
Future Generation Computer Systems 84 (2018) 22–31

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

On the adequacy of lightweight thread approaches for high-level
parallel programming models
Adrián Castelló a,*, Rafael Mayo a, Kevin Sala b, Vicenç Beltran b, Pavan Balaji c,
Antonio J. Peña b

a Universitat Jaume I de Castelló, 12071 Castelló de la Plana, Spain
b Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
c Argonne National Laboratory, Lemont, IL, USA

h i g h l i g h t s

• Design and implementation of OpenMP and OmpSs on top of lightweight threads.
• Analysis of the relationship between programming models and lightweight threads.
• Performance evaluation in different OpenMP and OmpSs scenarios.

a r t i c l e i n f o

Article history:
Received 17 August 2017
Received in revised form 15 December 2017
Accepted 8 February 2018
Available online 21 February 2018

Keywords:
Lightweight threads
OpenMP
OmpSs
GLT
POSIX threads
Programming models

a b s t r a c t

High-level parallel programmingmodels (PMs) are becoming crucial in order to extract the computational
power of current on-node multi-threaded parallelism. The most popular PMs, such as OpenMP or
OmpSs, are directive-based: the complexity of the hardware is hidden by the underlying runtime system,
improving coding productivity. The implementations of OpenMPusually rely on POSIX threads (pthreads),
offering excellent performance for coarse-grained parallelism and a perfect match with the current
hardware. OmpSs is a task oriented PM based on an ad hoc runtime solution called Nanos++; it is the
precursor of the tasking parallelism in the OpenMP tasking specification. A recent trend in runtimes
and applications points to leveraging massive on-node parallelism in conjunction with fine-grained and
dynamic scheduling paradigms. In this paper we analyze the behavior of the OpenMP and OmpSs PMs
on top of the recently emerged Generic Lightweight Threads (GLT) API. GLT exposes a common API for
lightweight thread (LWT) libraries that offers the possibility of running the same application over different
native LWT solutions. We describe the design details of those high-level PMs implemented on top of
GLT and analyze different scenarios in order to assess where the use of LWTs may benefit application
performance. Our work reveals those scenarios where LWTs overperform pthread-based solutions and
compares the performance between an ad hoc solution and a generic implementation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In the past few years, the number of cores per processor has
increased steadily, reaching impressive counts such as the 260
cores per socket in the Sunway TaihuLight supercomputer [1],
whichwas ranked#1 for first time in the June 2016 TOP500 List [2].

The trend followed in that list indicates that future exascale sys-
tems will support massive on-node parallelism, deploying thou-
sands of cores per socket. Extracting the computational power

* Corresponding author.
E-mail addresses: adcastel@uji.es (A. Castelló), mayo@uji.es (R. Mayo),

ksala@bsc.es (K. Sala), vbeltran@bsc.es (V. Beltran), balaji@anl.gov (P. Balaji),
antonio.pena@bsc.es (A.J. Peña).

of those machines will thus require efficient libraries and pro-
gramming models (PMs). The most popular approaches to obtain
acceptable on-node performance rely on POSIX threads (pthreads)
application programming interface (API) [3] or directive-based
PMs such as OpenMP [4] or OmpSs [5].

Directive-based PMs are usually implemented on top of the
pthreads API, which matches perfectly the current hardware and
coarse-grained parallelism. Because of the high cost of manage-
ment, however, it fails to accommodate new software paradigms
that target dynamically scheduled, fine-grained parallelism.

Several lightweight thread (LWT) libraries have been imple-
mented in the last years to tackle fine-grained and dynamic soft-
ware requirements [6]. Each LWT solution features its own PM and
target environment. Some of these solutions are implemented for

https://doi.org/10.1016/j.future.2018.02.016
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.02.016
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.02.016&domain=pdf
mailto:adcastel@uji.es
mailto:mayo@uji.es
mailto:ksala@bsc.es
mailto:vbeltran@bsc.es
mailto:balaji@anl.gov
mailto:antonio.pena@bsc.es
https://doi.org/10.1016/j.future.2018.02.016


