
Evaluating the Impact of High-Bandwidth Memory
on MPI Communications

Giuseppe Congiu*, Pavan Balaji
Mathematics and Computer Science Division

Argonne National Laboratory
email: gcongiu@anl.gov, balaji@anl.gov

Abstract—Modern high-end computing clusters are becoming
increasingly heterogeneous and include accelerators such as
general-purpose GPUs and many integrated core processors.
These components are often equipped with high-bandwidth on-
package memory (HBM) offering higher aggregated bandwidth
than standard DRAM technology has but substantially less
capacity.

In this paper we carry out a fine-grained evaluation of HBM
usage in MPI using Knights Landing Multi-Channel DRAM
(MCDRAM). Our contribution is twofold. First, we analyze the
performance of point-to-point and remote memory access with
HBM; Second, we introduce capacity constraints and consider
the impact that the MPI library has on the total memory budget.
Our analysis shows that although MCDRAM can improve MPI
communication performance, this improvement comes at the cost
of higher memory usage. Since HBM is a scarce resource, we also
provide a list of recommendations that can help users with diverse
budgetary requirements for memory decide what MPI objects to
place in MCDRAM in order to achieve the best performance
possible with their codes.

Index Terms—Heterogeneous Memory, Message Passing Inter-
face, High-Performance Computing, High-Bandwidth Memory,
KNL MCDRAM

I. INTRODUCTION

High-end computing clusters are becoming increasingly
heterogeneous and include a variety of compute components,
ranging from standard CPUs to highly parallel accelerators.
Such increasing heterogeneity is driven by the need to better
exploit data-level parallelism in existing and future codes and
to account for a paradigm shift in high-performance computing
(HPC) workloads that are moving from simulations to more
complex workflows involving data ingestion, generation, and
analysis, for example, deep learning applications [1].

The massive parallelism offered by accelerators exacerbates
the performance gap between computation and memory, with
the memory subsystem that has to supply (absorb) data into
(from) an ever-larger number of cores concurrently. For this
reason the memory architecture of HPC systems is transi-
tioning from homogeneous configurations, characterized by
single DRAM technology, to heterogeneous configurations
comprising standard DRAM as well as on-package high-
bandwidth memory (HBM) based on 3D stacked DRAM
technology [2]. Future architectures will likely include a range
of diverse memory components such as HBMs and byte-
addressable nonvolatile memories.

Accelerators that integrate HBMs include the Intel Knights
Landing (KNL) processors [3], the second generation of the
Xeon Phi Many Integrated Core architecture, and the NVIDIA
Tesla P100 [4]. Memory heterogeneity exposed by these accel-
erators introduces further complexity that has to be taken into

account by programmers when striving for high performance
in their codes. In fact, HBMs are limited in capacity compared
with DRAM memory, and not all applications can equally
benefit from them; overall, performance strongly depends on
the way data is laid out and accessed.

Previous studies [5] [6] [7] have shown that the performance
of bandwidth-bound applications can be improved whenever
the HBM’s capacity is sufficient to accommodate sensitive data
structures. If memory requirements cannot be fully satisfied,
the user has to decide what data placement strategy to adopt
in order to achieve the best results. All these studies, however,
lack a fine-grained analysis of the effects that HBMs have on
communication libraries such as MPI. Indeed, MPI internally
allocates and manages memory objects for a variety of reasons,
including efficient intranode communication support. In this
case the way the library places its internal objects in memory
becomes relevant from a performance standpoint. If on the
one hand appropriate placement of MPI objects in HBM can
boost the library performance, on the other hand this carves
into the available memory budget, reducing the amount of
space accessible to the user’s data and potentially degrading
the overall performance.

In this paper, to fill the gap left in the literature, we study
the impact that HBMs have on MPI communications and
corresponding memory usage. Our contributions to the state
of the art are as follows.

• We prototype HBM support into MPI for different
types of intranode communication mechanisms, including
point-to-point (pt2pt) and remote memory access (RMA).
We use a combination of microbenchmarks and miniap-
plications to evaluate the effect of HBM on performance
for different memory placement strategies of MPI internal
objects.

• Based on our findings, we compile a list of recom-
mendations for programmers that will be useful for
further tuning their codes through optimal configuration
of the MPI library. Our recommendations depend on
both the analysis of performance-critical memory objects,
along with their placement in physical memory, and the
resulting memory usage requirements. This last aspect
is particularly important because it can also affect the
application’s overall performance.

In our study we use the Intel KNL processor, available in
the Joint Laboratory for System Evaluation KNL cluster [8]

at Argonne National Laboratory, and the MPICH [9] imple-
mentation of the MPI standard, developed at Argonne.

The rest of the paper is organized as follows. Section II
provides general background information about both the
MPICH internals and the KNL on-package HBM called Multi-
Channel DRAM (MCDRAM), including how this is detected
by the operating system and exposed to the programmer.
Section III describes the prototyping of HBM into MPICH.
Section IV evaluates our prototype performance with a mix
of microbenchmarks and miniapplications and provides a
list of recommendations for optimally configuring MPICH.
Section V provides information about related work. Section VI
presents our conclusions.

II. BACKGROUND

This section gives information about the intranode com-
munication mechanism used by MPICH and the memory
architecture of the Intel KNL processor, focusing on the
offered on-package HBM configurations. The section also
briefly describes how memory heterogeneity is exposed to
users and managed in Linux-based systems.

A. Shared-Memory Communication in MPICH

MPICH is a widely portable, high-performance implemen-
tation of the MPI standard and is at the base of many other
MPI implementations (also known as MPICH derivatives).
MPICH design follows a layered approach, with different
levels of abstraction that encapsulate distinct functionalities
and services. A high-level architectural view of the library is
presented in Figure 1.

