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Abstract—In this paper, we examine usage of the Process
Management Interface (PMI) during MPI_Init. Specifically,
how PMI is used to exchange address information between peer
processes in an MPI job. As node and core counts continue to
increase in HPC systems, so does the amount of address data
processes need to exchange. We show how by applying well-
established locality-awareness techniques, we can significantly
reduce the time spent in MPI_Init. We first present the use
of shared memory to reduce the total amount of information
retrieved from PMI. Next, by combining shared memory with
a minimally connected set of processes, we further reduce the
dependence on PMI, and employ the HPC fabric to transfer
the bulk of address data. Our approach is low impact, relying
on functionality already provided by MPI libraries and process
managers, instead of new APIs and capabilities.

I. INTRODUCTION

MPI is the de facto standard programming model for
distributed memory systems. The vast majority of applications
running on high-performance computing (HPC) clusters use
MPI to communicate among parallel processes. With MPI,
users are provided with basic building blocks of communica-
tion. The simplicity of the interface, along with its scalability
and performance contribute to its wide success in scientific
computing.

Before an MPI application can do useful work on an
HPC system, it must first initialize. Although a necessary
step, initialization does not contribute to the overall output
of a program. It only prepares the MPI library for future
work. Historically, initialization has not received the same
attention as common MPI communication routines. The one-
time nature of initialization means users are often willing to
forgive some additional cost, since it will be spread out over
the execution of the program. However some initialization
costs grow increasingly noticeable at scale. It stands then that
initialization should strive to be as efficient as possible and
avoid wasting valuable core hours.

A non-comprehensive list of initialization tasks includes
gathering information about the parallel job, setting up internal
library state, and preparing resources for communication with
peers. Much of this work is local: a process may request
resources from the host operating system, or examine its
running environment for configuration. But when preparing
communication, it is often necessary to obtain external infor-
mation. For example, if MPI initializes a network interface,
its address may not be known until creation. Peer processes

that wish to communicate over the network fabric must first
exchange addresses by some external service, which will be
the focus of our examination.

For many MPI implementations, processes utilize the Pro-
cess Management Interface (PMI) [1] to facilitate address
exchange. PMI is well-suited to this task, as it provides a
logically centralized service for all processes in an MPI job.
As clusters grow in size, so does the amount of data exchanged
to enable communication. For large-scale jobs, this can mean
long initialization times dominated by PMI usage. But is PMI
really that slow, or is MPI using it inefficiently? In this paper,
we will examine how MPI uses the PMI interfaces today and
propose ways to improve on that usage.

The main objectives of this work are as follows:
• Analyze PMI usage for address exchange in MPI_Init.
• Propose new techniques for address exchange and analyze

their cost.
• Present performance improvements on two supercomput-

ers with variations in node and process count.
This paper is organized as follows: Section II explores the

role of a process manager for parallel applications, and how
PMI came to fill a need for libraries like MPI. Section III
analyzes PMI usage for address exchange. Optimized methods
of address exchange are proposed utilizing well-known tech-
niques of shared memory and collective communication from
MPI. Section IV details the experimental setup and benchmark
used to evaluate and analyze the proposed optimizations on
two supercomputers. A variety of node and core counts are
used to give a full picture of the evaluation. Section V reviews
the existing literature and compares with the proposed work
in this paper. Finally, the paper concludes in Section VI.

II. BACKGROUND

A. Process Manager

Process managers serve several purposes for parallel ap-
plications. First and foremost, they handle the start and stop
of processes. Other user-visible functionality includes std-
out/in/err aggregation, environment and signal propagation.
The aim is to make launching and running parallel applications
as simple and straight-forward as running a sequential binary
on single machine. An example usage

mpiexec -n 16 ./myapp



launches 16 instances of myapp. On a typical HPC cluster,
nodes are allocated from the resource manager, and mpiexec
transparently discovers those nodes and how to access them.
All this without the user needing to know where or how
physical launch actually takes place. A side effect to launching
processes in this manner, is that the launched processes all
have a singular process manager in common. A process man-
ager can thus act as a central coordination point for parallel
processes, providing valuable functionality for libraries like
MPI.

