changes, however, of these Autoperf only captures the node
size parameter which by itself is insufficient to characterize
the multi-modality.

Table II shows 15 unique executables within the Autoperf
logs on Cetus. (Note that these are a subset of the 64
executables on Mira. However, Cetus is smaller than Mira and
is used differently from Mira; hence, data from Cetus is also
presented.) The total 34K Autoperf logs essentially correspond
to the different executions of these 15 executables. Figure 27
shows the aggregated MPI fraction across the all Autoperf jobs
on Cetus corresponding to the 15 executables along with their
science domains.

Figure 28 shows the same data as in Figure 26; however, the
data is now sorted based on the core-hour consumption by the
executables. The highest core-hour consumer executable has
an MPI fraction of 0.5. While no obvious patterns exist, we
note that some of the top core-hour consumer executables have
higher (greater than 0.5) MPI fraction value. Similarly, the
data for Cetus applications shown in Figure A.1 also indicates
that top core-hour consumer applications are dominated by the
communication.

Some of the top core-hour consuming applications have high
MPI time fractions.

1) Collectives and Point-to-Point Operations: Analyzed in
this section are the usage patterns of the collective and point-
to-point operations in the 64 applications on Mira. Figure 29
shows the breakdown of total runtime in terms of non-MPI or
compute portion and communication portion (MPI collective
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Fig. 26: MPI fraction of the applications (labeled with the corresponding science domain) on Mira
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Fig. 27: MPI fraction of the applications (labeled with the corre-
sponding science domain) on Cetus
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Fig. 28: MPI fraction of the applications (sorted by the core-hours
recorded in Autoperf) on Mira

and point-to-point operations) for each application. The data
presented in the figure is a representative breakdown of the
time, considering the range of potentially differing communi-
cation characteristics across the runs of an application, it is not
feasible to depict an exact characterization of all applications.
However, given that all the time components referred in the
figure are normalized with respect to same quantity (total
application time), the data presented here is beleived to be
a reasonable representation of the applications. While the
usage of collectives is dominant compared with the point-to-
point operations, few applications have their MPI time spent
only within the collective communication. Figure 30 shows

the same data with applications ordered by their compute
fractions. Five applications have spent their MPI time pre-
dominantly in point-to-point operations, while more than half
of the 64 applications have spent a major portion of their
communication time in collectives.
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Fig. 29: MPI primitive time breakdown in communication time of
the applications (ordered by core-hours) on Mira
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Fig. 30: MPI primitive time breakdown in communication time of the
applications (in decreasing order of the compute-to-communication
ratio) on Mira

Half of the total applications have spent a majority of their
MPI time in collectives.

The time breakdown in compute and communication por-
tions for applications on Cetus is provided in the appendix.



Similar to that observed on the Mira applications, the usage of
collectives dominate compared to the usage of point-to-point
operations.

V. RELATED WORK

MPI profiling tools collect summary information (e.g. time,
call count, message volume) for a specified set of MPI
interface routines and/or MPI call stacks from a defined set
of processes (some or all MPI processes). Profiling tools such
as mpiP [10], IPM tool [11]–[13] and Darshan [14] provide
performance information of a single MPI application execution
and are mostly used by developers to optimize the code.

MPI tracing tools collect execution traces of events of
interest, they typically record data for every call for each MPI
function of interest. Vampir [15], DUMPI [16] and the Intel
Trace Analyzer and Collector (ITAC) [17] are the commonly
used tracing tools. Tracing tools provide a more accurate
view of the performance at the expense of higher overhead
compared to the profiling tools. They can be used to identify
hotspots, load imbalances and MPI communication patterns
etc. Traces can be analyzed after a run in order to infer the
application behavior for understanding the computation and
communication phases. The mpiP [10] tool uses a statistical
analysis approach for understanding the scalability of MPI ap-
plications. Rather than capturing the MPI traces, it summarizes
statistics at a per process level at runtime and aggregates the
statistics at the completion of the job.