1

CH3 CH4

Nemesis Sock

OFI OFI UCX

Devices
s

Channels

Netmods

Abstract Device Layer

freeQ recvQ

freeQ recvQ

Proc #0

Proc #1

buf

buf

1

2

3 4

5 6

Fig. 1: MPICH architectural diagram

The abstract device layer at the top of the stack is responsi-
ble for decoupling the high-level MPI interface from the lower-
level communication infrastructure. This layer also offers
functionalities commonly needed by the underlying software
modules. MPICH currently supports two implementations of
the abstract device interface exposed by the top layer: one
called CH3 and the other called CH4.

CH3 provides two different communication subsystems, or
channels. The first is based on sockets, while the second is
a more efficient implementation called Nemesis [10] [11].
Nemesis is highly optimized for intranode communication but
also supports internode communication over multiple network

fabrics using additional software modules called netmods.
For intranode communication Nemesis uses lock-free message
queues. Every process has two queues, a free queue (freeQ)
and a receive queue (recvQ), each containing elements called
cells, preallocated in a shared-memory region by the abstract
device layer at library initialization.

Fig. 2: Nemesis message queues mechanism

When a process needs to send a message to another process,
it dequeues a cell from its freeQ, copies data from the send
buffer into the cell, and enqueues it in the recvQ of the other
process. The receiving process checks its recvQ to find the new
message, dequeues the cell, copies the content into the receive
buffer, and enqueues it back into the freeQ of the sending
process. This process is graphically described in Figure 2.
For internode communications the mechanism is similar, but
in this case the role of the remote process is played by the
local netmod. In this paper we are interested in studying
MPI shared-memory communication performance; hence, we
disregard the internode case.

The message queue mechanism is highly portable; however,
enqueues and dequeues introduce additional latency in the
communication. Although this might not be a problem for
long messages, it is deleterious for short ones, in which
latency is important. For this reason MPICH also provides a
mechanism to bypass the message queue for short messages;
this mechanism is called fastbox. Instead of accessing the
message queue, a process first checks whether the fastbox
is available. If it is, the process directly copies data into
the fastbox and sets a flag to signal the receiver that a new
message is ready. The receiver always checks the fastbox
before accessing the recvQ. If the fastbox’s flag is set, it copies

the data from the fastbox into the receive buffer and resets
the flag. Whenever the fastbox is not available, the sender
falls back to the message queue. The implementation allocates
N − 1 fastboxes to every process, where N is the number of
total processes in the node. Since the memory footprint of
fastbox elements in each node grows quadratically with the
number of processes, fastbox elements have to be kept small
(equivalent in size to a single cell element, that is, 64 KB).

Fastboxes and message queues are used for short mes-
sages, that is, shorter than a predefined Eager threshold. For
such messages the sender can directly enqueue cells into the
other process recvQ and return to computation right away,
without waiting for the message to be actually copied into
the receiver’s buffer (Eager protocol). For long messages,
however, in order to avoid exhausting all the cells in the
freeQ, Nemesis uses a different communication protocol called
Rendezvous. In this case the sender cannot start transferring
data to the receiver until this has posted a matching receive
operation. Furthermore, for the intranode case considered here,
the sender uses fastboxes and message queues only for the
initial handshaking, while for data transfer MPICH allocates
a different shared-memory area called copy buffer.

Message queues in Nemesis work both for point-to-point
and RMA operations. For intranode RMA communications
Nemesis can directly use shared memory, bypassing the mes-
sage queues and reducing the number of memory copies
from two to one. This can be done when the window in
MPI is created by using either MPI_Win_allocate or
MPI_Win_allocate_shared. When these functions are
employed, MPICH can allocate a new shared-memory region
for the exposed window and directly perform copies from the
origin to the target buffer.

So far we have discussed the communication infrastructure
implemented by CH3, CH4 is the new communication device
provided by MPICH to replace the older CH3 implementa-
tion. CH4 can take advantage of improved communication
functionalities built inside recent network cards to offload
to hardware some of the functions that CH3 implements in
software. Features of this sort include the possibility to bypass
message queues and give the network hardware direct access
to user buffers, completely avoiding any memory copy in
internode operations. Another feature offered is native support
for noncontiguous memory layouts (described through MPI
derived datatypes) that also reduces the number of memory
copies.

In terms of point-to-point intranode communication, CH4
supports the same message queue mechanism described for
Nemesis; however, it currently lacks fastbox support. Simi-
larly, RMA operations cannot automatically use shared mem-
ory unless the RMA window is allocated explicitly with
MPI_Win_allocate_shared. For this reason, in this pa-
per we focus exclusively on the CH3 Nemesis channel and
ignore CH4.

B. Intel KNL Memory Architecture

Knights Landing [3] is the codename of the second gen-
eration of the Xeon Phi Many Integrated Core architecture
initially launched by Intel in 2012. KNL processors can pack
up to 72 cores in one chip. Cores are organized in 36 tiles and
connected through a network-on-chip using a mesh topology.
Each tile integrates an L2 cache of 1 MB, shared among
the pair of cores; four vector processing units, two per core;
and a caching home agent managing cache coherency. KNL
also features a new type of 3D stacked, high-bandwidth, on-
package memory called Multi-Channel DRAM. MCDRAM
is limited in capacity (up to 16 GB) but can sustain up
to ∼400 GBps of aggregated bandwidth, compared with the
∼90 GBps of traditional DRAM technology. Figure 3 shows
the high-level architectural diagram of a KNL system.

Fig. 3: KNL architectural diagram

The MCDRAM can be configured to work in three modes
(memory modes).