B. Process Management Interface

For users, interactions with a process manager occur at
the command-line or from job scripts. Differences between
implementations are not very impactful to the overall user
experience. Programmatic interactions from an MPI library are
a different story. Without a standard interface, MPI libraries
would need specialized code for all the HPC process managers
it intends to support. The APIs provided by a Cray system may
be different from those on an IBM system, for example. PMI
was first introduced in the MPICH [2] MPI implementation as
a way to decouple process management functionality from the
underlying process manager. This common abstraction allowed
process managers to expose functionality in a useful, portable
way. In turn, MPI libraries using the PMI API could interact
with any compliant system without the need for additional
code. Since its introduction, PMI has seen widespread com-
munity adoption and is supported by most HPC vendors today.

A core feature of PMI is a generic “key-value” store or
KVS. The KVS acts as a centralized database to store and
retrieve arbitrary data. The PMI KVS uses a “write once,
read many” model, ideal for data exchanges like the one
between processes during MPI_Init. Exposing written data
requires processes to first enter into a collective barrier. This
gives an implementation flexibility in how data storage and
synchronization takes place. In most PMI implementations,
barrier is used as an opportunity to distribute key-value pairs
to process management “proxies” running on each node in
the parallel job. Subsequent retrival operations are thus local,
inexpensive operations. For the purposes of this paper, we
do not further analyze the KVS implementation, but only the
interactions made with it by MPI processes.

C. Motivation

Our work is driven by the increase in both node and core
count on today’s HPC machines. Machines with 100,000
or more cores are now commonplace on the Top500 [3]
list of the fastest supercoputers in the world. In order to
enable applications to take advantage of the full scale of
these machines, an MPI library must be able to quickly and
efficiently coordinate communication across ranks. The PMI
interface dates back to when machines were comprised of just
a few thousand cores. In the next section, we will analyze the
most costly part of MPI initialization: address exchange using
PMI.
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Fig. 1: Simple Address Exchange Performance
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Fig. 2: Simple Address Exchange Illustrated

III. METHOD

We first analyze a simple address-exchange mechanism used
by many PMI-based MPI implementations in Section III-A.
Then, in Section III-B we present a PMI usage optimization
using shared memory, and in Section III-C we present an addi-
tional optimization leveraging MPI collective communication.

A. Simple Address Exchange

A simple address exchange using PMI in psuedocode:

PMI_KVS_Put(rank, myaddr);
PMI_KVS_Barrier();
for (i = 0; i < size; i++)

PMI_KVS_Get(i, &addrs[i]);

This method is effective and easy to understand. A process
writes its address, sometimes called a business card, into
the KVS, and after a barrier, retrieves business cards for all
other process in the job. However, the order of this algorithm
is O(P 2), with each process performing P PMI KVS Get
operations. At scale, the cost is especially noticeable, as
evidenced in Figure 1.

B. Shared-Memory Optimization for Address Exchange

One of the primary shortcomings of the traditional business
card exchange approach is the amount of redundant work
performed on each node. Each process on the node gets the
business cards for every remote process into local memory.
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Fig. 3: Shared-Memory Address Exchange

With multiple processes on a node, exactly the same informa-
tion is retrieved and stored multiple times. Figure 3 illustrates
the redundancy.

In our first optimization, we exploit shared memory to
completely eliminate the redundancy in both retrieving and
storing address data. The method used is straightforward:
each process only retrieves P/C number of keys and places
them in a common shared-memory location so other processes
on the same node can access them. This reduces the total
number of keys retrieved by each node from P × C to P ,
which is significant when the number of cores on the node is
large. Shared memory usage is made possible by the locality-
awareness of MPI processes. Within MPI initialization, pro-
cesses learn which of their peers are “local” (on-node) and
which are “external” (off-node). This knowledge is primarily
used for MPI to choose the best performing transport for
communication later on, but since it is also known during
address exchange, we may as well use it to our advantage.

