
On the Power of Combiner Optimizations in
MapReduce over MPI Workflows

Tao Gao,a,b Yanfei Guo,c Boyu Zhang,b Pietro Cicotti,f

Yutong Lu,d,e Pavan Balaji,c and Michela Tauferb

aNational University of Defense Technology
bUniversity of Delaware

cArgonne National Laboratory

dSun Yat-sen University
eNational Supercomputing Center in Guangzhou

fSan Diego Supercomputer Center

Abstract—Analyzing large volumes of data is becoming more
and more important in various scientific computing domains.
MapReduce over MPI frameworks are an appealing solution to
enable scalable big data analytics on supercomputing systems.
These systems can further leverage features of MapReduce
applications by merging 〈key/value〉 pairs before the reduce
function in combiner optimizations. In this paper, we propose a
pipeline combiner workflow and integrate it into Mimir, a cutting-
edge implementation of MapReduce over MPI. Our results with
real datasets on the Tianhe-2 supercomputer prove that our
pipeline combiner workflow can reduce memory usage up to
51% and improve the overall performance up to 61%.
Keywords: MapReduce over MPI, Combiner Optimization, Memory-
efficient, Data Analytics

I. INTRODUCTION

Analyzing large volumes of data—big data analytics—is be-
coming increasingly important in various scientific computing
domains such as social sciences, genomics, and pharmaceu-
tical sciences. As data become larger and larger, traditional
MapReduce frameworks such as Spark [1] and Hadoop [2] fail
to provide scalable solutions for big data analytics. At the same
time, supercomputers and high-performance computing (HPC)
systems are gaining the attention of the big data community
and aim to become the next platform for big data analytics.

Implementations of MapReduce over MPI such as
MapReduce-MPI [3], [4] and Mimir [5] have been shown to
be scalable MapReduce solutions beyond the scales already
supported by Spark or Hadoop. While these MapReduce over
MPI implementations do provide scalability, their performance
can be further increased by integrating features that leverage
properties embedded in the datasets of typical MapReduce
applications. In particular, in a large number of MapReduce
applications the reduction function is both associative and
commutative. Examples of these applications range from
searches of more frequent tags in social sciences’ tweets
or more frequent drug structures in drug design datasets to
counting words in large datasets such as Wikipedia.

From an implementation point of view these MapReduce
applications support merging 〈key/value〉 pairs before the
reduce function. The merging process is called combiner op-
timization. Combiner optimizations have been used to reduce
the amount of data transfer between map and reduce phases

in, for example, Spark. When moving to supercomputers,
combiner optimizations can reduce memory requirements in
systems that have both limited local memory and shared
file systems. The implementation of a simple concept such
as merging 〈key/value〉 pairs on HPC systems, however,
requires understanding the HPC system’s memory hierarchy as
well as generating new data structures and tuning the overall
MapReduce over MPI workflow.

In this paper we define both new abstractions and implemen-
tations of combiner optimizations for HPC systems, starting
from a naive combiner workflow based on compressions to
a more advanced pipeline combiner workflow based on the
effective interleaving of map and shuffle phases. Our work
is driven by the need to minimize memory requirements and
reduce data transfer over the network during the MapReduce
job’s execution. We integrate our pipeline combiner workflow
into Mimir because this framework is considered a cutting-
edge MapReduce over MPI frameworks (see [5], [6]). Our
augmented version of Mimir uses memory more efficiently
compared with previous implementations of the same frame-
work. The contributions of this paper are as follows:

• We design a set of combiner optimizations for HPC
systems and integrate them in Mimir, a cutting-edge
MapReduce over MPI framework.

• We compare and contrast the augmented MapReduce
workflow with other MapReduce workflows for datasets
in the social sciences (e.g., Wikipedia datasets) and phar-
maceutical sciences (e.g., for classifying drug metadata
from protein-ligand docking simulations).

We present results on the Tianhe-2 supercomputer. Our
results show how our pipeline combiner workflow not only re-
duces the memory footprint (i.e., up to 59% for the Wikipedia
datasets and up to 20% for the pharmaceutical datasets) but
also improves performance for large-scale datasets (i.e., up
to 34% for the Wikipedia datasets and up to 15% for the
pharmaceutical datasets).