• Cache: The MCDRAM is totally transparent to the user
and managed by the hardware as an additional, directly
mapped L3 cache. This configuration is the default and
also the least flexible since it gives no control on data
placement in physical memory. For this reason it is
suitable for existing applications that are not directly
concerned with heterogeneous memory systems but can
still take advantage of some of the new features to
improve performance;

• Flat: The MCDRAM extends the address space of con-
ventional DRAM, meaning that the user can directly
access it using operating system support or appropriate
user space libraries. This mode offers the highest level of
control and can potentially give the biggest performance
improvements if used intelligently;

• Hybrid: Part of the MCDRAM is managed by the
hardware as L3 cache, and the remaining part is exposed
directly to the user. This mode offers a combination of
automatic caching and user-defined memory placement
strategy.

We focus on the flat mode to selectively move MPICH
internal memory objects to MCDRAM. We chose this config-
uration over the cache and hybrid modes because we can avoid
uncontrolled data movement from the system, thus performing
a fine-grained evaluation of the impact that high-bandwidth
memory has on MPI communication performance.

C. Heterogeneous Memory in Linux

In flat mode the MCDRAM is detected by Linux as a
separate NUMA node with no associated compute resources.
This approach is taken so that, by default, any allocation will
be directed to DRAM. Therefore, even in flat mode, existing
applications will continue to work undisturbed with standard
DRAM memory. In order to place allocations into MCDRAM,
the operating system has to be explicitly instructed by the
user through the mbind system call, as follows.

mbind(void *addr, unsigned long len, int mode, unsigned
long *nodemask, unsigned long maxnode, unsigned flags)

The call takes the starting address (addr) and length
(len) of the virtual address space allocation that the memory
binding policy will be applied to; the mode describing the
type of memory binding to be performed (e.g., “bind” to a
specific NUMA node or “interleave” across all the specified
NUMA nodes); the nodemask specifying which NUMA
node(s) the policy will apply to; and the number of such
NUMA nodes (maxnode). A mode flag (flags) defining the
behavior of the operating system at the time physical memory
then is allocated (e.g., whether the binding is “strict” and the
allocation should fail if it cannot be satisfied by MCDRAM
or if it should failover to DRAM instead).

In order to use mbind, memory has to be allocated through
the mmap system call. This means that all allocations must be
aligned and a multiple of the page size. For small buffers
that are frequently allocated and freed, this approach is not
efficient because it causes wastage of memory and incurs the
overhead of a system call every time new memory is requested.
For this reason Intel provides a heap management library
offering malloc-like functionalities called memkind [12].
With memkind, users can allocate memory in MCDRAM
using the hbw_malloc function. Similarly to malloc, this
function allocates a larger area of virtual memory using mmap,
binds it to MCDRAM using mbind, and then partitions it
into smaller regions that are eventually returned to the caller.
A similar but more flexible framework called hexe has been
proposed by Oden and Balaji [5].

Unfortunately none of the aforementioned libraries provides
shared-memory allocation support, and thus they are not useful
for the objectives of this work.

III. HETEROGENEOUS SHARED MEMORY IN MPICH

MPICH supports shared memory using both POSIX and
SystemV interfaces and can select the most appropriate one
depending on the host system. In POSIX, shared memory can
be allocated by creating an inode object through shm_open

and then passing the returned descriptor to the mmap system
call along with the MAP_SHARED flag, at which point mmap
allocates memory, associating it with the corresponding inode.
The inode becomes the handle that processes use to access
the shared-memory region and map it to their private address
space. Unlike normal files, however, the file-mapped memory
is not backed up by any block in the file system. When
SystemV is used, shared memory is allocated in a similar
way, but the shared object is created by using a different
mechanism.

Regardless of the interface used to allocate shared memory,
the returned virtual address can be passed to mbind, which
then applies the desired policy. Afterwards, every process can
access the shared-memory object and map it to its private
address space, also inheriting the binding policy previously
set.

In MPICH, message queues’ elements (cells) are
allocated in shared memory automatically when the
library is initialized. For shared-memory windows,
however, MPI provides MPI_Win_allocate and
MPI_Win_allocate_shared. These interfaces take
an additional info object that can be exploited to pass
performance hints to the implementation. To enable
heterogeneous memory support for the shared-memory
objects described in Section II-A, one needs only to set the
appropriate memory-binding policy for the returned virtual
address either directly using “mbind” or indirectly using a
third-party library that uses mbind underneath. For fastboxes,
cells, and copy buffers we have no alternative and thus use
additional CVARs to customize the runtime behavior of the
library. For RMA windows we have two options: to use
CVARs or to use the info object previously mentioned. In our
implementation we support both CVARs and the info object,
with CVARs overriding user-defined hints.

For memory-binding policy selection we do not use mbind
directly because it is not portable. Instead we use the
hwloc hardware locality library, which also provides support
for memory binding through hwloc_set_area_membind.
Moreover, recent versions of hwloc have added support to
detect MCDRAM in KNL systems [13]. MPICH already uses
hwloc for binding processes to cpusets, and thus we can
reuse most of the existing infrastructure, extending it with
heterogeneous memory. Hwloc defines memory- and process-
binding policies as well as additional flags to control the
operating system behavior in case the requested allocation
cannot be satisfied by the specified memory. For the point-
to-point objects (i.e., fastboxes, cells, and copy buffers) we
bind MPICH objects to a single MCDRAM node and enforce
the policy as “strict” to make sure that there is no fallback
to DRAM. For RMA operations we leave full control to the
user.1

1Additional information on hwloc set area membind can be found at https:
//www.open-mpi.org/projects/hwloc/doc/hwloc-v2.0.0-a4.pdf.