There are two things to note about this approach that add
complexity over the previous method. First, the creation of
shared memory requires some overhead. Typically, one process
creates a memory-mapped file and shares its filename with the
other processes on the node. This sharing is done using PMI
puts and gets, which adds some cost. Specifically, N puts (one
per node), and P gets (one per process) for all processes to
be able to access the shared memory region for address data.
Secondly, there must be agreement on the size of address data
in order to avoid clashes when writing into shared memory.
For fixed-size network addresses, there is no additional work.
However not all networks guarantee a fixed address size. We
again use PMI to coordinate the maximum address length for a
job in this case. Furthermore, we can use the already allocated
shared memory to aid in this process. A local maximum is first
computed in memory, then put into the PMI KVS by a single
process on each node. Next, the maximum for all nodes is
fetched by all processes, and a global maximum determined.
This constitutes N PMI puts and N ∗ P PMI gets.
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Fig. 4: Node Roots Address Exchange

C. MPI Collective Optimization for Address Exchange

While the shared memory optimization discussed in Sec-
tion III-B significantly reduces the amount of data fetched
from PMI by MPI processes from O(P 2) to O(N ∗ P ), it
remains that all address data must pass through the PMI
database before processes can communicate directly with their
peers. Once again we look to existing functionality in the MPI
library for improvement: MPI collective communication. Mod-
ern MPI collective operations contain built-in optimizations for
locality-awareness. These optimizations minimize the amount
of traffic sent over network links by a set of “node root”
processes versus much faster transfers over shared memory on
a node. We exploit this technique to reduce the dependence
on PMI for address exchange, and instead comunicate directly
among peers. MPI provides the ideal operation for processes
to collectively exchange data for our purposes: MPI Allgather.
The steps involved are as follows:

1) Each process locally determines the set of “node roots”
using job information provided by the process manager.

2) Root processes put business cards into PMI KVS, which
is O(N) complexity.

3) Business cards are fetched using optimization from Sec-
tion III-B. Peer-to-peer connections are created among
node roots, which is O(N2) complexity.

4) Non-root processes place their address data into the
shared memory region accessible by the node root.

5) Root processes perform an MPI_Allgather operation
on the “node roots” communicator, populating address
data in-place in shared memory. Remaining connections
are established among peers, which is O(logN) com-
plexity.

With this method, only the root processes exchange business
cards over PMI, reducing the number of puts to N . At the
node-level, the processes retrieve N business cards, for a total
of N2 retrieves across the job. The remaining (C − 1) × N
business cards are exchanged using MPI Allgather. Assuming
a common tree-based implementation of MPI Allgather, the
cost would be logarithmic with the number of nodes.



IV. EVALUATION

In this section we evaluate the performance of our modified
address exchange methods. Each algorithm was implemented
in the MPICH library using the CH4 communication device.
The changes made were based on MPICH version 3.3b3.

A. Experimental Setup

Experiments were done using Bebop and Theta supercom-
puters Argonne National Laboratory, USA. Theta, a 11.69
petaflops system, is based on Intel Xeon Phi 7230 processors
coupled with a Cray Aries interconnect in a Dragonfly topol-
ogy. Theta is equipped with 4,392 nodes, each with 64 cores.
Bebop has 1024 public nodes with 36 cores (Intel Broadwell) /
64 cores (Intel Knights Landing) per compute node, connected
with Intel Omni-Path fabric.

On Bebop, we used OFI version 1.6.0 for Omni-Path net-
work support through the PSM2 provider. The Hydra process
manager provided by MPICH was used for process launch and
management. MPICH was configured to use the PMI version
1.1 API supplied by the included Simple PMI implementation.
Runs were done exclusively on the KNL node partition.

On Theta, we used OFI version 1.6.0 for Aries network sup-
port through the user level generic network interface (uGNI)
provider. The Cray Linux Environment on Theta uses the
Application Level Placement Scheduler (ALPS) version 6.6.1
for process launch and management. MPICH was linked with
the Cray PMI library version 5.0.14, and configured to use the
PMI2 API.

For benchmarking, we instrumented MPICH to mea-
sure the time taken by address exchange in MPI_Init.
To ensure address exchange correctness, a microbenchmark
using an MPI_Alltoallv collective was executed on
MPI_COMM_WORLD. The reason being that in MPICH, the
MPI_Alltoallv algorithm relies on pairwise communica-
tion between all processes in a communicator, ensuring we
exercise every addresses exchanged during initialization. Our
instrumentation measured the elapsed time during each phase
of the address exchange algorithms. Runs were performed five
times and the results averaged.

B. Address Exchange Performance Evaluation

In this section, we show how the shared memory and
allgather methods compare to the original in performance. We
consider two configurations in our measurements. First, we
show the performance of all three methods for fully subscribed
runs (one processes per core) with increasing node count.
Alternatively, we fix the number of nodes and vary the number
of processes per node, starting at one and doubling until the
node is fully subscribed.