II. BACKGROUND ON MAPREDUCE AND MIMIR

In this section, we review the MapReduce programming
model [7] and the cutting-edge MapReduce over MPI frame-
work, Mimir [5].



A. MapReduce Programming Model

MapReduce is a programming model intended for data-
intensive applications [7] that has proved to be suitable for
a wide variety of applications. A MapReduce job usually
involves three phases—map, shuffle, and reduce—as shown
in Figure 1. The map phase processes the input data using a
user-defined map callback function and generates intermediate
〈key/value〉 (KV) pairs. The shuffle phase performs an all-
to-all shuffle communication that distributes the intermediate
KVs across all processes. In this phase, KVs with the same key
are also merged and stored in 〈key/multiple values〉 (KMV)
lists. The reduce phase processes the KMV lists with a user-
defined reduce callback function and generates the final output.
The user needs to implement the map and reduce callback
functions, while the MapReduce runtime handles the parallel
job execution, shuffle communication, and data movement.

map

map

map

shuffle

reduce

reduce

reduce

<key,value>

<key,value>

<key,value>

<key1,multiple values>

<key2,multiple values>

<key3,multiple values>in
pu

t r
ec

or
ds

ou
tp

ut
 re

co
rd

s

Fig. 1: The map, shuffle, and reduce phases of the MapReduce
programming model.

B. Mimir Overview

Mimir is a state-of-the-art MapReduce over MPI frame-
work [5]. As in Hadoop [2] and Spark [1], a user of Mimir
defines operations to be used in the map and reduce phases.
MPI processes execute these operations. Mimir pipelines and
interleaves the computation and shuffle communication within
the map phase operation to minimize unnecessary memory us-
age, ensuring high performance on supercomputers. Different
from the master-worker architecture used in Hadoop[2] and
Spark [1], Mimir is designed to be decentralized in order to
increase scalability.

In Mimir’s map phase shown in Figure 2, each MPI process
has a send buffer and a receive buffer. The send buffer is
divided into p equal-sized partitions, where p is the number of
processes executing a given MapReduce application. In other
words, each partition corresponds to one process. The execu-
tion of the map phase operation starts with the computation
stage. In this stage, the input data is transformed into KVs by
the user-defined map function executed by each process. The
new KVs are inserted into one of the send buffer partitions so
that KVs with the same key are sent to the same process. The
default partitioning method is based on the hash value of the
key. Users can provide other partition algorithms that better
suit their needs, but the overall workflow remains the same.
If a partition in the send buffer is full, Mimir temporarily
suspends the computation stage and switches to the shuffle
communication stage. In this stage, all processes exchange

their accumulated intermediate KVs using MPI_Alltoallv:
each process sends the data in its send buffer partitions to
the corresponding destination processes and receives data
from all other processes into its receive buffer partitions.
Once the KVs are in the receive buffer, each process moves
the KVs into a KV container (KVC). The KVC serves as
an intermediate holding area between the map and reduce
phases. After the data has been moved to this KVC, the
shuffle communication stage completes, and the suspended
computation phase resumes. In this way, the computation and
shuffle communication stages are interleaved, allowing them
to process large volumes of input data without correspondingly
increasing the memory usage.

input elements

input elements

MPI_Alltoallv communication

User-defined
map

User-defined
map

…..

KVs

…..

KVs

send buffer receive buffer

Process 1

Process 0

copy

copy

pipeline

Fig. 2: Map workflow in Mimir with its map phase including both
computation and shuffle communication stages.

In Mimir’s reduce phase shown in Figure 3, the input KVs
are stored in a KVC that is generated by the map phase. The
reduce phase starts with the conversion of KVs to KMV lists.
Mimir adopts a two-pass algorithm to perform the KV-to-
KMV conversion in memory. In the first pass, the size of the
KVs for each unique key is gathered in a hash bucket and used
to calculate the position of each KMV in the KMV container
(KMVC). In the second pass, the KVs are converted into
KMV lists by inserting them into the corresponding position
in the KMVC. When all the KVs are converted to KMV lists,
the conversion is complete. Mimir then calls the user-defined
reduce callback function on the KMVs.

user-defined	
reduce

…..

KVs

…..