IV. EVALUATION

This section presents the evaluation of KNL MCDRAM
with MPI communications and the corresponding memory
usage analysis. We start by briefly describing the hardware
environment and the benchmarks we used. Our study is
conducted on a single node of the Joint Laboratory for Sys-
tem Evaluation KNL cluster at Argonne National Laboratory.
KNL nodes in the cluster are equipped with Intel Xeon Phi
7210 processors, each running 64 cores clocked at 1.3 GHz.
Processors also have a 16 GB on-package HBM and 192 GB
of external DRAM.

We start evaluating performance in terms of both bandwidth
and latency using a combination of different microbench-
marks. These allow us to assess MCDRAM peak performance
and characterize its possible impact on MPI communications.
We then introduce capacity constraints and analyze the impact
that different MPI objects have on the available MCDRAM
memory budget. Based on the results, we compile a list of
recommendations that can help the user prioritize objects in
MCDRAM.

We consider a stencil code that well represents the commu-
nication pattern of a wide range of HPC codes; and using
our previous considerations, we measure possible runtime
improvements deriving from different MCDRAM capacity
constraints.

For all our experiments we use the KNL system in quadrant
and flat mode. In this configuration only two NUMA nodes
are available: one containing the cpuset and DRAM memory
(Numa 0) and one containing MCDRAM (Numa 1). Addi-
tionally, to minimize variability of results related to process
migration, we bind every MPI process to a unique physical
core among the 64 available using the -bind-to=core
option of mpirun.

A. STREAM
Before proceeding with the analysis of MPI performance

we start with a preliminary characterization of MCDRAM2

bandwidth profile. To do so, we use the OpenMP version
of the STREAM [14] benchmark. In our configuration the
benchmark runs with a variable number of OpenMP threads,
ranging from 1 to 64, each transferring from a minimum of
64 K to a maximum of 4 M doubles, that is, from a minimum
of 512 KB to a maximum of 32 MB. Performance is measured
by running the STREAM Copy test 10 times and taking the
average bandwidth.

Figures 4a and 4b show the results for DRAM and MC-
DRAM, respectively. In single-thread tests the measured band-
width is similar for the two memories, with ∼16 GB/s for
DRAM and ∼18 GB/s for MCDRAM. After increasing the
number of threads beyond 8, however, MCDRAM outperforms
DRAM, with a peak of ∼380 GB/s when using all 64 available
cores; DRAM, on the other hand, can sustain only up to
∼82 GB/s, that is, ∼4.5× less than MCDRAM, as also
reported by previous studies [5] [6].

2In this case we have used numactl –membind=1 to move all the applica-
tion’s memory to MCDRAM, as done by previous works.

B. Remote Memory Access

For the evaluation of MPI RMA operations we use the OSU
Micro-Benchmarks suite. We are interested in the aggregated
bandwidth and in the overall latency when all the KNL cores
are actively participating in the communication. The OSU
suite provides multibandwidth and multilatency tests for pt2pt
communication but not for RMA. For this reason we have
modified the osu put bw, osu put latency osu get bw, and
osu get latency to support multiprocess RMA, using the same
communication schema used for pt2pt tests (i.e., pairs of
processes do RMA using MPI_Put and MPI_Get).3 For each
test we use different memory placement configurations of the
RMA memory window, as reported in Table I.

TABLE I: RMA memory placement configurations. O indi-
cates origin buffer, and T indicates target buffer; lowercase in-
dicates DRAM placement, and uppercase indicates MCDRAM
placement.

OrigBuf TargetBuf
o/t DRAM DRAM

o/T DRAM MCDRAM

Figure 5 shows bandwidth performance for multi-MPI_Put
(5a) and MPI_Get (5b) tests when 32 pair of processes are
used. (We limit our analysis to 64 processes because, as shown
for the STREAM benchmark, MCDRAM bandwidth can be
saturated only when all the KNL cores are active.) The two
tests are similar: puts load data from the user buffer (origin)
and store it in the shared-memory window buffer (target), and
gets load data from the shared-memory window buffer and
store it to the user buffer.

As one can infer from the results, the most performance-
critical object for RMA operations is the store buffer (i.e.,
the target buffer in put operations and the origin buffer in get
operations). In fact, placing this in MCDRAM can boost the
bandwidth of put operations up to 105%. For get operations
the store buffer is the origin, while target becomes the load
buffer. In this case placing the load buffer in MCDRAM gives
only moderate improvements compared with put, around 36–
41% for messages in the range of 8 KB to 128 KB and around
13% for longer messages.

Table II reports multilatency test results for 32 pairs of
processes. Latency figures further confirm the importance
of placing the store buffer in MCDRAM. Indeed, for put
operations, latency can be reduced significantly, to over 60%
of the baseline configuration (o/t). For get operations the
reduction is moderate and does not go beyond ∼12% of the
baseline.

In the RMA tests we did not consider the placement of
the origin buffer in MCDRAM for get operations because
the origin buffer is normally allocated by the user. The target
buffer, on the other hand, can be under the direct control of
the MPI implementation whenever MPI_Win_allocate or

3The multiprocess RMA microbenchmarks code, as well as the pt2pt code
used for the other experiments, can be found at https://github.com/gcongiu/
osu micro benchmark mcdram.git.