C. Performance Evaluation of Address Exchange on Bebop

In Figure 5, we see that for the original address exchange
method, the cost grows quickly. A few seconds may be
tolerable, but at greater than 100 nodes, we see address
exchange take on the order of minutes. Measurements for
the optimization in Section III-B (both fixed and non-fixed

size addresses) are presented which drastically cut the address
exchange time over the original. At 256 nodes, the shared
memory method takes just under 7 seconds to exchange
addresses, including the overhead of shared memory setup and
maximum address length determination. Still, a steep trend
is visible. For supercomputers comprised of many thousands
of nodes, this will still be unsustainable. The node roots
measurements represent yet another significant reduction in
address exchange time. At the largest scale (256 nodes, 16384
processes), address exchange takes just under 2 seconds for
regular and irregular address length, with the dominant source
of time spent in MPI_Allgather.
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Fig. 5: Address Exchange by Node Count

Figure 6 shows the costs of address exchange for different
values of processes per node. At low values (one and two),
we see that the original method slightly outperforms the
optimizations presented in this paper. This is expected given
the additional overheads in coordinating shared memory, and
relative lack of redundant work which is the advantage of our
optimizations. At ppn >= 4, however, the new methods are
superior. These results confirm that for applications which
launch multiple MPI processes per node, our proposed ex-
change methods will most often shorten the address exchange
time.
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D. Performance Evaluation of Address Exchange on Theta
We see similar performance improvements on the Theta

supercomputer in Figure 7. Over the course of fully-subscribed
production runs from 128 to 1024 nodes, our optimizations
handily beat the original exchange method. For the largest
runs, the allgather-based exchange completes in under three
seconds. Additionally, these results on Theta illustrate the
portability of our solution. Here, MPICH is linked with the
Cray PMI library using the PMI2 API.
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V. RELATED WORK

The literature related to PMI can be divided into three
areas. One is focused on defining standard APIs. Another
is optimizations to exisitng PMI library functionaliy. Lastly,
there are proposed extensions to PMI for better scalability.
The features and capabilities of PMI used in MPICH and its
derivatives is described in [1]. A high-level overview of the
goals and status of PMIx (PMI for Exascale) is given in [4],
as well as a roadmap for future directions.

Others have written on the excessive time spent using
PMI while initializing MPI, with address exchange rightly
being the main focus. Studies often conclude that in order
to support address exchange at large-scale, PMI must be
extended or the implementation dramatically changed in order
to eliminate bottlenecks. Proposals include new PMI collective
APIs [5] that enable PMI data exchange over the HPC fabric,
as opposed to TCP and Unix sockets. Nonblocking API [6]
proposals allow issuing multiple PMI requests at the same
time. Reimplementing PMI proxy communication over shared
memory [7] instead of Unix sockets eliminates a bottleneck
identified in traditional address exchange. These methods are
effective at improving initialization performance, but each adds
complexity for the process management system. They also
operate on an assumption that traditional address exchange
as shown in III-A is otherwise the best an MPI library can
do using the current PMI interfaces.

Our approach achieves some of the same goals without the
need to change existing PMI APIs or implementations. Storing
business cards in shared memory using MPI infrastructure cuts
down on PMI communication and eliminates redundant work.
By first connecting a subset of processes, we were also able
to use the HPC fabric for fast data movement all within MPI.

VI. CONCLUSIONS

As HPC systems grow, efficient startup time becomes more
important. Taking minutes to initialize means wasting valuable
core hours without contributing to program output. In this
paper, we looked at the most expensive part of MPI initial-
ization – address exchange using the Process Management
Interface. PMI has been called unsuitable for extreme-scale
systems due to its interface design, but this is a simplistic
characterization. In this paper, we showed that by exploiting
locality information, address exchange performance can be
greatly improved. By using shared memory, we can eliminate
on redunant work. By incorporating MPI collective communi-
cation infrastructure, we enabled the high-speed fabric without
reinventing or duplicating the code needed to do so. We have
shown that by working more efficiently inside MPI, we can
achieve fast address exchange with minimal impact to the
software running on production HPC systems.
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