A. Castelló et al. / Future Generation Computer Systems 84 (2018) 22–31 23

a specific Operating System (OS), such as Windows Fibers [7] and
Solaris Threads [8]. Comparedwith those, ConverseThreads [9] and
Nanos++ [10] support a specific high-level PM; Charm++ [11] and
OmpSs [5], respectively. There are also general-purpose solutions
such as MassiveThreads [12], Qthreads [13], and Argobots [14].
The Generic Lightweight Threads (GLT) API [15], [16] is an ef-
fort to unify these LWT solutions under a unique PM in order to
foster productivity and portability with negligible overhead. This
lightweight layer offers the common functionality of LWT solutions
and is currently implemented on top of MassiveThreads, Qthreads,
and Argobots. As a result, a runtime or application based on GLT
requires no changes in order to be executed on top of any of these
three LWT solutions.

In this paper we analyze common OpenMP and OmpSs parallel
patterns and discuss how LWTs deal with them, in comparison
with traditional approaches. While OpenMP is the most widely-
adopted directive-based PM, OmpSs is the precursor of task-
parallelism and features a runtime which leverages a custom LWT
implementation. We evaluate our implementations and compare
their performances with those obtained when using the original
runtimes.

In order to perform the comparison, we have implemented the
OpenMP and OmpSs runtimes on top of the GLT API, called Generic
Lightweight Thread OpenMP (GLTO) and Generic Lightweight
Thread OmpSs (GOmpSs), respectively. Our OpenMP implemen-
tation is based on the open-source BOLT project [17], which is
in turn based on LLVM [18]. The LLVM OpenMP runtime shares
the code developed in the Intel OpenMP [19] solution. Our OmpSs
version is based on the Nanos++ library [10] from the Barcelona
Supercomputing Center (BSC).

Our study reveals that the use of LWTs instead of pthread-based
approaches in theOpenMPPMmayyield performance benefits, de-
pending on the application nature. In addition, our results expose
that theperformancewith theOmpSs runtime implementedon top
of GLT is close to that obtained with an ad-hoc implementation,
improving the task management in fine-grained code tasks.

In summary, themain contributions of this paper are as follows:
(1) design of OpenMP and OmpSs runtimes on top of a generic LWT
API; (2) analytical study of the relationship between high-level
PMs and LWT solutions; and (3) the experimental performance
evaluation of that relationship in different OpenMP and OmpSs
scenarios.

The rest of the paper is organized as follows. Section 2 provides
some background information about OpenMP, OmpSs, and GLT.
Section 3 reviews a few related works. Section 4 details the GLTO
implementation and Section 5 describes the GOmpSs implemen-
tation. Section 6 provides an in-depth performance analysis of the
distinct scenarios. Finally, Section 7 contains our conclusions.

2. Background

In this section we review the OpenMP and OmpSs PMs and
describe the GLT implementation and its interaction with the un-
derlying LWT libraries.

2.1. OpenMP

The OpenMP API supports multiplatform shared-memory mul-
tiprocessing programming, and current implementations cover
most architectures and operating systems. OpenMP offers a
directive-based PM to parallelize a code by means of ‘‘pragmas’’.
Intel and GNU offer two common OpenMP implementations that
rely on pthreads in order to exploit concurrency.

The OpenMP runtimes are commonly composed of two main
parts: thework-sharing constructs and task parallelism. In contrast

Fig. 1. PM offered by the GLT library.

towithwork-sharing constructs,where all theOpenMP implemen-
tations follow a similar policy, distinct OpenMP implementations
leverage differentmechanisms for taskmanagement. In particular,
while the GNU version implements a single task queue shared by
all the threads, the Intel implementation incorporates one task
queue for each thread and integrates workstealing for load balance
control. In both solutions, the task management is separated from
the work-sharing implementations because task directives were
added in the OpenMP 3.0 specification.

2.2. OmpSs

OmpSs [20], developed at BSC, aims to provide an efficient pro-
grammingmodel for heterogeneous andmulticore architectures. It
embraces a task-oriented execution model similar to the OpenMP
tasking features.