64K 128K 256K 512K 1M 2M 4M
Elem/Thread (doubles)

10000

20000

30000

40000

50000

60000

70000

80000

Ba
nd

wi
dt

h
(M

B/
s) T=1

T=2
T=4
T=8
T=16
T=32
T=64

(a)

64K 128K 256K 512K 1M 2M 4M
Elem/Thread (doubles)

0

50000

100000

150000

200000

250000

300000

350000

Ba
nd

wi
dt

h
(M

B/
s) T=1

T=2
T=4
T=8
T=16
T=32
T=64

(b)

Fig. 4: STREAM Copy test aggregated bandwidth values for DRAM (4a) and MCDRAM (4b) with varying number of threads
(1, 2, 4, 8, 16, 32, and 64)

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Message Size (Bytes)

0

10000

20000

30000

40000

50000

60000

70000

80000

Ba
nd

wi
dt

h
(M

B/
s)

o/t
o/T

(a)

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Message Size (Bytes)

0

10000

20000

30000

40000

50000

60000
Ba

nd
wi

dt
h

(M
B/

s)
o/t
o/T

(b)

Fig. 5: osu put mbw (5a) and osu get mbw (5b) benchmark results for 32 pairs

MPI_Win_allocate_shared is used to create the shared-
memory window. For this reason, users should take advantage
of MPI RMA functions to create and manage memory win-
dows so that the implementation can appropriately place the
corresponding buffers into the most suitable memory.

C. Point-to-Point

For the evaluation of MPI point-to-point operations we
use the osu mbw mr and osu multi lat tests. These tests
perform parallel communication, through MPI_Isend and
MPI_Recv, across multiple pairs of processes. For each
number of pairs we use the memory placement configurations
reported in Table III. The selected placement configurations
allow us to carry out a fine-grained performance analysis of

the memory subsystem for the most relevant memory objects
in the MPICH implementation.

Figure 6 shows bandwidth performance for 32 pairs of pro-
cesses. The results indicate that for short messages (for which
MPICH uses the Eager protocol) placing fastboxes (“F/c/cb”),
cells (“f/C/cb”) or both (“F/C/cb”) in MCDRAM gives better
performance over the baseline configuration (“f/c/cb”), up
to ∼50% and ∼54%, respectively (performance of “f/C/cb”
and “F/C/cb” is aligned). For this particular test we also
notice that cells perform better than fastboxes when moved
to MCDRAM. The reason is that the osu mbw mr test issues
multiple send/recv operations for the same data. Hence, only
the first message will use fastbox, while the following mes-
sages will use cells (i.e., message queues). After analyzing

TABLE II: RMA multilatency test results (in microseconds) for the considered memory placement configurations. The table
also reports the percentage latency reduction against the baseline, namely, “o/t.”

MPI Put MPI Get
o/t o/T ↓ % o/t o/T ↓ %

0 B 49.192 49.142 - 48.998 49.069 -
1 B 112.389 175.953 - 111.547 79.760 -
2 B 48.571 48.041 - 48.105 47.906 -
4 B 47.795 47.903 - 47.747 47.491 -
8 B 48.107 48.282 - 48.029 47.907 -

16 B 47.985 48.653 - 48.044 47.610 -
32 B 48.320 48.572 - 48.243 47.845 -
64 B 49.186 48.680 - 48.850 48.619 -

128 B 49.039 48.319 - 48.607 48.503 -
256 B 48.855 47.925 - 48.333 48.251 -
512 B 48.804 47.925 - 48.171 48.130 -
1 KB 49.046 48.247 - 48.568 48.411 -
2 KB 48.870 47.934 - 48.553 48.468 -
4 KB 48.496 48.274 - 48.442 48.328 -
8 KB 48.983 48.893 - 48.787 48.652 -

16 KB 50.121 50.086 - 50.114 49.881 -
32 KB 51.545 50.953 - 51.702 50.540 -
64 KB 54.671 53.892 - 54.410 53.937 -

128 KB 71.826 66.411 7.5 72.506 65.100 10.0
256 KB 259.659 92.015 64.5 257.580 257.371 0.08
512 KB 545.213 252.521 53.6 545.257 506.752 7.06

1 MB 1039.163 558.357 46.2 1037.612 931.533 10.2
2 MB 1940.753 999.427 48.5 1939.089 1717.608 11.4
4 MB 3739.691 1857.870 50.3 3739.174 3294.915 11.8

TABLE III: Point-to-point memory placement configurations.
F indicates fastbox, C indicates cells, and CB indicates copy
buffer; ;owercase indicates DRAM placement, and uppercase
indicates MCDRAM placement.

Fastbox Cells Copy Buffer
f/c/cb DRAM DRAM DRAM

F/c/cb MCDRAM DRAM DRAM
f/C/cb DRAM MCDRAM DRAM

F/C/cb MCDRAM MCDRAM DRAM
f/c/CB DRAM DRAM MCDRAM

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Message Size (Bytes)

0

10000

20000

30000

40000

50000

60000

Ba
nd

wi
dt

h
(M

B/
s)

f/c/cb
F/c/cb
f/C/cb
F/C/cb
f/c/CB

Fig. 6: osu mbw mr microbenchmark results for 32 pairs

the performance in more detail we found that about one-third
of the messages use fastboxes, while for the remaining two-
thirds the implementation falls back to message queues. For
this reason we have more messages using cells, and placing
these in MCDRAM can provide a larger improvement. For
long messages (for which MPICH switches to the Rendezvous

protocol) the performance-critical object becomes the copy
buffer, and placing this in MCDRAM achieves the best per-
formance. Fastboxes and cells are rarely used in practice, and
in fact placing either of them in MCDRAM does not provide
any benefit since the curves for “f/c/cb,” “F/c/cb,” “f/C/cb,”
and “F/C/cb” are all aligned, as shown in Figure 6.

Our analysis of MPI point-to-point communication con-
cludes with the multilatency tests for 32 pairs of processes
reported in Table IV. Similarly to the bandwidth tests, latency
of short messages shows better performance when fastboxes
are placed in MCDRAM (up to 36% reduction). Placing cells
in MCDRAM gives practically no performance improvement
over fastboxes because in this particular case these are unused
(latency tests issue only one message at a time for each process
and then measure the time it takes for the message to arrive
to the other process; this message always goes to fastbox).
For long messages (≥ 64 KB) placing the copy buffer in
MCDRAM can give up to 39% latency reduction.

