
J Supercomput (2018) 74:5628–5642
https://doi.org/10.1007/s11227-016-1791-y

Exploring the interoperability of remote GPGPU
virtualization using rCUDA and directive-based
programming models

Adrián Castelló1 · Antonio J. Peña2 · Rafael Mayo1 · Judit Planas3 ·
Enrique S. Quintana-Ortí1 · Pavan Balaji4

Published online: 21 June 2016
© Springer Science+Business Media New York 2016

Abstract Directive-based programming models, such as OpenMP, OpenACC, and
OmpSs, enable users to accelerate applications by using coprocessors with little effort.
These devices offer significant computing power, but their use can introduce two prob-
lems: an increase in the total cost of ownership and their underutilization because
not all codes match their architecture. Remote accelerator virtualization frameworks
address those problems. In particular, rCUDA provides transparent access to any
graphic processor unit installed in a cluster, reducing the number of accelerators and
increasing their utilization ratio. Joining these two technologies, directive-based pro-
gramming models and rCUDA, is thus highly appealing. In this work, we study the
integration of OmpSs and OpenACC with rCUDA, describing and analyzing several

B Adrián Castelló
adcastel@uji.es

Antonio J. Peña
antonio.pena@bsc.es

Rafael Mayo
mayo@uji.es

Judit Planas
judit.planas@epfl.ch

Enrique S. Quintana-Ortí
quintana@uji.es

Pavan Balaji
balaji@anl.gov

1 Universitat Jaume I de Castelló, 12071 Castellón de la Plana, Spain

2 Barcelona Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain

3 École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland

4 Argonne National Laboratory, Lemont, IL 60439, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1791-y&domain=pdf


Exploring the interoperability of remote GPGPU... 5629

applications over three different hardware configurations that include two InfiniBand
interconnections and three NVIDIA accelerators. Our evaluation reveals favorable
performance results, showing low overhead and similar scaling factors when using
remote accelerators instead of local devices.

Keywords GPUs · Directive-based programming models · OpenACC · OmpSs ·
Remote virtualization · rCUDA

1 Introduction

The use of coprocessors and hardware accelerators has increased continuously in
the past decade. In the most recent TOP500 ranking [1], dated November 2015,
104 supercomputers were equipped with accelerators. These devices offer perfor-
mance improvements over traditional processors for computational kernels that match
their architecture; moreover, they are more energy efficient, delivering relatively large
MFLOPS/Watt ratios.

The adoption of coprocessors to accelerate general-purpose codes became more
popular with the release of the CUDA programming model for NVIDIA graphics
processing units (GPUs) [2]. CUDA includes both high- and low-level application
programming interfaces (APIs) to leverageNVIDIA devices as general-purpose accel-
erators. Prior to that, researchers matchedGPU architectures to computational kernels,
but these had to rely on complex graphics-orientedAPIs such as OpenGL [3] or Cg [4].
Following CUDA, OpenCL [5] arose as an effort to offer a cross-vendor solution. The
third-generation programming model for accelerators, based on compiler directives,
is composed (among others) by OpenACC [6], OmpSs [7], and OpenMP 4 [8].

The traditional approach to furnish clusters withGPUs is to populate every compute
node with one or more of these devices. However, these configurations present a low
utilization rate of the computational resources available in the hardware accelerators,
mostly because of mismatches between the application’s type of parallelism and the
coprocessor architecture. Remote virtualization has been recently proposed to over-
come the underutilization problem. Among the virtualization frameworks, the most
prominent is rCUDA [9], which enables cluster configurations to be built with fewer
GPUs than nodes. With this approach, GPU-equipped nodes act as general-purpose
GPU (GPGPU) servers for the rest of the compute nodes of the cluster, accommodating
a CUDA-sharing solution that potentially achieves a higher overall GPU load in the
system. Compared with other CUDA and OpenCL virtualization frameworks (e.g.,
DS-CUDA [10], vCUDA [11], VOCL [12], or SnuCL [13]), rCUDA is a mature,
production-ready framework that offers support for the latest CUDA revisions and
provides wide coverage of current GPGPU APIs.