OmpSs detects data dependencies between tasks at execution
time, with the help of directionality clauses embedded in the code,
and leverages this information to generate a task graph during
the execution. This graph is then employed by the runtime to
exploit the implicit task-parallelism, via a dynamic out-of-order,
dependency-aware schedule. This mechanism provides a means
to enforce the task execution order without the need for explicit
synchronization. This PM is task-oriented and, therefore, it does
not support work-sharing constructs.

2.3. Generic lightweight threads

GLT is a commonAPI thatwas designedwith the aimof unifying,
under the same PM, a variety of LWT libraries. It is currently de-
fined and implemented for three general-purpose LWT solutions:
MassiveThreads, Qthreads, and Argobots.

Fig. 1 illustrates the PM offered by this API. Specifically,
GLT_thread refers to the OS thread itself, while GLT_ult rep-
resents the user-level threads (ULTs). In addition, GLT_tasklet,
a lighter work unit that does not own a stack (preventing migra-
tion or yield operations), is offered as part of the common API.
While tasklets are natively supported by Argobots only, these are
implemented on top of ULTs for Qthreads and MassiveThreads.
GLT_scheduler acts differently depending on the underlying
library and it may affect the performance of the PM but not the
final result of the execution.

In principle adding an extra software layer between the user
application and the underlying libraries may impact performance;
however, GLT does not add any significant overhead because it
offers a header-only version that allows the compilers to avoid
the extra calls by embedding the LWT code by means of static
inline declarations [21].

Despite some LWT solutions offer an API of more than 300
functions, GLT offers just 52 functions grouped in 7 modules:



24 A. Castelló et al. / Future Generation Computer Systems 84 (2018) 22–31

Setup, Work Unit, Mutex, Barrier, Condition, Util, and Key. It has
been demonstrated that the reduced set of instructions that forms
the GLT API are sufficient for implementing any programming
pattern [16], and high-level PM [22] on top of the LWT solutions.

The use of this intermediate software level allows the pro-
grammer to test and leverage different LWT solutions under just a
single code version. This feature provides portability, enabling the
adaptation to the underlying hardware/software combination.

3. Related work

The OpenMP standard is currently supported by a significant
number of compilers, including both open source and vendor so-
lutions. Although the current OpenMP specification corresponds
to version 4.5 [23], some compilers may not support the com-
plete set of directives. For example, the LLVM project compiler
(clang 3.9) supports all non-offloading features of OpenMP
4.5. In contrast, Intel’s icc compiler 16.0 supports the complete
OpenMP 4.0 specification, and the newest icc 17.0 and the
gcc 6.1 compiler from GNU adhere to the complete OpenMP 4.5
specification. Other compilers are one or more steps behind those
solutions. For example pgcc [24], from the Portland Group, and
OpenUH [25] support version 3.1 of the OpenMP specification.

Supporting an OpenMP specification implies that each solution
must have its own OpenMP runtime with its own features because
they may target specific hardware or code. However, the most
prominent runtimes are those offered by GNU and Intel—namely
libgomp and the Intel OpenMP runtime. In some cases, the same
runtime code is shared among compilers, as occurs in the Intel
implementation, which can be linkedwith code built by the clang
compiler.

OmpSs is a task-oriented PM which was the precursor of the
tasking parallelism in OpenMP. Its development focuses on differ-
ent tasking features such as automatic detection of task depen-
dencies. At this time, this PM is only supported by the Mercurium
compiler [26] and the Nanos++ runtime.

In the field of LWT libraries, the work in [6,9,12–14] intro-
duces distinct LWT definitions, discuss implementation details,
and analyze performances. The work in [27] conducts an analysis
of different LWT solutions from the semantic point of view and
evaluates their performance.

The relationship between LWTs and the OpenMP runtime has
been explored in the past. In [28] and [29], nested parallelism is
analyzed and resolved by means of LWT solutions. Moreover, the
effect of OpenMP implementationswhen executed in NUMA archi-
tectures is depicted in [30] and scheduling for task-parallelism has
been studied in [31].

In a previous work, we analyzed the behavior of the OpenMP
PM over LWTs [22]; in this work we expand our previous work to
the analysis of the OmpSs PM and a completely different runtime
system, in order to generalize our conclusions.

Although OmpSs relies on top of a custom LWT solution
(Nanos++), there is no other released implementation that makes
use of standard LWT libraries. Therefore, with this work, we study
the general behavior of the OmpSs PM on top of LWTs.