D. Recommendations to Users

Based on our microbenchmarks analysis, we compile for
each communication mechanism a list of recommendations
that should help users optimize their codes with the MPICH
library in different memory capacity constraint scenarios.

1) RMA: we recommend that users allocate a
shared-memory window and corresponding buffer
using either the MPI_Win_allocate or the
MPI_Win_allocate_shared interface. In this way
the library can optimize the memory allocation whenever
the user needs it by placing the shared-memory buffer in
MCDRAM. For put operations this is definitely the best
strategy since the performance gain obtained by having the
store buffer in MCDRAM is significant. For get operations
having the load buffer in MCDRAM is still beneficial,

TABLE IV: Point-to-point multilatency test results (in microseconds) for the considered memory placement configurations.
The table also reports the percentage latency reduction against the baseline, i.e., “f/c/cb.”

f/c/cb F/c/cb f/C/cb f/c/CB F (↓ %) CB (↓ %)
0 B 0.841 0.827 0.843 0.838 1.664 -
1 B 0.891 0.883 0.892 0.892 0.897 -
2 B 0.901 0.893 0.902 0.902 0.887 -
4 B 0.938 0.928 0.942 0.940 1.066 -
8 B 0.951 0.940 0.952 0.950 1.156 -

16 B 0.981 0.971 0.983 0.980 1.019 -
32 B 1.192 1.191 1.194 1.191 0.083 -
64 B 1.192 1.191 1.197 1.191 0.083 -

128 B 1.238 1.237 1.240 1.236 0.080 -
256 B 1.252 1.252 1.257 1.252 0 -
512 B 1.609 1.509 1.615 1.609 6.215 -
1 KB 2.659 2.566 2.666 2.661 3.497 -
2 KB 1.728 1.722 1.734 1.727 0.347 -
4 KB 2.828 2.777 2.807 2.818 1.803 -
8 KB 5.377 4.639 5.430 5.376 13.72 -

16 KB 11.496 8.342 11.503 11.514 27.43 -
32 KB 23.682 15.068 23.745 23.702 36.37 -
64 KB 50.975 51.087 50.999 44.454 - 12.79

128 KB 116.144 118.372 117.863 89.120 - 23.26
256 KB 530.683 511.696 504.205 321.064 - 39.49
512 KB 984.598 982.653 984.732 663.066 - 32.65

1 MB 1920.218 1921.261 1916.377 1313.256 - 31.60
2 MB 3807.138 3805.567 3809.388 2558.192 - 32.80
4 MB 7567.653 7567.129 7577.482 5090.969 - 32.72

although the gain is more moderate compared with that using
puts.

2) Pt2pt: MPICH uses two communication protocols, dif-
ferentiating between short (Eager) and long (Rendezvous)
messages. In this case, depending on the memory usage
constraints imposed by the application, we may have to choose
which among fastboxes, cells, and copy buffers should be
placed in MCDRAM. To do so, we first need to analyze
the memory requirements of different objects. The fastboxes’
memory footprint is given by N × (N − 1) × 64 KB; the
cells’ memory footprint is given by N × 64 cells/proc ×
64 KB; and the copy buffers’ memory footprint is given by
N × (N − 1) × 8 × 32 KB. For all of these, N represents
the number of processes in the node. Overall, if we consider
64 processes, the maximum memory requirement4 of each
object is, respectively, 252 MB, 256 MB, and 1008 MB.
Thus, fastboxes and cells each account for about 1.5% of
the total MCDRAM capacity, while copy buffers account for
6.15%. Since it is important that application-sensitive data
structures be placed in the appropriate memory, MPICH should
be memory conscious and leave as much memory as possible
to applications’ data. If we decide to limit MPICH MCDRAM
usage to 1.5%, we can easily address performance of short
messages by placing fastboxes in MCDRAM. As we have
shown in this section, however, the best performance for
bandwidth is obtained by placing both fastboxes and cells
in MCDRAM. Thus, if we decide to dedicate the 3% of
MCDRAM to MPICH objects, we can accommodate all the
relevant short message objects and achieve the best perfor-
mance possible. If we also want to optimize long messages,
in the worst case we have to be ready to pay as much as over
9% of the available capacity. However, as we will show in
the rest of the section through a miniapp example, the all-

4This is the worst case assuming that every process actively communicates
with every other process in the node.

to-all communication scenario leading to maximum memory
utilization is never encountered in practice. In fact, even
collective calls like MPI_Alltoall use scalable algorithms
that reduce the number of communication pairs [15].

E. Stencil Code

The 2D stencil code we use for our evaluation represents
a good example of a regular communication pattern found in
many single program, multiple data applications. The code
decomposes the input domain evenly across the available
processes, which we set to 64 as the total number of cores in
KNL (8 per direction). Each process then exchanges its halo
regions with neighbors using MPI_Isend and MPI_Irecv
and then MPI_Wait for communication to complete before
doing another round of halo exchange. Thus, the actual number
of communication pairs in this case is given by the sum of
6×6 inner processes communicating with 4 neighbors (north,
south, east, and west), 6 × 4 side processes communicating
with 3 neighbors, and 4 corner processes communicating
with 2 neighbors; in total we have 224 pairs instead of
N × (N − 1). Since memory is allocated only when ac-
cessed (first touch), this reduces the footprint of fastboxes to
224 × 64 KB = 14 MB and the footprint of copy buffers
to 224 × 8 × 32 KB = 56 MB, that is, 0.07% and 0.34%
respectively.