The combination of both technologies to execute directive-based accelerated appli-
cations on remote coprocessors is obviously appealing. Nevertheless, two problems
need to be tackled in this approach: the overhead due to the interconnect (in terms
of increased latency and decremented transfer rate) and the particular GPU-usage
pattern imposed by the programming model (which in many cases is suboptimal com-
pared with fine-tuned coding directly using the underlying accelerators API). Since

123



5630 A. Castelló et al.

remote accelerator virtualization techniques have been demonstrated to be reason-
ably efficient only in certain programming patterns, in this paper we address the open
question of whether remote virtualization is suitable for applications accelerated via
directives. Specifically, we analyze the performance of two popular directive-based
programming models, OpenACC and OmpSs, on top of rCUDA, using several hard-
ware configurations. For this purpose, we select two well-known applications for
OmpSs and the EPCC benchmark application-level implementation and CloverLeaf
OpenACC implementation for OpenACC. Our study reveals affordable overheads and
fair scaling trends for directive-based applications using remote accelerators instead
of local hardware.

In summary, the main contributions of this paper include (1) an analysis of the
challenges involved in integrating the directive-based programming models for accel-
erators and the rCUDA remote GPU virtualization framework, and (2) a study of the
performance impact of using directive-based acceleration on top of virtualized remote
accelerator technologies.

The rest of the paper is structured as follows: Section 2 provides background infor-
mation on the technologies explored in this paper. Section 3 reviews work related to
our research. Section 4 covers the integration efforts of rCUDA and our target run-
times. Section 5 introduces our testbeds in terms of hardware, software, and test codes.
Section 6 presents our experimental evaluation, and Sect. 7 closes the paper with a
brief summary and discussion of future work.

2 Background

2.1 Directive-based programming models for accelerators

Directive-based programmingmodels comprise a collection of compiler directives that
the programmer employs to identify the pieces of code to be accelerated. These direc-
tives instruct the compiler to process certain parts of the code to map that computation
to the available architecture and, if needed, to perform the required data movements
between host and device memories. These high-level programming approaches are
an appealing interface for improving an application’s performance (including legacy
codes) with relatively little effort and code intrusiveness.

For our study, we selected two popular directive-based programming models for
accelerators, OpenACC and OmpSs, as representative of fine-grained and coarse-
grained parallelism approaches, respectively.

2.1.1 OpenACC programming standard

OpenACC [6] is a standard API developed by PGI, Cray, and NVIDIA that enables
C, C++, or Fortran programmers to easily leverage heterogeneous systems equipped
with a general-purpose CPU plus a coprocessor.

Current compilers for directive-based accelerators still report inferior performance
with respect to that obtainedwhen directly leveragingGPGPUAPIs. The development

123



Exploring the interoperability of remote GPGPU... 5631

Fig. 1 rCUDA modular architecture

productivity of the former is clearly much higher, and both industry and research
institutions are actively working to turn this into a broadly adopted solution.

2.1.2 OmpSs programming model

OmpSs [14], developed at the Barcelona Supercomputing Center, aims to provide an
efficient programmingmodel for heterogeneous andmulticore architectures. Similarly
to OpenMP 4.0 it embraces a task-oriented execution model.

OmpSs detects data dependencies between tasks at execution time, with the help of
directionality clauses embedded in the code, and leverages this information to generate
a task graph during the execution. This graph is then employed by the runtime to exploit
the implicit task parallelism, via a dynamic out-of-order, dependency-aware schedule.
This mechanism provides ameans to enforce the task execution order without the need
for explicit synchronization.

2.2 rCUDA framework

The rCUDA middleware [9] enables access to all GPUs installed in a cluster from all
compute nodes. Figure 1 illustrates that rCUDA is structured following a client–server
architecture. The client is installed in the compute nodes, and provides a transparent
replacement for the native CUDA libraries. On the other hand, the server is exe-
cuted in the nodes equipped with actual GPUs, providing remote GPGPU services.
With this technology, the GPUs can be shared between nodes, and a single node can
use all the graphic accelerators as if they were local. The aim is to achieve higher
accelerator utilization while simultaneously reducing resource, space, and energy
requirements [15,16].

The rCUDA client exposes the same interface as does NVIDIA CUDA [2], includ-
ing the runtime and most of the driver APIs. Hence, applications are not aware that
they are running on top of a virtualization layer. The middleware supports several
communication technologies such as Ethernet [9] and InfiniBand [9].

3 Related work

Remote coprocessor virtualization technologies have been evaluated with various
benchmarks and production applications in the past. The rCUDA prototype was pre-

123



5632 A. Castelló et al.

sented alongwith early results for remoteGPGPUacceleration frommicrobenchmarks
based on the BLAS SGEMM and FFT kernels. Advanced features were introduced
together with evaluations of several code samples from the NVIDIA SDK package.
The literature containing these contributions is reviewed in [17]. More recently, the
remote acceleration of productionCUDA-enabled applicationswas evaluatedwith this
framework, including LAMMPS and CUDASW++ [15]. Moreover, five applications
from the CUDA Zone website were analyzed on top of the vCUDA framework [11].
DS-CUDA was presented for the REM-MD molecular dynamics simulator [10].