To the best of our knowledge, this is the first paper that analyzes
OpenMP andOmpSs on top of LWT solutions discussing the general
adequacy of the use of LWTs for the implementation of runtimes
supporting directive-based PMs.

4. OpenMP over GLT

In this section we review the design decisions that were made
in order to adapt the LLVM OpenMP runtime to the use of LWTs
(GLTO).

Fig. 2. Software stack choices of an OpenMP code.

Fig. 3. Relationship between OpenMP code and the GLTO implementation.

As argued in Section 1, our implementation is based on the BOLT
project which is, in turn, based on LLVM. We selected this starting
point because both the runtime and the clang compiler [32] are
open source. In addition, this runtime can be linked from code
generated with the Intel compiler.

4.1. GLTO interactions

GLTO offers a complete implementation of OpenMP 4.0 for C,
C++, and Fortran codes. GLTO can be linked with code generated
with the clang or icc compilers. Fig. 2 shows that an OpenMP
code compiledwith these tools can be linkedwith the original Intel
OpenMP runtime and executed using pthreads, or linked with the
GLTO runtime and executed over the desired LWT solution. The
flexibility added by GLTO helps developers in two ways: if a LWT
solution implements the GLT API, anOpenMP code can be executed
on top of that LWT solution; in case a code benefits from a certain
mechanism, the user can change the underlying library without
modifying the OpenMP code.

4.2. GLTO implementation details

LWT libraries use two threading levels. The lowest level com-
prises a number of OS threads. Those threads are scheduled by the
OS (like the pthreads) and ULTs run on top of them. These ULTs
are created, scheduled, and executed inside the user space so their
handling overhead is lighter than that of their OS counterparts.

Complying with the OpenMP specifications [23], our GLTO im-
plementation responds to the definition of the OMP_NUM_THREADS
environment variable creating as many GLT_threads as OpenMP
threads are requested by the user. As depicted in Fig. 3,
GLT_threads are bound to CPU cores and are spawned when the
library is loaded. They are in charge of executing GLT_ults created
at runtime. Standard-compliant dynamic adjustment of threads via
the num_threads clause and the omp_set_num_threads library
routine is also possible.



A. Castelló et al. / Future Generation Computer Systems 84 (2018) 22–31 25

GLT_ults act as pthreads do inside the POSIX-based OpenMP
solutions when work-sharing constructs are invoked. The left-
hand side of Fig. 3 shows that each OMP Thread is transformed into
a GLT_ult in that scenario.

When exploiting task-parallelism (right-hand side of Fig. 3),
each OMP task is also transformed into a GLT_ult. However, due
to the different data structures used by the OpenMP runtime for
OMP thread and OMP task, inside the GLTO implementation the
behavior of the GLT_ult differs when acting as an OMP thread or
an OMP task.

In the next subsections we discuss in more detail the operation
modes of GLTO in each scenario.

4.3. GLTO work-sharing construct

For work-sharing constructs, our OpenMP solution mimics the
mechanism that the GNU and Intel runtimes feature. The master
thread assigns the function pointer to each thread in the runtime;
once the work is done, the master thread joins the others. When
the merge is completed, the master thread finalizes the parallel
construct and continues with the execution of the sequential code
until a new parallel region is detected.

In GLTO, the work is dispatched by creating a GLT_ult with
the function pointer for each GLT_thread, and the master thread
waits for work completion using a join function. As in the pthread
solutions, the master thread continues with the execution of the
sequential code.

4.4. GLTO task parallelism

In contrast with work-sharing structures, the task-parallel im-
plementation may differ depending on the specific OpenMP solu-
tion. Themain reason is that task directives were introduced in the
OpenMP 3.0 specification, and the runtimes added the required
functions with the primary goal of maintaining the performance
attained by the work-sharing implementations.

As demonstrated later in our experimentation, it is in these
scenarioswhere LWTs can deliver higher performance, particularly
for fine-grained tasks. GLTO contemplates two possible scenarios
when tasks are used. In case the code enters a master or sin-
gle region, a unique GLT_thread creates all the tasks and the
remaining GLT_threads execute them. If our runtime detects this
scenario, it uses a round-robin dispatch so that it can schedule the
tasks to any of the GLT_threads. In contrast, if the code is not
inside such a region, each GLT_thread creates its own tasks and
executes them.