Tools such as Tau [18] and CrayPAT [19] can be configured
to do both tracing and profiling. Other tools such as HPC-
Toolkit [20], Score-P [21], Extrae [22] also be used for tracing
and profiling. PMPI is an MPI standard profiling interface
that provides an interface for profiling tools to intercept MPI
calls. Many of the tools mentioned above use the PMPI
interface [23].

The Autoperf tool used in this study can be viewed as a
light-weight MPI profiling tool, or more precisely, referred as
an MPI monitoring tool as it is meant to monitor the MPI
usage of all jobs on a system and not typically used as a
profiler for a specific execution. IPM tool [11]–[13] allows
for MPI application profiling and workload characterization,
IPM supports two modes of reporting, detailed mode (full)
and concise mode (terse). The logs generated by IPM can be
analyzed after a run in order to infer the application behavior
for understanding the computation and communication phases.
Similar to Autoperf, IPM and EZM [24] have been used
in production, however, there is no known detailed report
on the log analysis using these tools. IBM’s HPC Toolkit
(HPCT) [25] has the same set of MPI wrapper coverage and
implementation as the Autoperf tool. The use of monitoring
tools for automated collection of MPI usage patterns on
production systems was presented in some early efforts [26],
[27] and [28].

Tools have also been developed to aid in debugging com-
plex MPI applications, Florez et al. [29] and Whalen et
al. [30] presented methods to verify the correct execution
of an MPI parallel program. They implemented lightweight

monitoring for anomaly detection but made no attempt to
accumulate log-type data for the whole application. Although
the tools discussed thus far are MPI based and focused on
monitoring or profiling MPI codes, monitoring tools such
as LDMS (Lightweight Distributed Metric Service) [31] and
HOPSA [32] have been developed to obtain systemwide
resource utilization information on production HPC systems.
While thes system-scale tools help monitor global events such
as network congestion, however, they do not have access to
the application context and thus cannot correlate application
effects with network effects. The INAM [33] tool can monitor
and correlate the impact of particular MPI jobs on InfiniBand
networks. An overview of the application I/O behavior can be
monitored by using Darshan [14].

As opposed to the standard PMPI interface approach where
the MPI calls are intercepted, OpenMPI provides a low-
level monitoring tool using an API based on the MPI tool
standard [34]. This tool can trace the actual point-to-point
communications that are issued by OpenMPI collective op-
erations. While this tool provides information at different
granularities, either as communication patterns or as message
size distributions, it has not yet been evaluated in production
system settings.

In summary, Autoperf provides lightweight monitoring and
has been used in production for few years without any reported
issues from the users. Also, it provides a sufficient coverage
of the leadership-quality application set and production use
of MPI on a leadership scale resource. To the best of our
knowledge, ours is a first reported effort on analyzing the
production application MPI usage patterns of large scale.

VI. CONCLUDING REMARKS

In this paper, we study the usage characteristics of MPI
on a production supercomputing system, Mira, and its cor-
responding development system, Cetus. We first present a
lightweight profiling tool, called Autoperf, that profiles and
logs summarized statistics of MPI usage for each application.
Using Autoperf, we collected MPI usage profiles for around
100K jobs over a two-year period. We then present an analysis
that uses these MPI usage logs and provide several key—
previously unknown—insights into how scientific computing
applications use MPI in production.
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APPENDIX A
ADDENDUM: PERFORMANCE CHARACTERIZATION OF MPI

ON A PRODUCTION SUPERCOMPUTER

We provide additional details on the monitoring tool in this
appendix. Also, we provide analysis on the other aspects of
MPI usage such as MPI-IO and the hybrid MPI.