On the OpenCL side, the authors of the VOCL framework tested the SHOC
benchmark suite and several application kernels, including the BLAS GEMM, matrix
transpose, n-body, and Smith-Waterman [12]. Moreover, dOpenCL was released with
the evaluation of a tomography [18] production application.

All prior evaluations were based on either traditional GPGPU APIs (CUDA and/or
OpenCL) or custom high-level APIs specifically proposed for the framework in use.
Many of these evaluations presented favorable results, reporting remote accelerations
with low or negligible overheads. The studies, however, also identified codes that
benefited from local acceleration but experienced unbearable overhead from remote
acceleration because of the increased latency and possibly reduced bandwidth intro-
duced by the interconnect.

In previous papers we reported a preliminary study of the interoperability between
directive-based programming models for coprocessors and virtualized remote accel-
erators. In [19] we introduced a first study of simple OpenACC directives on top of
rCUDA. In this paper we extend an in-depth analysis of the OmpSs programming
model over virtualized remote GPUs [20] with an analogous study for the OpenACC
programming model.

4 Integrating rCUDA with directive-based programming models

The rCUDA framework supports the whole CUDA runtime API and most of its driver
API. However, supporting a high-level programmingmodelmay require some updates
in the rCUDA framework because the different procedures adopted during code trans-
lation from a directive to CUDA code. Each scenario needs to be studied separately
in order to avoid performance loss.

4.1 OmpSs and rCUDA

4.1.1 Necessary modifications

One of the necessary changes to rCUDA is the point where the CUDA kernels and
functions are loaded. CUDA performs this initialization at the beginning of the appli-
cation’s execution, whereas in the OmpSs framework this event occurs the first time
that a GPU task is issued for execution.

Because rCUDA was designed with CUDA in mind, its initialization procedure
mimics that of CUDA; and this process occurs at the beginning of a CUDA applica-
tion’s execution. Nevertheless, when OmpSs uses CUDA, this mechanism is triggered

123



Exploring the interoperability of remote GPGPU... 5633

the first time a CUDA function is called; therefore, this behavior had to be modified
in rCUDA. In particular, for each thread created on the client side, the first call to
any kernel configuration routine triggers a load of the corresponding modules in the
associated GPU server. From then on, any other routine configuration call directed to
the same GPU server does not produce any effect. Several logical checks were added
in order to ensure that all threads are able to execute the required functions. Once these
checks are completed, the new loading mechanism avoids checking the function load
status again.

4.1.2 Reducing the communication overhead

Current GPU boards from NVIDIA can promote idle GPUs from a high-performance
state to an energy-saving passive one following the same approach that has been
exploited in x86 architectures via the C-states defined in the ACPI standard [21].
When this occurs, the next CUDA call takes longer to start because the GPU driver first
needs to reactivate the GPU and then execute the CUDA function. OmpSs favors high
performance over energy efficiency, preventing GPUs from entering an energy-saving
state via regular calls to the cudaFree function with no argument. This approach has
no effect other than keeping the GPU active, even when there is no work to execute,
and has the same effect as setting the GPU in persistence mode (e.g., by means of the
nvidia-smi utility).

Fortunately, rCUDA does not need this mechanism, which would otherwise intro-
duce certain communication overhead in the network by exchanging a number of short
messages between the client and the remote GPU server. In particular the rCUDA
server, which is a CUDA application per se, runs on the GPU server node, thus pre-
venting the GPU from entering the passive state. We modified the rCUDA client
middleware to intercept all cudaFree calls, forwarding them to the server only if
they are true memory-free calls, or discarding the requests when they correspond to
unnecessary activation commands. These commands are distinguished by the function
argument: when it is a not NULL pointer; it is a real free call.

4.1.3 Dealing with synchronization

Task parallelism achieves high modularity by creating codes that can be totally differ-
ent (e.g., I/O, computation, or communication) and executed in any order. Nonetheless,
synchronization points are needed to maintain coherence and to control the execution
flow. OmpSs uses the directive #pragma omp taskwait to ensure that all the
previous tasks have been executed. However, adding synchronization points usually
has a negative impact on the applications’ performance, and the use of the named
directive needs to be studied. The OmpSs framework translates this directive into
a cudaDeviceSynchronize call, and the performance attained by CUDA and
rCUDA in that scenario is crucial. rCUDA’s synchronization mechanism outperforms
that native in CUDA because the former accommodates a more aggressive implemen-
tation. Concretely, rCUDA’s mechanism executes a nonblocking wait during a small
period before the real synchronization call. If it is successful, the synchronization call
is thus avoided. A detailed analysis can be found in [22].