4.5. GLTO nested parallelism

Nested parallel codes are not common inside applications be-
cause itsmanagement is not aswell designed as the parallel coarse-
grained scenarios causing a performance drop. However, this type
of parallelism may appear implicitly. For example, a code with
an OpenMP parallel for loop may invoke, from inside the loop,
an external library that is also parallelized via OpenMP directives.
That code features nested parallelism and current pthread-based
OpenMP solutions tend to offer low performance.

GLTO deals with nested parallelism by applying the follow-
ing policy. For the outer parallel level, the runtime divides the
work as in the work-sharing case. If a nested level is found,
each GLT_thread generates and executes the GLT_ults for the
nested code. This mechanism avoids the oversubscription that im-
pairs performance when the pthread-based OpenMP solutions are
used.

Fig. 4. Software stack choices of an OmpSs code.

4.6. GLTO specific implementation issues

AlthoughGLT offers a commonAPI for LWT libraries, the specific
scheduling and management mechanisms depend on the under-
lying native LWT library. Therefore, these features may affect the
performance behavior of the entire implementation. This aspect
may not be noticeable when the GLT library is used directly. How-
ever, OpenMP relies on a master thread that handles all the thread
structures and executes the serial code. Therefore, the primary
GLT_thread cannot be changed. In LWT implementations it is
common that the main execution becomes a schedulable item,
so that it can be stolen (if the library allows work-stealing) by
a non-primary GLT_thread. If this situation occurs, the mas-
ter thread in OpenMP will not be the primary GLT_thread any
longer.

This feature forced us to implement a modified OpenMP run-
time when MassiveThreads is used as the library under GLT be-
cause this LWT library allows that a thread steals the main execu-
tion task. Thismodification does not allow themain thread to yield
and, as a consequence, the potential performance improvement
cannot be fairly measured.

5. OmpSs over GLT

In this section we justify the design decisions that we made in
order to adapt the OmpSs runtime to the use of LWTs (GOmpSs).

5.1. GOmpSs interactions

GOmpSs offers a complete implementation of OmpSs version
16.06.3. OmpSs allows to select the underlying implementation by
means of an environment variable thanks to its modular imple-
mentation (see Fig. 4). We have maintained this feature in order
to allow that the user selects the GLT or default implementations.
With this work, OmpSs applications can run on top of Argobots,
Qthreads, or MassiveThreads in addition to the custom Nanos++
solution. Therefore, once the OmpSs application has been built
with the mercurium compiler, the underlying threading library
can be selected by means of environment variables.

5.2. GOmpSs implementation details

As in the GLTO implementation, GLT_threads are bound to
CPU cores (as depicted in Fig. 5) and they are spawned when
the library is loaded. In this runtime, those threads will execute
all the OmpSs tasks created during the execution of the applica-
tion. The number of the GLT_threads can be modified via the
GLT_NUM_THREADS or the --smp-workers variables correspond-
ing to the GLT or Nanos++ implementation, respectively.

5.3. GOmpSs task parallelism

As introduced in Section 2.2, OmpSs is a task-oriented PM and
it is not designed for work-sharing constructs. For that reason,
our study of both the OmpSs and GOmpSs runtimes is focused on
the pragmas related to tasks for creation (#pragma omp task,
#pragma omp taskloop) and synchronization (#pragma omp
taskwait).



26 A. Castelló et al. / Future Generation Computer Systems 84 (2018) 22–31

Fig. 5. Relationship between OmpSs code and the GOmspSs implementation.

Fig. 5 depicts how an OmpSs task is treated in the GOmpSs
implementation. A pragma task generates an OmpSs call that
creates a pending task. The runtime evaluates the task depen-
dencies (if any), and once they are accomplished, it promotes
the OmpSs task to ‘‘ready’’ state. Then, the runtime generates
a GLT_ult associated with the OmpSs task that is placed in a
shared queue and remains there until a GLT_thread executes
it.