Boundary regions are not directly passed to the MPI
send function but are instead packed into contiguous buffers
(sbufnorth, sbufsouth, sbufwest, and sbufeast)
using MPI_Pack. Similarly, the MPI receive function does
not directly store the received data in the main matrix
but instead in a set of intermediate buffers (rbufnorth,
rbufsouth, rbufwest, rbufeast). Eventually, data is
moved from the intermediate buffers to the main matrix by
using MPI_Unpack.

TABLE V: Stencil runtime test results (in seconds).
2 KB 4 KB 8 KB 16 KB 32 KB 64 KB

f/cb 0.357267 0.730782 1.011214 0.618523 1.764798 4.101942
F/cb 0.348530 0.725480 0.913981 0.560735 1.588268 4.090613
f/CB 0.354700 0.728448 1.022707 0.615309 1.765437 3.856240

F (↓ %) - - 9.7 9.4 9.9 -
CB (↓ %) - - - - - 6.1

We vary the size of the input domain from 32 MB (2,048
double points along each dimensions) to 32 GB (65,536 double
points along each dimension) and use different memory place-
ment configurations, as already done for the microbenchmarks
study. Each input size is determined to allow a number of
elements sufficiently large to be exchanged between processes
so that we can verify previous microbenchmark results on a
real use case. Thus, for the smallest domain of 32 MB each
send/recv buffer is 2 KB, while for the largest domain of
32 GB each send/recv buffer is 64 KB.

Overall, for the smallest domain, each of the 64 processes
requires 512 KB to store the results from the last iteration and
512 KB to store the results from the current iteration, which
depends from the exchanged halo regions and the previous
iteration, for a total of 1 MB. Additionally, each process needs
to allocate space for the send/recv buffers for a total of 16 KB
(2 KB for each of the four pack and four intermediate buffers).
In total the stencil code requires slightly more than 64 MB of
memory. For the largest domain this requirement goes up to
64 GB.

Thus, the maximum memory footprint of the stencil code
exceeds the capacity of MCDRAM by a factor of more than 4.
In this case the application might be already struggling to get
the most sensitive data in MCDRAM, and the MPICH library
should try to minimize its memory usage.

To validate the recommendations previously compiled, we
selectively placed one MPICH object at the time in MCDRAM
and evaluated the corresponding impact on the runtime. Fig-
ure 7 shows runtime results (in seconds) for different domain
sizes. In this case we report the size of the send/recv buffers
instead of the full domain.

Because every communication is completed by an
MPI_Wait call, cells are never used, and all data is moved
by using fastboxes. For this reason we have not included
cells elements in our stencil study. In the figure we see that
placing fastboxes and copy buffers in MCDRAM can reduce
the runtime of both short and long messages.

Table V summarizes the runtime results shown in the previ-
ous figure, along with the corresponding percentage reduction
of fastboxes and copy buffers compared with the “f/c/cb”
configuration. The table shows that for short messages placing
fastboxes in MCDRAM can in fact reduce the runtime by
about 10%. For long messages, the reduction is 6% when
placing copy buffers in MCDRAM. Since we are not per-
forming any computation in the stencil test, we have increased
the number of iterations (i.e., communication rounds) for the
shortest messages from 1,000 to 10,000. This explains why
for 16 KB the runtime is higher than for 32 KB.

For domain sizes up to 16, 384 × 16, 384 points (i.e.,

2K 4K 8K 16
K

32
K

64
K

Message Size (Bytes)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ru
nt

im
e

(s
ec

on
ds

)

f/cb
F/cb
f/CB

Fig. 7: Stencil with 64 processes

32 MB/process) the total memory footprint is about 4 GB,
which requires only 25% of MCDRAM capacity. In this
case our previous recommendations advise that both fastboxes
and copy buffers be placed in MCDRAM. For domain sizes
starting at 32, 768 × 32, 768 (i.e., 128 MB/process) the total
memory footprint is over 16 GB, which already requires
100% of the MCDRAM capacity. In this case 0.34% capacity
required for copy buffers might not be affordable, and our
recommendation is to optimize only short messages (∼0.07%
capacity), disregarding long ones.

V. RELATED WORK

High-bandwidth memories, such as KNL MCDRAM, tackle
the memory wall problem and bring to the users unprece-
dented memory bandwidth. For this reason bandwidth-bound
applications can significantly benefit from HBMs usage to
improve their performance. In this sense many works have
focused on extending existing codes with heterogeneous mem-
ory support and automatically or manually promoting sensitive
data structures in HBM. Smith, Park, and Karypis [16] ported
an unstructured sparse tensor decomposition application us-
ing canonical polydiac decomposition on KNL and, taking
advantage of MCDRAM, obtained up to 1.8× speedup over
a dual-socket Intel Xeon system with 44 cores. DeTar et
al. [7] ported a lattice QCD code called MILC to KNL and
obtained significant improvements when using MCDRAM in
either cache or flat mode. Bo Peng et al. [6] carried out a
detailed study of the impact of MCDRAM on a range of
data analytics applications on KNL. They analyzed different
memory modes, problem sizes, and threading levels and gave

a set of guidelines for selecting the proper memory allocation
based on the application’s memory usage characteristics.

In all these works MCDRAM cache and flat modes give
similar performance when the involved datasets fit in memory.
If they do not fit, the user must select which datasets are
more performance critical and move only these into MC-
DRAM or manually manage data movements between DRAM
and MCDRAM. In this sense Perarnau et al. [17] evaluated
the performance benefits of software-managed data migration
strategies for user structures between DRAM and MCDRAM.

Another problem with HBMs is the lack of portable and
fine-grained memory management interfaces offered by oper-
ating systems and user space libraries. As we have discussed,
the Linux kernel allows access to heterogeneous memory
through the “mbind” system call. However, mbind works only
on allocations returned by the “mmap” system call, which is
expensive and is limited to multiples of the page size. A partial
solution for KNL is offered by the memkind library developed
by Intel [12]; however, this is architecture specific. A more
flexible approach is offered by Oden and Balaji with the hexe
library [5]. Unfortunately none of these is both production
ready and portable.