KMVs

convert output elements

Fig. 3: Workflow of the reduce phase in Mimir with the two-pass
algorithm to perform the KV-to-KMV conversion in memory.

III. PIPELINE COMBINER WORKFLOW

In this section, we present combiner optimizations to mini-
mize the memory usage for those MapReduce applications that



are both associative and commutative and therefore support
merging KVs with the same key before the reduce phase.

A. Naive Combiner Workflow

A naive combiner implementation in Mimir [5] applies
compressions and partial reductions before and after the shuffle
communication, respectively. As shown in Figure 4, the design
is driven by the motivation of maximizing the reduction in
data that is sent over the network. Nevertheless, the imple-
mentation still suffers from delays: the shuffle communication
is postponed until the compression has finished. In other
words, the map computation stage is not pipelined with the
shuffle communication in the combiner implementation. This
constraint forces the introduction of an extra intermediate data
staging before the shuffle communication.

input elements

input elements

MPI_Alltoallv communication

User-defined
map

User-defined
map

…..

KVs

…..

KVs

send buffer receive buffer

Process 1

Process 0

copy

copy

compression

compression

partial-reduction

partial-reduction

…..

KVs

…..

KVs

Fig. 4: Workflow of the compression and partial reduction in Mimir.

B. Pipeline Combiner Workflow

We leverage the naive workflow with compression and
partial reduction and extend Mimir’s workflow to support
a pipeline combiner workflow as shown in Figure 5. From
an implementation point of view, we extend MapReduce
applications by allowing them to set a new combiner callback
function. The combiner callback takes two values as input and
generates a single value as output. The figure points out how
the combiner callback can be applied both before and after
each shuffle communication stage of the map phase.

input elements

input elements

MPI_Alltoallv communication

User-defined
map

User-defined
map

…..

KVs

…..

KVs

send buffer receive buffer

Process 1

Process 0

copy

copy

combine

combine

combine

combine

pipeline

Fig. 5: Combiner workflow in Mimir with its combiner callbacks
applied before and after each communication stage.

A combiner callback when applied before the communica-
tion stage reduces the communication size. On the other hand,
a combiner callback when applied after the communication
stage reduces the buffer size to store the KVs in the KVC.
We structure the combiner workflow so that it is pipelined.
Before any shuffle communication, KVs generated by the
map callback are inserted into the corresponding partitions
of the send buffer based on the partition function. When we
encounter a KV with a key that is in the send buffer, the
combiner callback is called. The combiner callback combines
the two KVs (i.e., the new KV and the one already in the send
buffer) into a single KV. The existing KV in the send buffer is
then replaced with the combined version. For example, if in the
WordCount benchmark execution the new KV is 〈dog/1〉 and
a KV with 〈dog/1〉 is already in the send buffer, the replaced
KV in the send buffer is 〈dog/2〉.

After completion of a shuffle communication stage, the
received KVs are inserted into the KVC. When a KV with a
key that is already in the KVC occurs, the combiner callback
is called. Similar to the combiner process before the shuffle
communication stage, the combiner callback combines the
two KVs into a single KV. The existing KV in the KVC
then is replaced with the combined version. For example, if
a process received a KV from a second process with 〈dog/2〉
and already has the 〈dog/1〉 KV, the execution of the callback
replaces 〈dog/1〉 with 〈dog/3〉. The combiner callback is
called multiple times—as many times as there are KVs with
duplicate keys in the shuffle communication stages in the map
phase.

To efficiently identify duplicate keys in KVs for each
process, we use a hash bucket to track the position information
of unique KVs in the send buffer and use another hash bucket
to track the position information of unique KVs in the KVC.
In the case of the send buffer, we use the process’s hash bucket
to quickly check whether a key is already present in the send
buffer. The hash bucket stores only the position information of
the KVs; the actual KVs are still stored in the send buffer. The
hash bucket of a process’s KVC works in the same fashion.
In our design of the combiner workflow, the two hash buckets
require additional memory to keep track of the unique keys’
positions. The spatial complexity of the two hash buckets is
O(u), where u is the number of unique keys.