We have modified the default runtime environment of the GLT
API forcing the underlying libraries to use just one shared queue.
This feature is supported in the native GLT API and is enabled with
environment variables. The main reason is that, once an OmpSs
task has been promoted to ‘‘ready’’ inside the OmpSs runtime,
all the dependencies have been already solved and it is ready to
be executed. Therefore, there is not need of a dispatch policy or
a certain scheduling. In that scenario, the use of a shared queue
between the GLT_threads helps with the load balance.

In contrast to with GLTO, there is no restriction on the mas-
ter thread, and GOmpSs allows to change the GLT_thread that
runs the main execution. The reason is that the main execu-
tion is also considered an OmpSs task. Therefore, it can be re-
sumed by any of the GLT_threads once a synchronization point is
achieved.

6. Performance evaluation

In this section we first describe the hardware and software
employed in our experimental evaluation. Then we present the
results of the different experimental scenarios.

6.1. Hardware and software

The results were obtained on a 36-core (72-hardware thread)
machine equipped with two 18-core Intel Xeon E5-2699 v3
(2.30GHz) CPUs and 128GB of RAM. The libraries are Intel OpenMP
Runtime 20160808, GOMP 6.1, OmpSs 16.06.3, GLT 01-2017, Ar-
gobots 01-2017, Qthreads version 1.10, and MassiveThreads ver-
sion 0.95. GLT, GOMP, OmpSs, GOmpSs and LWT libraries were
compiled with gcc 6.1. The Intel OpenMP implementation and
GLTO were compiled with icc 16.0.

The OpenMP environment variables were set to the values that
reported higher performance for each scenario. OMP_NESTED and
OMP_BIND_PROCwere set to true for all tests. The former was as-
serted in order tomeasure the actual nestedmanagement, because
otherwise the OpenMP runtime treats nested parallelism as one
level of parallelism and sequential code. The latter was asserted in
order to prevent thread migration among cores. Moreover, for the
POSIX-based OpenMP implementations, the environment variable
OMP_WAIT_POLICY was initialized to active for work-sharing

codes and to default for task-parallelism. In the work-sharing
codes, keeping active the OMP threads improves the time of work
completion. In the task-parallel cases, conversely, the active
mode augments the overhead caused by contention in the work-
stealing mechanism.

In the scenarios where OmpSs is used, the default environ-
ment values have been maintained and the performance-oriented
OmpSs library is employed.

6.2. Work-sharing constructs

We next present the results for work-sharing constructs. As
OmpSs runtime is not designed for this kind of pragmas, we only
compare OpenMP implementations in this section.

6.2.1. OpenMP in a compute-bound code
Our first case study reflects the most frequent target for

OpenMP. It mainly consists of an iterative code that is executed a
certain number of times. This code configuration is highly favorable
for OpenMP, and often allows the runtimes to exploit a substan-
tial fraction of the hardware parallelism. To study this scenario,
we have chosen the CloverLeaf mini-app [33], which solves the
compressible Euler equations on a Cartesian grid, using an explicit
second-order accurate method. Each cell stores three values: en-
ergy, density, and pressure, and a velocity vector is stored at each
cell corner. This organization of the data, with some values at cell
centers and others at cell corners, is known as a staggered grid. This
code is written in Fortran.

The main part of the mini-app is a for loop that is executed
2955 times. The loop is divided into several kernels, each cal-
culating a value of the cells using #pragma omp parallel
for directives. Concretely, 114 parallel for loops are executed
2955 times, resulting in a total of 336,870 parallel loops. Fig. 6a
depicts the average of 50 executions of the application for each
of the OpenMP solutions using the clover_bm4.in problem in-
stance. In this scenario the time variation is slightly larger for
MassiveThreads because of the internal work-stealingmechanism.
In addition, the mechanism implemented by the GNU and Intel
runtimes (labeled as GCC and ICC, respectively) for the work-
sharing constructs attains up to 50% higher performance. The rea-
son of the difference between pthreads-based OpenMP and LWT-
based runtimes relies on the creation of GLT_ults. As argued
earlier, Intel and GNU just pass the function pointer to be executed
to the threads, while the GLTO implementation creates as many
GLT_ults as GLT_threads.