MPI implementations such as MPICH internally allocate
and manage memory for a number of reasons, including
shared-memory intranode communication. To the best of our
knowledge currently no work has integrated HBM support in
MPI and evaluated the corresponding performance implica-
tions on different communication mechanisms and memory
usage scenarios.

VI. CONCLUSIONS

Memory heterogeneity is becoming increasingly important
for achieving high performance on modern HPC systems.
Many works therefore have focused on the effective use of
HBMs to store data structures of bandwidth-bound applica-
tions, taking advantage of the higher aggregated bandwidth
offered by this technology compared with standard DRAM.
However, scientific codes also use additional communication
libraries, such as MPI, for distributing work across processes
both on the same node and across nodes.

In this paper we have integrated heterogeneous memory
support in MPICH, giving users access to the full features
of the memory subsystem using a familiar and standardized
interface. Additionally, since HBMs are substantially more
limited in capacity compared with DRAM, it is also important
to make sure that such limited capacity is used intelligently
by the MPI library.

To this extent we have evaluated the performance implica-
tions that HBMs have on different communication mechanisms
in MPI, including point-to-point and RMA. Based on our
observations we have provided a set of recommendations
to help user decide how to prioritize MPICH objects in
MCDRAM in different communication scenarios. If followed,
our recommendations can help users planning for a memory
placement strategy that makes effective utilization of the lim-

ited MCDRAM capacity and results in the best performance
possible.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, under contract
number DE-AC02-06CH11357. This research used resources
of the Argonne Leadership Computing Facility, which is a
DOE Office of Science User Facility.

REFERENCES

[1] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and
N. Andrew, “Deep learning with COTS HPC systems,” in Proceedings
of the 30th International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, S. Dasgupta and
D. McAllester, Eds., vol. 28, no. 3. Atlanta, Georgia, USA:
PMLR, 17–19 June 2013, pp. 1337–1345. [Online]. Available:
http://proceedings.mlr.press/v28/coates13.html

[2] G. H. Loh, “3D-stacked memory architectures for multi-core proces-
sors,” in 2008 International Symposium on Computer Architecture, June
2008, pp. 453–464.

[3] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y. C. Liu, “Knights Landing: Second-
generation Intel Xeon Phi product,” IEEE Micro, vol. 36, no. 2, pp.
34–46, March 2016.

[4] NVIDIA, “NVIDIA Tesla P100,” https://images.nvidia.com/content/pdf/
tesla/whitepaper/pascal-architecture-whitepaper.pdf, 2016.

[5] L. Oden and P. Balaji, “Hexe: A toolkit for heterogeneous memory
management,” in 2017 IEEE 23rd International Conference on Parallel
and Distributed Systems (ICPADS), Dec. 2017, pp. 656–663.

[6] I. B. Peng, S. Markidis, E. Laure, G. Kestor, and R. Gioiosa, “Exploring
application performance on emerging hybrid-memory supercomputers,”
in 2016 IEEE 18th International Conference on High Performance
Computing and Communications; IEEE 14th International Conference
on Smart City; IEEE 2nd International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), Dec. 2016, pp. 473–480.

[7] C. DeTar, D. Doerfler, S. Gottlieb, A. Jha, D. Kalamkar, R. Li, and
D. Toussaint, “MILC staggered conjugate gradient performance on Intel
KNL,” p. 270, 12 2016.

[8] “Joint Laboratory for System Evaluation, JLSE cluster,” http://www.jlse.
anl.gov/.

[9] “MPICH: A high performance and widely portable implementation of
the Message Passing Interface (MPI) standard,” www.mpich.org.

[10] D. Buntinas, G. Mercier, and W. Gropp, “Design and evaluation of
Nemesis, a scalable, low-latency, message-passing communication sub-
system,” in Cluster Computing and the Grid, 2006. CCGRID 06. Sixth
IEEE International Symposium on, vol. 1, May 2006, pp. 10 pp.–530.

[11] ——, “Implementation and evaluation of shared-memory communica-
tion and synchronization operations in MPICH2 using the Nemesis com-
munication subsystem,” Parallel Computing, vol. 33, no. 9, pp. 634–644,
2007, selected Papers from EuroPVM/MPI 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819107000786

[12] C. Cantalupo, V. Venkatesan, J. Hammond, K. Czurlyo, and S. D.
Hammond, “memkind: An extensible heap memory manager for het-
erogeneous memory platforms and mixed memory policies,” 3 2015.

[13] B. Goglin, “Exposing the locality of heterogeneous memory
architectures to HPC applications,” in Proceedings of the Second
International Symposium on Memory Systems, ser. MEMSYS ’16.
New York, NY, USA: ACM, 2016, pp. 30–39. [Online]. Available:
http://doi.acm.org/10.1145/2989081.2989115

[14] J. D. McCalpin, “A Survey of Memory Bandwidth and Machine Balance
in Current High Performance Computers,” 1995.

[15] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” Int. J. High Perform. Comput.
Appl., vol. 19, no. 1, pp. 49–66, Feb. 2005. [Online]. Available:
http://dx.doi.org/10.1177/1094342005051521

[16] S. Smith, J. Park, and G. Karypis, “Sparse tensor factorization on
many-core processors with high-bandwidth memory,” in 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
May 2017, pp. 1058–1067.

[17] S. Perarnau, J. A. Zounmevo, B. Gerofi, K. Iskra, and P. Beckman, “Ex-
ploring data migration for future deep-memory many-core systems,” in
2016 IEEE International Conference on Cluster Computing (CLUSTER),
Sept. 2016, pp. 289–297.