C. Garbage Management

During the combiner optimization, the length of the com-
bined KV may differ from that of the original KV in the
send buffer or in the KVC. For example, the value field is
a variable-length string. As a result, the combined KV may
create some “holes” (i.e., garbage bytes between different
KVs). For each process, we introduce two additional hash
buckets to track these holes: one for the hash bucket before
the shuffle communication stage and one for the hash bucket
after the shuffle communication stage.

If the length of the combined KV is equal to the original
KV in the send buffer, then the combined version is stored in
the same position as the original KV, and no hole is created.



If the length of the combined KV is less than that of the
original KV in the send buffer, then the combined version is
stored in the same position as the original KV, and a hole
is generated. Otherwise, if the length of the combined KV is
greater than that of the original KV in the send buffer, then the
combined version is stored in another position, and the bytes
of the original KV are marked as a hole. When searching for a
location for a new KV, we look for a hole that is large enough
to hold the KV first. If such a hole does not exist, then the
KV is inserted at the end of the buffer.

Before starting a shuffle communication stage, a garbage
collection phase is applied to remove any existing holes.
During garbage collection, the process’s buffer is scanned from
the beginning to the end. If a hole is found, then the KVs after
that hole are moved forward to eliminate the hole. For each
process, we introduce one hash bucket to track these holes.
We note that we can check whether an address is the start
address of a hole in O(1) time with a hash bucket.

In the case of the KVC, the combiner implementation is
similar to the implementation for the send buffer. To avoid
generating too many garbage bytes, we perform garbage
collection if the total garbage size is larger than a user-defined
value (two pages by default). Since the maximum size of
the aggregated garbage bytes is a constant value, the spatial
complexity for these hash buckets is O(1).

D. Memory Usage Analysis

To simplify the memory usage analysis, we assume that the
lengths of each key and each value are the same. This is a
reasonable assumption because the lengths of the keys and
the values are often small and approximately the same. Let us
assume that n represents the total number of KVs and that u
represents the number of unique keys in those KVs. We have
p processes to execute the MapReduce tasks. Note that u is
always equal to or smaller than n. We further assume that the
unique keys are partitioned evenly to all processes.

In the naive combiner workflow of Mimir (shown in Fig-
ure 4), only the memory usage of the intermediate data
buffers (i.e., KVCs) depends on the dataset size. The worst
spatial complexity of KVCs before shuffle communication is
O(p∗u) because each process may encounter all unique keys;
and the best spatial complexity of the KVCs before shuffle
communication is O(u). We note that the best situation is
rare in real-world datasets. On average, the spatial complexity
of KVCs before shuffle communication is O((p+1)∗p/2∗u).
The spatial complexity of KVCs after shuffle communication
is O(u). Thus, the overall spatial complexity on average is
O((p+ 1) ∗ p/2 ∗ u+ u) in the naive combiner workflow.

In the pipeline combiner workflow, the spatial complexity of
the KVC after shuffle communication and the hash buckets to
keep track of the unique keys is O(u). The spatial complexity
of the hash buckets to keep track of garbage bytes is O(1).
Thus, the overall spatial complexity of our pipeline implemen-
tation is O(3 ∗ u) (i.e., a KVC and two hash buckets for each
process to keep track of the unique keys). Since the number
of processes p is large when running on supercomputers,

the pipeline workflow uses memory much more efficiently
compared with the naive combiner workflow.

IV. EVALUATION

In this section, we evaluate the performance of the pipeline
combiner workflow for datasets in social sciences (e.g., Wiki-
pidia datasets) and in pharmaceutical sciences (i.e., for classi-
fying drug metadata from protein-ligand docking simulations).

A. Platforms, Settings, Benchmarks, and Datasets
Our tests are performed on the Tianhe-2 high-performance

supercomputer located at the National Supercomputer Center
in Guangzhou, China. Each compute node has two Intel Xeon
E2-2692v2 CPUs (12 cores each, 24 cores total) running at
2.2 GHz. Each node has 64 GB of memory. The nodes are
connected with Tianhe express-2 [8], and the parallel file
system is H2FS [9]. We use MPICH 3.1.3 with a customized
GLEX channel on the Tianhe-2 [10].