A. Limitations of Autoperf

Although Autoperf is commissioned in production to cap-
ture MPI usage data for all the jobs, not all the jobs would
have an Autoperf log. To determine the reasons for missing
coverage of Autoperf for some executables, we used multiple
sources, including surveying the users with a questionnaire and
parsing through the logs of Tracklibs (a tool linked by default
with all executables that logs the set of libraries linked). The
reasons gathered are provided below.

• Codes not using MPI. Some applications, such as those
corresponding to lattice QCD (such as MILC, CPS, and
Chroma) use the BG/Q SPI low level communication API
directly for efficient communication, instead of relying on
MPI.

• Executables built with other conflicting profiling libraries.
For example, BGPM, TAU, and HPCTW would not have
Autoperf linked with them, since autoperf profiles the
hardware counter-based data by using BGPM.

• Executables that are not linked with autoperf: autoperf
is linked by default only for the XL and GCC com-
piler wrappers. Executables build with CLANG compilers
wrappers, ex. some builds of QMCPACK, do not have
autoperf linked automatically.

• Executables that do not call MPI_Finalize. These
might not necessarily be erroneous applications. In some
cases, applications simply write occasional checkpoints
and continue execution until their job terminates, and the
next job simply continues from the last checkpoint. An
example application that falls in this category is Nek5000.

B. MPI Usage

1) MPI Thread Execution Environment on Mira:
The MPI execution environment is initialized by us-
ing MPI_Init or MPI_Init_Thread. The valid MPI
thread environment options are MPI_THREAD_SINGLE,
MPI_THREAD_FUNNELED, MPI_THREAD_SERIALIZED,
and MPI_THREAD_MULTIPLE. Table A.1 shows the use
of these modes across the jobs and the applications.
MPI_THREAD_SINGLE is the predominantly used op-
tion, with 62% of the jobs using this option. In terms
of core-hour percentage, MPI_THREAD_FUNNELED is the
next prodomminently used option. While around 30% of
jobs use the MPI_THREAD_MULTIPLE option, they es-
sentially belong to the three specific executables. Al-
though this data is representative, we note that users
may have incorrectly indicated MPI_THREAD_SINGLE
when they actually meant MPI_THREAD_FUNNELED or
MPI_THREAD_SERIALIZED.

TABLE A.1: MPI thread modes used in MPI communicator creation
for jobs on Mira

MPI Thread Mode Job Count Core-Hours Executables

MPI_THREAD_SINGLE 62.2% 69.7% 51
MPI_THREAD_FUNNELED 6.2% 15.7% 10
MPI_THREAD_SERIALIZED 0.6% 7.1% 4
MPI_THREAD_MULTIPLE 30.8% 7.3% 3

2) MPI Node-Level Parallelism on Mira: The compute
nodes on Mira have a PowerPC A2 1600 MHz processor con-
taining 16 cores, each capable of 4-way hardware threading.
Hence, potentially 64 MPI processes can run on a compute
node. Table A.2 shows usage of on-node MPI parallelism
across all the Autoperf jobs on Mira. Whereas 60% of the
jobs use one or two processes per node, the rest of the jobs
primarily use either 4-way or 16-way MPI parallelism. This
information can be helpful to center operators in defining
the most suitable default environment settings that would be
applicable broadly to a large fraction of the jobs.

TABLE A.2: MPI processes per node for jobs on Mira

MPI Processes Job Count Core-Hours
per Node

1 38.1% 22.5%
2 22.6% 16.9%
4 16 % 9.2%
8 2.4% 20.0%

16 17.5% 22.7%
32 1 % 7.7%
64 1.9% 0.7%

3) MPI-IO usage on Mira: The Darshan tool [14] which
records the IO interface usage patterns is enabled by default
on Mira and has been designed to work in conjunction with
Autoperf. Darshan captures MPI-IO routines using the PMPI
interface.