123



5634 A. Castelló et al.

Fig. 2 Module load and function search in the new rCUDA module management

4.2 OpenACC and rCUDA

4.2.1 Necessary adaptations

We target a distributed environment where clients do not necessarily feature an actual
GPU. Therefore, among the different options the PGI compiler offers to generate
separate GPU modules, we choose to produce PTX files (–keepptx). This is a
low-level source code that is compiled just in time on the GPGPU server to produce
an executable optimized for the specific GPU architecture. The PGI compiler uses
the following module management functions from the CUDA driver API, which the
current rCUDA release does not support. cuModuleLoadData: This call loads an
appropriate module for the target GPU architecture, comprising a set of GPU kernel
functions, and makes it available for subsequent kernel executions.
cuModuleGetFunction: This function searches the code implementing a given
kernel name within the module loaded by the previous call and makes it available for
subsequent use.

We implemented both functions in rCUDA and carefully tuned them for the dis-
tributed environment. Our cuModuleLoadData implementation allows the client
to send all the GPU modules from the module repository of the executed application
to the GPGPU server when the first call to this function is intercepted. Therefore, this
mechanism is executed only once. These images are stored in contiguous memory
addresses in the server to enhance efficiency in the cuModuleGetFunction call
responses. This sequence of events is illustrated in Fig. 2.

4.2.2 Communication overhead

The PGI compiler performs data transfers between the host and the device, exploiting
a double-buffer mechanism, as illustrated in Fig. 3a. This technique enables pipelined
copies, overlapping transfers between the host memory and one of the buffers with
those between the peer buffer and the accelerator memory. These intermediate buffers
are registered as pinned memory, yielding faster transfers than if these were issued
directly from pageable user memory. A similar mechanism is implemented by rCUDA

123



Exploring the interoperability of remote GPGPU... 5635

(a)

(b)

Fig. 3 PGI double-buffer mechanism. The arrow labels indicate the order of the corresponding transfer. a
Using a local GPU (native). b Using a remote GPU. The example leverages PGI buffers three times bigger
than those of rCUDA

when requested to perform transfers from pageable memory, but it then performs a
direct transfer from the pinned buffers otherwise, avoiding the augmented latency and
memory stress of an additional pipeline stage [9]. The data transfer process when using
OpenACC on top of rCUDA is shown in Fig. 3b.

5 Experimental setup

We have selected three different systems:

– Minotauro is a cluster with 126 nodes, each with two Intel Xeon E5649 6-core
processors, (2.53 GHz), and 24 GB of DDR3-1333 RAM, connected to two
NVIDIA M2050 GPUs. The network is InfiniBand (IB) QDR.

– Tintorrum is composed of two compute nodes, each equipped with two Intel Xeon
E5520 quadcore processors (2.27 GHz) and 24 GB of DDR3-1866 RAMmemory.
One of the nodes is connected to two NVIDIA C2050 GPUs; the remaining one is
populatedwith fourNVIDIAC2050. Internode communications are accomplished
via an IB QDR fabric.

– Argonne consists of two compute nodes, each equipped with two Intel E5-2687W
v2 8-core processors (3.40 GHz) and 64 GB of DDR3-1866 RAM. The GPGPU
server is endowed with an NVIDIA Tesla K40m GPU. Both nodes are connected
via an IB FDR interconnect.

In the experiments we employed rCUDA 5.0, with the modifications listed in pre-
vious sections, as the remote GPGPU virtualization framework. rCUDA servers are
launched in each node where at least one GPU is physically installed exposing the
real GPUs as virtualized remote accelerators. CUDA 6.5 was installed for the PGI
compiler and for the OmpSs version 14.10. OmpSs was compiled using g++ 4.4.7
in Tintorrum and g++ 4.4.4 in Minotauro.

123



5636 A. Castelló et al.

Support for OpenACC was obtained with the PGI (version 14.9) compiler from
The Portland Group [23], since this is a complete commercial tool that implements
most of the features in OpenACC 2.0.

5.1 Evaluation cases

The following OmpSs-enabled applications were selected for this study:

– N-body simulates a dynamical system of particles, under the influence of physical
forces, and is widely used in physics and astronomy.