We use two benchmarks that are diverse in terms of datasets
and features: WordCount (WC) and octree clustering (OC).
WC is a single-pass MapReduce application that counts the
number of occurrences of each unique word in given input
files; it is the base algorithm for analyzing social datasets.
We test WC with two kinds of datasets: synthetic-generated
datasets, whose words are generated following the Zipf dis-
tribution [11], and the Wikipedia dataset from the PUMA
benchmark suite [12]. We choose the Zipf distribution with
the degree of skew (i.e., α in Zipf distribution) being 1.0 in
order to simulate the Wikipedia dataset in synthetic datasets.

OC, on the other hand, is an iterative MapReduce appli-
cation with multiple MapReduce stages. OC is a clustering
algorithm for points in a three-dimensional space. For our
tests, we use the MapReduce algorithm described by Estrada
et al. [13] for classifying points representing ligand metadata
from protein-ligand docking simulations; the dataset we use
is from Zhang et al. [14], [15]. We test the performance of
our augmented MapReduce workflow with different densities
of the dataset. The different densities represent different out-
comes of the protein-ligand docking simulations: the higher
the density, the more likely a simulation is identifying a single
drug conformation of interest. Pragmatically, if the density of
the drug metadata dataset is set to x, then the algorithm finds
the smallest cube that contains x ∗ n metadata points, where
n is the total number of drug conformations generated by the
simulations and collected in the dataset.

Our metrics of success are average peak memory usage and
average execution time. Peak memory usage is the maximum
memory usage at any point in time during the application
execution. Execution time is the time from reading the input
data to outputting the final results of a benchmark. The input
data and output data are stored in the parallel file system of
our experimental platforms. We run one process per core for
all tests and repeat the tests at least three times.

B. Single-Node Comparison
In this section, we compare our pipeline combiner workflow

with the naive combiner workflow in Mimir on a single node



of the Tianhe-2 supercomputer with 24 processes. For WC,
we test with both synthetic datasets and Wikipedia datasets;
for OC, we test with the datasets from [14], [15].

The results for the WC benchmark with synthetic datasets
are shown in Figure 6. We fix the dataset size to 24 GB
(each word is 5 bytes) and vary the number of unique words
(i.e., 1 million, 10 million, and 100 million). The average
memory usage per process is shown in Figure 6a. As the figure
indicates, the pipeline combiner workflow reduces the memory
usage for all three datasets. The more diverse the dataset, the
more tangible the reduction. The reason is that the memory
usage of the native implementation increases much faster
compared with the pipeline implementation as the number of
unique words increases, as discussed in Section III-D. The
reduction of memory usage for the dataset with 100 million
unique words is up to 51%. The execution time is shown in
Figure 6b. The pipeline workflow reduces the execution time
for datasets with 10 million and 100 million unique words.
The reduction for the dataset with 100 million unique words
is up to 61%.

The results for the WC benchmark with the Wikipedia
datasets are shown in Figure 7. We use three different
Wikipedia datasets (i.e., 50 GB, 150 GB, and 300 GB) from
the PUMA benchmark suite [12]. The number of unique words
in the three datasets is about 100 million. Memory usage is
compared in Figure 7a, and execution time is compared in
Figure 7b. The pipeline workflow reduces memory usage for
all three datasets. The memory usage reduction of datasets
with 50 GB, 150 GB, and 300 GB is about 22%, 48%,
and 59%, respectively. The pipeline workflow slightly slows
the execution for small datasets (i.e., 50 GB) because of
overheads, but it significantly improves the performance for
150 GB and 300 GB datasets. The performance improvement
for 300 GB datasets is up to 34%.

The results for the OC benchmark are shown in Figure 8. We
fix the number of points (drug metadata) to 229 and test with
different densities of the points (i.e., 1%, 0.1%, and 0.01%).
As shown in Figure 8a, the pipeline combiner reduces the
peak memory usage 20% for the 0.1% and 0.01% settings.
The pipeline workflow also improves the performance for
datasets with 0.1% and 0.01% settings up to 15%, as shown
in Figure 8b. The peak memory usage and execution time
reduction for the 1% setting are limited because the number of
unique keys within intermediate datasets in this case is small.
The pipeline combiner workflow has more improvement when
there are more unique keys in the intermediate datasets.

C. Scalability on Multiple Nodes

In this section, we compare the scalability of our pipeline
combiner workflow with the naive combiner workflow in
Mimir on the Tianhe-2 supercomputer.