The Table A.3 shows the MPI-IO usage statistics across
all the Filtered Autoperf jobs that have a Darshan log file.
Around 83.7% of the Filtered Autoperf jobs have a Darshan
log. Collective MPI file write is the most prominently used
MPI-IO interface. Darshan does not distinguish between the
file pointer based (ex. MPI_File_read) and the explicit
offset based (ex. MPI_File_read_at) file operations.

TABLE A.3: MPI-IO interface usage counts across all Filtered jobs
on Mira

MPI-IO Interface Usage Count

MPI_File_iread[_at] 0
MPI_File_iwrite[_at] 0
MPI_File_open [Collective] 5e+09
MPI_File_open [Independent] 4e+05
MPI_File_read[_at] 2e+09
MPI_File_read[_at]_all 4e+05
MPI_File_read[_at]_all_begin 0
MPI_File_set_view 9e+10
MPI_File_write[_at] 1e+08
MPI_File_write[_at]_all 7e+10
MPI_File_write[_at]_all_begin 0
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Fig. A.1: MPI fraction of the applications (sorted by the core-hours
recorded in Autoperf) on Cetus
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Fig. A.2: MPI primitive time breakdown in communication time of
the applications (ordered by core-hours) on Cetus

4) Applications and Their MPI Usage on Cetus: Figure A.2
shows the time breakdown in compute and communication
(collective and point-to-point operations) portions on Cetus.
Similar to that observed on the Mira applications, the usage of
collectives dominate compared to the usage of point-to-point
operations.



APPENDIX B
ARTIFACT DESCRIPTION: PERFORMANCE

CHARACTERIZATION OF MPI ON A PRODUCTION
SUPERCOMPUTER

A. Abstract

This artifact contains the source code for the Autoperf tool
that is used in this study as a lightweight MPI monitoring
tool, a sample log file format as recorded by Autoperf, and the
SPARK-based parallel analysis tool used to efficiently process
the huge (100K) set of log files. The instructions and the tools
provided here would be helpful to commission Autoperf on
any production system and to make similar observations that
were presented in this paper.

B. Description

1) Checklist (artifact metainformation):
• Tools: Autoperf, tool to process the control system log

files, SPARK-based parallel tool to process the Autoperf
logs

• Compilation: MPI monitoring portion of Autoperf,
which can be built with any MPI-based compiler

• Software: SPARK
• Compilation: MPI compiler
• Runtime environment: Linux/Unix-based OS
• Hardware: BG/Q system Mira; Autoperf is based on

PMPI and hence is portable to any Linux/Unix-based
system with MPI

• Execution: See respective run scripts
• Output: Log files from Autoperf, summary statistics

from the Analysis tool
• Experiment workflow: Download source code, compile

source code, commission the tool on a production system
using either modules or softenv type of package managers
or make it part of the default MPI compiler wrapper, parse
the output files, and analyze them using SPARK-based
tool.

• Publicly available?: Yes
2) How delivered: The Autoperf tool and various other

processing scripts used in this study are accessible at
https://repocafe.cels.anl.gov/repos/autoperf.

3) Hardware dependencies: Autoperf log data is collected
on Argonne’s Mira and Cetus systems; both systems are IBM
Blue Gene/Q machines using the IBM’s CNK OS on the
compute nodes. The control system data that is used in this
study is specific to a BG/Q system. Similar infrastructure for
the Cray machines is the Cray ALPS (Application Level Place-
ment Scheduler). The Autoperf used on Mira and Cetus in
production monitors both the hardware performance counters
and the MPI usage data. While this version is not portable to
a machine other than BG/Q, the MPI monitoring portion of
the Autoperf is based on PMPI interface and hence is portable
to other systems.

4) Software dependencies: The Autoperf library tool was
built on Mira and Cetus using the BG/Q default compiler suite.
Since Autoperf’s hardware counters monitoring is performed
using the BGPM (BG/Q performance monitoring) interface,
Autoperf cannot be linked with executables that link BGPM
for profiling and debugging reasons. Also, since the MPI
monitoring portion is based on PMPI interface, executables
that are linked with any PMPI-based profiling tool cannot link
the Autoperf library.