– Cholesky factorization is a crucial operation for solving dense systems of linear
equations with a symmetric positive-definite coefficient matrix.

For the OpenACC evaluation we used the following applications:

– The EPCC OpenACC benchmark suite [24] is divided into three levels focused on
basic directives, well-known kernels, and applications.

– CloverLeaf [25] solves the compressible Euler equations on a Cartesian grid in
two dimensions. Two CloverLeaf implementations based on either kernels or
loops OpenACC directives were analyzed.

6 Experimental evaluation

All the results in the section are the average of 100 executions. The highest relative
standard deviation observed in the experiments was around 12 %.

6.1 OmpSs

OmpSs implements workstealing between threads’ workloads and uses device-to-
device direct transfers via cudaMemcpyPeer functions that, unfortunately, are not
supported by rCUDA. To obtain results for applications that include data movements
between GPUs, we analyzed the overhead added by this type of data transfers. Two
scenarios can be identified when remote GPUs are used. In the first case, remote GPUs
are attached to the same server node (Fig. 4a), and the communication between them is
done via the PCI-e bus. In the second case, GPUs are attached to different server nodes
(Fig. 4b), and the communication is performed through the network interconnect.

6.1.1 N-body

The N-body test was executed in Tintorrum using 57,600 particles, corresponding to
the largest volume that fits into the memory of a single GPU. This case study involves
no GPU memory transfers, and thus we can compare directly the performance of the
OmpSs-accelerated code executed on top of CUDA and rCUDA. The application runs
in the 2-GPUnode.AdditionalGPUs are “added” to the experiments byfirst populating
the 4-GPU node with up to four server processes (one per remote GPU) and, from then
on, mapping the additional servers to the 2-GPU node. The work is divided equally

123



Exploring the interoperability of remote GPGPU... 5637

Fig. 4 rCUDA cluster configurations. a GPU pool configuration. b Several GPUs per node

Fig. 5 Execution time for N-body using up to four local GPUs and up to six remote GPUs in Tintorrum

Fig. 6 Synchronization time for N-body using up to four local and remote GPUs in Tintorrum

among the GPUs, showing the following workload distribution: 100 % for remote
GPUs when up to four are used; and 66–33 % for remote—local devices when all
GPUs are employed. Figure 5 shows the outcome from this evaluation, showing a linear
reduction of the execution time when up to five server processes/GPUs are employed.
The speedups observed there demonstrate the scalability of this parallel application
when combined with rCUDA to leverage a reduced number of GPUs. The same plot
also exposes a notable increase in execution timewhen the sixth server process/GPU is
included in the experiment. The reason is that, because of the architecture of the node
with two GPUs, the transfers between this last GPU and the IB network occur through
the QPI interconnect, which poses a considerable bottleneck for this application.

We also emphasize that the use of OmpSs on top of rCUDA clearly outperforms the
alternative based onOmpSs on top of CUDA. Figure 6 demonstrates that the difference
in favor of rCUDA is due to the overhead introduced with the synchronization that is
enforced by OmpSs.

6.1.2 Cholesky factorization

The Cholesky factorization test was executed in Minotauro using a matrix of
45,056 × 45,056 single-precision elements. In this case, the GPUs performs direct

123



5638 A. Castelló et al.

Fig. 7 Cholesky factorization using up to four GPUs in Minotauro

Fig. 8 Time distribution of the EPCC applications on Argonne

data transfers. Nevertheless, this feature is not yet supported in rCUDA. To over-
come this deficiency, while still delivering a fair comparison between the scalability
of OmpSs over rCUDA and over native CUDA, we determine the overhead introduced
by a device-to-device communication for setup configurations corresponding to a pool
of GPUs and several GPUs per node. This overhead helps us extrapolate the results
by adding the network overhead to the real execution time.

In a preliminary evaluation, we detected that the optimal algorithmic block size
for the Cholesky factorization using both CUDA and rCUDA is 2048, leading
to data transfers of 16 MB. Next, we performed data transfers of 16 MB, using
cudaMemcpyPeer, to simulate scenarios where both GPUs are in the same node,
and using the ib_send_bw test included in the OFED-3.12 package to mimic a
scenario where the GPUs are in different nodes. The results indicate that each data
movement, respectively, added 0.192 and 5.283 ms to the rCUDA execution time. The
study can be found in [20].

Using the native CUDA, we executed the code with one and two GPUs in a single
node of the cluster. Using rCUDA, we employ up to four nodes with one GPU per
node. Unfortunately, an internal problem in the current implementation of OmpSs
when linkedwith NVIDIA’smathematical library CUBLAS impeded experimentation
with a larger number of GPUs.