The scalability results for the WC benchmark with synthetic
datasets are shown in Figure 9. We fix the number of points
per node (24 processes) to 24 GB and the number of unique
words per node to 10 million. That is, both the dataset size
and number of unique words increase as the process count

increases. The peak memory usage per process and execution
is shown in Figure 9a and Figure 9b, respectively. As shown in
Figure 9a, the memory usage per process of the pipeline work-
flow remains constant up to 1,536 processes while the memory
usage of the naive workflow increases as the number of
processes increases. The naive implementation cannot execute
with 768 processes or more because of running out of memory.
The reason is that the memory usage in the naive workflow is
decided by both the number of unique words and the number
of processes, as discussed in Section III-D. The combiner
workflow also reduces the execution time significantly, as
shown in Figure 9b. The improvement for the setting with
384 processes is close to 3 times.

The results for the OC benchmark are shown in Figure 10.
We fix the number of points per node (24 processes) to 229

and set the metadata density to 0.01%. The average memory
usage per process is shown in Figure 10a. As shown in this
figure, the reduction in memory usage is about 20% from 24
processes (single node) to 1,536 processes (multiple nodes).
As shown in Figure 10b, the pipeline combiner also reduces
the execution time.

To sum up, the results of our tests provide quantitative
evidence that the combiner workflow reduces the memory
usage and improves the overall performance for a diverse set
of benchmarks and their datasets, especially when the number
of unique keys is significantly large in intermediate datasets
during the MapReduce workflow execution.

V. RELATED WORK

Combiner optimizations have been applied in most popular
MapReduce frameworks, such as Hadoop [2], Spark [16], and
MapReduce-MPI [4]. Most of the work seeks to maximize
the benefits of combiner optimizations in order to reduce the
amount of data sent over the network. Thus, these frameworks
do not pipeline the local combination with the shuffle commu-
nication, as in our design. While Hadoop has been replaced by
Spark in cloud computing, our previous work showed the lack
of scalability in Spark [5] and the memory usage challenges
when using MapReduce-MPI [5]. Our pipeline design further
pushes the performance of the augmented Mimir with our
combiner optimizations to outperform the other frameworks
in terms of their scalability and memory usage.

In distributed systems, pipelines have been used in MRO-
MPI [17]. The MRO-MPI model has an optimized data ex-
change policy to overlap map computation and shuffle com-
munication. In this design, the combiner applied at the receive
side is also pipelined with the shuffle communication. Our
design has significant differences. Specifically, our combiner
optimizations are applied at both the send and the receive side;
thus, it can reduce the amount of data sent over the network
and reduce the memory requirement. In contrast, their design
cannot reduce the amount of data sent over the network.

In shared-memory systems, pipeline combiner workflows
have been implemented in MapReduce frameworks. For ex-
ample, in Tiled-MapReduce [18], the pipeline design out-
performed other shared-memory implementations, such as



1m 10
m

10
0m

number of unique words

0.0

0.5

1.0

1.5

2.0

2.5

m
em

or
y 

us
ag

e 
(G

B
)

naive
pipeline

(a) Peak memory usage (per process)

1m 10
m

10
0m

number of unique words

0

200

400

600

800

1000

ex
ec

ut
io

n 
tim

e 
(s

ec
)

naive
pipeline

(b) Execution time

Fig. 6: Single-node results (24 processes) of our pipeline combiner workflow compared with the naive combiner workflow in
Mimir with the WC benchmark and 24 GB synthetic datasets. The number of unique words in these datasets is 1 million (1m),
10 million (10m), and 100 million (100m), respectively.

50
G

15
0G

30
0G

dataset

0

1

2

3

m
em

or
y 

us
ag

e 
(G

B
)

naive
pipeline

(a) Peak memory usage (per process)

50
G

15
0G

30
0G

dataset

0

200

400

600

800

1000

ex
ec

ut
io

n 
tim

e 
(s

ec
)

naive
pipeline

(b) Execution time

Fig. 7: Single-node results (24 processes) of our pipeline combiner workflow compared with the naive combiner workflow in
Mimir with the WC benchmark and 50 GB, 150 GB, and 300 GB Wikipedia datasets from the PUMA benchmark suite.