5) Datasets: The control system log data used in this study
is accessible at https://reports.alcf.anl.gov/data/index.html,
specifically the ”TASK HISTORY” and
”DIM JOB COMPOSITE” datasets for Mira for the
two years 2016 and 2017 are used in this study. These files
contain the details on all the control system (runjobs)
that were run during the two-year time period. An
anonymized version of the Autoperf log data is accessible at
https://reports.alcf.anl.gov/data/index.html. An Autoperf log
file is a single simple text file containing MPI usage data
from four processes from a run. The size of a log file is on
the order of 36 kilobytes, and whole log data for the two
years (2016 and 2017) is in the order of 113 gigabytes. The
SPARK-based tool was able to process this whole data on an
Intel Xeon system in 15 minutes.

An Autoperf log file contains the four stats (call count, total
cycles, total bytes, total time) for the following MPI func-
tions: MPI_Comm_size, MPI_Comm_rank, MPI_Send,
MPI_Ssend, MPI_Rsend, MPI_Bsend, MPI_Isend,
MPI_Issend, MPI_Irsend, MPI_Ibsend,
MPI_Send_init, MPI_Ssend_init,
MPI_Rsend_init, MPI_Bsend_init,
MPI_Recv_init, MPI_Recv,
MPI_Irecv, MPI_Sendrecv,
MPI_Sendrecv_replace, MPI_Buffer_attach,
MPI_Buffer_detach, MPI_Probe,
MPI_Iprobe, MPI_Test, MPI_Testany,
MPI_Testall, MPI_Testsome, MPI_Wait,
MPI_Waitany, MPI_Waitall, MPI_Waitsome,
MPI_Start, MPI_Startall, MPI_Bcast,
MPI_Barrier, MPI_Gather, MPI_Gatherv,
MPI_Scatter, MPI_Scatterv, MPI_Scan,
MPI_Allgather, MPI_Allgatherv, MPI_Reduce,
MPI_Allreduce, MPI_Reduce_scatter,
MPI_Alltoall, MPI_Alltoallv,
MPI_AlltoallW and MPI_Exscan.

The MPI topology related calls were not monitored in this
version of the tool, however, the future version of the tool
is being designed to capture all the new MPI interfaces as
well. The methodology used by the tool is portable and can be
adapted to other platforms, we are now deploying an improved
version of Autoperf on Theta.

Similar to IPM, Autoperf also records HPM (processor)
related performance data as well, though those portions of
the logs are not presented here.

As mentioned, Autoperf does not capture codes such as
Nek5000, GFMC that use a checkpoint-restart mode of ex-
ecution, however, we have ideas (using mmap or coredump)
to cover these codes in the future.



C. Installation

Build instructions for building Autoperf and the SPARK-
based analysis tool will be provided at the github site. Since
the tools are tested primarily on Mira and Cetus, which are
BG/Q systems, the build commands provided give examples
that should be adapted if they are to be used on other systems.

D. Experiment Workflow

• Build Autoperf on a given production system to monitor
MPI usage.

• Choose the file system path where the Autoperf log files
would be written, and set the proper file permissions.

• Commission Autoperf in production to capture log data
from the jobs.

• Process the log data using SPARK-based tool to generate
statistics that can be used to gain insights from the data.

E. Evaluation and Expected Results

The expected results from Autoperf are the generation of
log files containing the MPI usage summary. The logs can be
then be processed in the analysis phase to gain insights as
presented in this paper. All in the log data and the Analysis
would help provide insights for the following:

• MPI developers, to better align future feature roadmaps
considering the needs of production applications

• Supercomputing facility operators, to optimize resource
usage by employing better job coscheduling strategies

• Procurement team, to influence the future system design
and enable better match between applications and the
system characteristics

• Users, to look for opportunities to optimize their parallel
codes