The three columns with the labels rCUDA, rCUDA (intra), and rCUDA (QDR)
in Fig. 7 correspond to the execution of the task-parallel code, linked to rCUDA, with
three different by-passes to deal with the lack of support for device-to-device copies
by adding the overhead previously measured. In the first case, the copy is simply
obviated so that this line reflects the peak performance that could be observed if the
cost of this type of copies was negligible. In the second case, we assume that internode
communications proceed at the rate of intranode copies. This result thus approximates
the performance that could be observed in a configuration where all GPUs were in the
same node. In the third case, all the device-to-device copies occur at internode speed.

123



Exploring the interoperability of remote GPGPU... 5639

(a) (b)

Fig. 9 Execution time for the EPCC application using local and remote GPUs. a LE2D and Himeno
applications. b 27S application

The performance results for rCUDA in the chart clearly demonstrate the benefits
of the remote virtualization approach for this application. We note that the lines there
correspond to the GFLOPS per GPU and show a profile that is almost flat. Therefore,
an increase in the number ofGPUs by a factor of g implies an increase in the aggregated
GFLOPS rate by almost the same proportion. The overhead of OmpSs over rCUDA
with respect to OmpSs over CUDA,when executed using a single local GPU, ismerely
about 5 %.

Figure 7 also reveals a superlinear speed-up when just one GPU is used. The main
reason is that before a CUDA application starts its execution, several steps need to be
done (e.g., device initialization, libraries load, and context creation. As the rCUDA
server is a CUDA application itself, all these procedures had been completed before
the CUDA application’s execution.

6.2 OpenACC

An early analysis involving a set of microbenchmarks that cover the basic OpenACC
directives, including a scalability evaluation in terms of transfer sizes, was presented
in [19]. In this section we explore the behavior of the applications.

6.2.1 EPCC applications

The tests in the EPCC benchmark collection are designed to enforce different acceler-
ator usage patterns, representative of common scientific applications. Figure 8 shows
different execution profiles of the benchmark examples. Himeno is a memory-bound
application, where over 99 % of the execution time is spent in data transfers between
the host and device memories. In contrast, LE2D spends more than 95 % of its time
executing a computation directive. The 27S application spends roughly the same time
in both types of tasks, but most of the time (over 90 %) is due to CPU utilization.

Figure 9a illustrates that an application such as LE2D clearly benefits from rCUDA
thanks to the synchronization mechanism described in the previous section. On the
other hand, the high volume of data transfers in the Himeno application (more than
117,000) reduces the performance of the rCUDA-based solution. Between these two
cases, when the time of the data transfers is close to that of the kernel execution,

123



5640 A. Castelló et al.

(a) (b)

Fig. 10 Distribution of time for the CloverLeaf Kernels implementation. a System Tintorrum. b System
Argonne

(a) (b)

Fig. 11 CloverLeaf using local and remote GPUs. a Execution time with different data sizes. b Execution
time of the main functions for maximum problem data sizes

the overhead added by the use of a remote GPU is visible but, as shown in Fig. 9b,
generally small. In the 512 MB scenario, the overhead using the C2050 is close to
40 % because during the short execution time, the performance difference between
the network and the PCIe bus cannot be compensated.

6.2.2 CloverLeaf

Figure 10 shows the distribution of execution time for the CloverLeaf miniapplica-
tion. “Kernels” represents the time spent executing computational directives, while
“Other calls” represents the rest of the CUDA functions generated by the compiler,
including CUDA initialization, data transfers, and synchronization mechanisms. This
experiment shows that the portion of time that corresponds to the GPU computations
increases with the problem size.

On the CloverLeaf Kernels implementation, while the execution time increases
with the problem size, the overhead of using remote accelerators decreases from 60
(remote K40m) and 27 % (remote C2050) to 3 % for large sizes with the C2050 GPU
and a negative overhead of −6 % for the K40m (Fig. 11a). Increasing the execution
time compensates for the network usage by reducing the overhead.

The execution in the K40m GPU allows the evaluation of larger data sizes because
of its larger memory. In this case the superlinear speedup brought by rCUDA becomes
visible again. Figure 11b shows the difference between the CUDA and rCUDA syn-
chronization mechanisms. For the K40m, the rCUDA implementation decreases the

123



Exploring the interoperability of remote GPGPU... 5641

execution time by 100 s, cancelling the network overhead. For the C2050 GPU, this
reduction is not sufficient to compensate for the network overhead because the QDR
interconnect is slower than the FDR network.