1% 0.1
%

0.0
1%

different density

0.0

0.5

1.0

1.5

2.0

2.5

m
em

or
y 

us
ag

e 
(G

B
)

naive
pipeline

(a) Peak memory usage (per process)

1% 0.1
%

0.0
1%

different density

0

25

50

75

100

ex
ec

ut
io

n 
tim

e 
(s

ec
)

naive
pipeline

(b) Execution time

Fig. 8: Single-node results (24 processes) of our pipeline combiner workflow compared with the naive combiner workflow in
Mimir with the OC benchmark and different drug metadata densities (i.e., 1%, 0.1%, and 0.01%).

Phoenix [19] and Phonix++ [20]. We note, however, that
the Tiled-MapReduce design cannot work on large-scale
distributed-memory systems, and thus it suffers from scala-

bility limitations.



24 48 96 19
2

38
4

76
8

15
36

number of processes

0.0

0.5

1.0

1.5

2.0

m
em

or
y 

us
ag

e 
(G

B
)

naive
pipeline

(a) Peak memory usage (per process)

24 48 96 19
2

38
4

76
8

15
36

number of processes

0

200

400

600

800

1000

ex
ec

ut
io

n 
tim

e 
(s

ec
)

naive
pipeline

(b) Execution time

Fig. 9: Scalability results of our pipeline combiner workflow compared with the naive combiner workflow in Mimir with the
WC benchmark and synthetic datasets.

24 48 96 19
2

38
4

76
8

15
36

number of processes

0.0

0.5

1.0

1.5

2.0

m
em

or
y 

us
ag

e 
(G

B
)

naive
pipeline

(a) Peak memory usage (per process)

24 48 96 19
2

38
4

76
8

15
36

number of processes

0

100

200

300

ex
ec

ut
io

n 
tim

e 
(s

ec
)

naive
pipeline

(b) Execution time

Fig. 10: Scalability results of our pipeline combiner workflow compared with the naive combiner workflow in Mimir with the
OC benchmark.

VI. CONCLUSION

In this paper, we propose a pipeline combiner workflow
that leverages features of MapReduce applications such as
being both associative and commutative, in order to further
increase performance and memory usage when these appli-
cation are executed on MapReduce over MPI frameworks.
We integrate our pipeline combiner workflow into Mimir,
a cutting-edge MapReduce over MPI framework. Results
on the large-scale supercomputer Tianhe-2 demonstrate that
our proposed design outperforms previous designs by re-
ducing the memory requirement up to 59% and execution
time up to 61%. Our design also presents better scalability
compared with previous designs. These methods have been
merged into the Mimir code; the code can be downloaded at
https://github.com/TauferLab/Mimir.git.

ACKNOWLEDGMENT

Yanfei Guo and Pavan Balaji were supported by the
U.S. Department of Energy, Office of Science, under con-
tract number DE-AC02-06CH11357. Boyu Zhang, Pietro Ci-
cotti, Tao Gao, and Michela Taufer were supported by NSF

grants #1318445 and #1318417. Tao Gao and Yutong Lu
were supported by the National Key R&D Project in China
2016YFB1000302, the National Natural Science Foundation
of China U1611261 and NSFC61402503, and the program for
Guangdong Introducing Innovative and Entrepreneurial Teams
(2016ZT06D211). Tao Gao was also supported by the China
Scholarship Council. The research in this paper used resources
of the National Supercomputer Center in Guangzhou, China.

LICENSE

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Government.
The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the



DOE Public Access Plan. http://energy.gov/downloads/doe-
public-access-plan.

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” HotCloud, vol. 10, pp.
10–10, 2010.

[2] “Apahce Hadoop,” http://hadoop.apache.org/.
[3] S.-J. Sul and A. Tovchigrechko, “Parallelizing BLAST and SOM Al-

gorithms with MapReduce-MPI Library,” in Proceedings of the 2011
IEEE International Symposium on Parallel and Distributed Processing
Workshops and PhD Forum (IPDPSW), 2011, pp. 481–489.

[4] S. J. Plimpton and K. D. Devine, “MapReduce in MPI for Large-Scale
Graph Algorithms,” Journal of Parallel Computing, vol. 37, no. 9, pp.
610–632, 2011.

[5] T. Gao, Y. Guo, B. Zhang, P. Cicotti, Y. Lu, P. Balaji, and M. Taufer,
“Mimir: Memory-Efficient and Scalable MapReduce for Large Super-
computing Systems,” in Proceedings of the 31th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2017.

[6] T. Gao, Y. Guo, Y. Wei, B. Wang, Y. Lu, P. Cicotti, P. Balaji, and
M. Taufer., “Bloomfish: A Highly Scalable Distributed K-mer Counting
Framework,” in Proceedings of the 23nd IEEE International Conference
on Parallel and Distributed Systems (ICPADS), 2017.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[8] X.-K. Liao, Z.-B. Pang, K.-F. Wang, L. Y., M. Xie, J. Xia, D. D.-Z., and
G. Suo, “High Performance Interconnect Network for Tianhe System,”
Journal of Computer Science and Technology, vol. 30, no. 2, pp. 259–
272, 2015.

[9] W. Xu, Y. Lu, Q. Li, E. Zhou, Z. Song, Y. Dong, W. Zhang, D. Wei,
X. Zhang, H. Chen, J. Xing, and Y. Yuan, “Hybrid Hierarchy Storage
System in MilkyWay-2 Supercomputer,” Frontiers of Computer Science,
vol. 8, no. 3, pp. 367–377, 2014.

[10] M. Xie, Y. Lu, K. Wang, L. Liu, H. Cao, and X. Yang, “Tianhe-1a
Interconnect and Message-Passing Services,” IEEE Micro, vol. 32, no. 1,
pp. 8–20, 2012.

[11] L. A. Adamic and B. A. Huberman, “Zipf’s Law and the Internet,”
Journal of Glottometrics, vol. 3, no. 1, pp. 143–150, 2002.

[12] F. Ahmad, S. Lee, M. Thottethodi, and T. N. Vijaykumar, “PUMA:
Purdue MapReduce Benchmarks Suite,” Department of Engineering and
Computer Engineering, Purdue University, Tech. Rep., 2012.

[13] T. Estrada, B. Zhang, P. Cicotti, R. S. Armen, and M. Taufer, “A
Scalable and Accurate Method for Classifying Protein-Ligand Binding
Geometries Using a MapReduce Approach,” Journal of Computers in
Biology and Medicine, vol. 42, no. 7, pp. 758–771, 2012.

[14] B. Zhang, T. Estrada, P. Cicotti, and M. Taufer, “On Efficiently Capturing
Scientific Properties in Distributed Big Data without Moving the Data:
A case Study in Distributed Structural Biology using MapReduce,”
in Proceedings of the 2013 IEEE 16th International Conference on
Computational Science and Engineering (CSE), 2013, pp. 117–124.

[15] B. Zhang, T. Estrada, P. Cicotti, P. Balaji, and M. Taufer, “Enabling
Scalable and Accurate Clustering of Distributed Ligand Geometries on
Supercomputers,” Journal of Parallel Computing, vol. 63, pp. 38–60,
2017.

[16] “Apahce Spark,” http://spark.apache.org/.
[17] H. Mohamed and S. Marchand-Maillet, “MRO-MPI: MapReduce Over-

lapping Using MPI and an Optimized Data Exchange Policy,” Journal
of Parallel Computing, vol. 39, no. 12, pp. 851–866, 2013.

[18] R. Chen, H. Chen, and B. Zang, “Tiled-MapReduce: Optimizing Re-
source Usages of Data-Parallel Applications on Multicore with Tiling,”
in Proceedings of the 19th International Conference on Parallel Archi-
tectures and Compilation Techniques. ACM, 2010, pp. 523–534.

[19] R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix Rebirth: Scalable
MapReduce on a Large-Scale Shared-Memory System,” in Proceedings
of the IEEE International Symposium on Workload Characterization,
2009, pp. 198–207.

[20] J. Talbot, R. M. Yoo, and C. Kozyrakis, “Phoenix++: Modular MapRe-
duce for Shared-memory Systems,” in Proceedings of the Second
International Workshop on MapReduce and Its Applications, 2011, pp.
9–16.