Similar conclusions are derived for the CloverLeaf LOOPS implementation, where
we obtain results that are close to those in Fig. 11a: from 70 and 45 % to −2 and 6 %
for the K40m and C2050, respectively.

7 Conclusions

Our main conclusion from this study is the viability of providing remote accelerator
virtualization services on top of two directive-based programmingmodels, OmpSs and
OpenACC. The performance of using virtualized remote accelerators tightly depends
on the interconnection network. The number ofmemory transfers, although not explic-
itly addressed by the programmers in directive-based programming models, is a key
factor impacting the application performance. In our experiments, executions featuring
a large number of data transfers suffered the most performance degradation in com-
parison with locally accelerated runs. Applications with high compute-per-data ratios
benefit from GPU performances with respect to multicore CPU ones, hence favoring
the remote acceleration solutions. In fact, we obtained the largest overheads for execu-
tions using fairly reduced dataset sizes. On the other hand, the use of synchronizations
tends to reduce the overhead when using rCUDA with respect to locally-accelerated
executions because it integrates a more aggressive polling implementation than the
native CUDA library.

Because the characteristics of the rCUDA implementation, we have demonstrated
that the overhead introduced by remote accelerator virtualization ismore than compen-
sated for a few relevant applications. These results indicate that considerable benefits
are possible for production scenarios.

As part of future work, we plan to analyze multi-GPU and OpenACC-enabled
applications, and to redesign rCUDA in order to accommodate device-to-device com-
munications embedded for high performance in OmpSs.Moreover, we plan to analyze
how the distribution of the accelerators in the cluster affects the behavior of these pro-
gramming models on top of remote virtualization, as well as how to tackle this from
the compiler perspective.

Acknowledgements The researchers from the Universitat Jaume I de Castelló were supported by Univer-
sitat Jaume I research project (P11B2013-21), project TIN2014-53495-R, a Generalitat Valenciana grant
and FEDER. The researcher from the Barcelona Supercomputing Center (BSC-CNS) Lausanne was sup-
ported by the European Commission (HiPEAC-3 Network of Excellence, FP7-ICT 287759), Intel-BSC
Exascale Lab collaboration, IBM/BSC Exascale Initiative collaboration agreement, Computación de Altas
Prestaciones VI (TIN2012-34557) and the Generalitat de Catalunya (2014-SGR-1051). This work was par-
tially supported by the U.S. Dept. of Energy, Office of Science, Office of Advanced Scientific Computing
Research (SC-21), under contract DE-AC02-06CH11357. The initial version of rCUDA was jointly devel-
oped by Universitat Politècnica de València (UPV) and Universitat Jaume I de Castellón (UJI) until year
2010. This initial development was later split into two branches. Part of the UPV version was used in this
paper. The development of the UPV branch was supported by Generalitat Valenciana under Grants PROM-
ETEO 2008/060 and Prometeo II 2013/009. We gratefully acknowledge the computing resources provided
and operated by the Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.

123



5642 A. Castelló et al.

References

1. Strohmaier E, Dongarra J, Simon H, Meuer M (2015) TOP500 supercomputing sites. http://www.
top500.org/lists/2015/11. Accessed Nov 2015

2. NVIDIA (2015) CUDA API reference, version 7.5
3. Shreiner D, Sellers G, Kessenich JM, Licea-Kane BM (2013) OpenGL programming guide: the official

guide to learning OpenGL. Addison-Wesley Professional, Boston
4. Mark WR, Glanville RS, Akeley K, Kilgard MJ (2003) Cg: a system for programming graphics

hardware in a C-like language. ACM Trans Graph (TOG) 22(3):896–907
5. Munshi A (2014)The OpenCL specification 2.0. 0.5emminus 0.4em Khronos OpenCL working group
6. OpenACC directives for accelerators (2015). http://www.openacc-standard.org. Accessed Dec 2015
7. OmpSs project home page. http://pm.bsc.es/ompss. Accessed Dec 2015
8. OpenMP application program interface 4.0 (2013). OpenMP Architecture Board
9. Peña AJ (2013) Virtualization of accelerators in high performance clusters. Ph.D. dissertation, Uni-

versitat Jaume I, Castellón
10. Kawai A, Yasuoka K, Yoshikawa K, Narumi T (2012) Distributed-shared CUDA: virtualization of

large-scale GPU systems for programmability and reliability. In: International conference on future
computational technologies and applications

11. Shi L, Chen H, Sun J, Li K (2012) vCUDA: GPU-accelerated high-performance computing in virtual
machines. IEEE Trans Comput 61(6):804–816

12. Xiao S, Balaji P, Zhu Q, Thakur R, Coghlan S, Lin H, Wen G, Hong J, Feng W (2012) VOCL:
an optimized environment for transparent virtualization of graphics processing units. In: Innovative
parallel computing. IEEE, New York

13. Kim J, Seo S, Lee J, Nah J, Jo G, Lee J (2012) SnuCL: an OpenCL framework for heterogeneous
CPU/GPU clusters. In: International conference on supercomputing

14. DuranA,AyguadéE,BadiaRM,Labarta J,Martinell L,MartorellX, Planas J (2011)OmpSs: a proposal
for programming heterogeneous multi-core architectures. Parallel Process Lett 21(02):173–193

15. Castelló A, Duato J, Mayo R, Peña AJ, Quintana-Ortí ES, Roca V, Silla F (2014) On the use of
remote GPUs and low-power processors for the acceleration of scientific applications. In: The fourth
international conference on smart grids, green communications and IT energy-aware technologies, pp
57–62

16. Iserte S, Castelló A, Mayo R, Quintana-Ortí ES, Reaño C, Prades J, Silla F, Duato J (2014) SLURM
support for remote GPU virtualization: implementation and performance study. In: International sym-
posium on computer architecture and high performance computing (SBAC-PAD)

17. Peña AJ, Reaño C, Silla F, Mayo R, Quintana-Ortí ES, Duato J (2014) A complete and efficient
CUDA-sharing solution for HPC clusters. Parallel Comput 40(10):574–588

18. Kegel P, Steuwer M, Gorlatch S (2012) dOpenCL: towards a uniform programming approach for dis-
tributed heterogeneous multi-/many-core systems. In: International parallel and distributed processing
symposium workshops (IPDPSW)

19. Castelló A, Peña AJ, Mayo R, Balaji P, Quintana-Ortí ES (2015) Exploring the suitability of remote
GPGPU virtualization for the OpenACC programming model using rCUDA. In: IEEE international
conference on cluster computing

20. CastellóA,MayoR, Planas J, Quintana-Ortí ES (2015) Exploiting task-parallelism onGPU clusters via
OmpSs and rCUDA virtualization. In: IEEE international workshop on reengineering for parallelism
in heterogeneous parallel platforms

21. HP Corp., Intel Corp., Microsoft Corp., Phoenix Tech. Ltd., Toshiba Corp. (2011) Advanced configu-
ration and power interface specification, revision 5.0

22. Reaño C, Silla F, Castelló A, Peña AJ, Mayo R, Quintana-Ortí ES, Duato J (2014) Improving the user
experience of the rCUDA remote GPU virtualization framework. Concurr Comput 27(14):3746–3770

23. PGI compilers and tools (2015) http://www.pgroup.com/. Accessed Dec 2015
24. Johnson N (2013) EPCCOpenACC benchmark suite. https://www.epcc.ed.ac.uk/. Accessed Dec 2015
25. Herdman J, Gaudin W, McIntosh-Smith S, Boulton M, Beckingsale D, Mallinson A, Jarvis SA (2012)

Accelerating hydrocodes with OpenACC, OpenCL and CUDA. In: SC companion: high performance
computing, networking, storage and analysis

123

http://www.top500.org/lists/2015/11
http://www.top500.org/lists/2015/11
http://www.openacc-standard.org
http://pm.bsc.es/ompss
http://www.pgroup.com/
https://www.epcc.ed.ac.uk/

	Exploring the interoperability of remote GPGPU virtualization using rCUDA and directive-based programming models
	Abstract
	1 Introduction
	2 Background
	2.1 Directive-based programming models for accelerators
	2.1.1 OpenACC programming standard
	2.1.2 OmpSs programming model

	2.2 rCUDA framework

	3 Related work
	4 Integrating rCUDA with directive-based programming models
	4.1 OmpSs and rCUDA
	4.1.1 Necessary modifications
	4.1.2 Reducing the communication overhead
	4.1.3 Dealing with synchronization

	4.2 OpenACC and rCUDA
	4.2.1 Necessary adaptations
	4.2.2 Communication overhead


	5 Experimental setup
	5.1 Evaluation cases

	6 Experimental evaluation
	6.1 OmpSs
	6.1.1 N-body
	6.1.2 Cholesky factorization

	6.2 OpenACC
	6.2.1 EPCC applications
	6.2.2 CloverLeaf


	7 Conclusions
	Acknowledgements
	References