In order to analyze this time gap we have measured the time
spent in the work assignment step inside the OpenMP runtime
with a microbenchmark that measures the time spent distributing
and joining the work. Fig. 6b shows the difference among OpenMP
implementations, demonstrating that the non-LWT solutions de-
ploy the most efficient mechanism. Although the single time dif-
ference among implementations is barely noticeable, repeating
this operation over 336,000 times of the entire CloverLeaf app
execution yields a nonnegligible total time difference.

6.2.2. OpenMP with nested parallelism
Nested parallelism is not a common OpenMP pattern, but it

may appear hidden to the user. Moreover, an increasing number of
cores may allow programmers to introduce several levels of par-
allelism in order to extract all the computational power of future
hardware.

Due to the suboptimal design of the nested parallelism mecha-
nism in current OpenMP implementations, it is extremely difficult
to find an application that exploits this parallel paradigm. In order
to study this behavior, we have thus implemented a microbench-
mark that measures the overhead of managing nested parallel



A. Castelló et al. / Future Generation Computer Systems 84 (2018) 22–31 27

(a) CloverLeaf mini-app.

(b) Work assignment mechanism.

Fig. 6. (a) Execution time for the CloverLeaf mini-app (clover_bm4.in size) on top
of OpenMP runtimes increasing the number of OpenMP threads; and (b) execution
time for the work assignment mechanism in OpenMP runtimes increasing the
number of OpenMP threads.

codes inside the OpenMP runtimes. This test is composed of two
for nested loops accelerated via #pragma omp parallel for
directives with an empty code in order to measure the manage-
ment time.

Fig. 7a reveals the performance difference among the OpenMP
implementations when the outer and inner loop comprise 100
iterations, and Fig. 7b does the same with 1000 iterations for
each loop. These results are the average of 1000 repetitions. The
execution time of the pthread-based implementation is, at least,
one order of magnitude higher than that of GLTO over Argobots
and Qthreads. The performance of GLTO over MassiveThreads is
affected by the design issue discussed in Section 4.6. In this case,
the action of the master thread has a strong impact on the overall
execution time because it needs to execute the inner loop code.
As GLTO over MassiveThreads does not allow this, the work of the
master thread needs to be stolen by the remaining threads.

The problemwith the pthread-basedOpenMP implementations
is due to CPU core oversubscription. On the one hand, the GNU
solution creates a number of threads for the outer loop, and for
each of the iterations of the outer loop, a new team of threads
is created for the inner loop. This approach does not reuse idle
threads to save the context of each outer loop thread. On the other
hand, the Intel implementationmimics GNU for the outer loop, but
the Intel solution reuses the idle threads. Nevertheless, Intel still
creates new teams for the inner loop. GLTO only creates GLT_ults
and, as a result, the system is not affected by oversubscription,
suffering a lower overhead.

In summary, for nested parallelism the use of the LWT im-
plementations provides a performance improvement against the
pthread solutions.

(a) 100 iterations in the outer loop.

(b) 1000 iterations in the outer loop.

Fig. 7. Execution time for the nested parallel code on top of OpenMP runtimes
increasing the number of OpenMP threads.

6.3. Task-parallelism

We next present the results from OpenMP and OmpSs with
different already-existing applications. The comparison between
those PMs is out of the scope of this work.

6.3.1. OpenMP in task parallelism
To study the performance in this scenario, we employ the con-

jugate gradient (CG) benchmark. In mathematics, the CG method
is an algorithm for the numerical solution of symmetric posi-
tive definite systems of linear equations. We have converted the
OpenMP #pragma omp parallel for directives in the im-
plementation of CG [34] into #pragma omp task directives. In
our implementation, a single thread acts as a producer while the
remaining threads perform the consumer actions. The inputmatrix
isbmwcra_1 fromUniversity of FloridaMathCollectionwith a total
number of 14,878 rows. The code transformation is leveraged to
adjust the task granularity and the number of tasks. Here we show
the result for granularities of 10, 20, 50, and 100 rows per task,
which result in 1488, 744, 298, and 149 tasks, respectively. We
study the effect of three parameters on performance: number of
threads, task granularity, and number of tasks.

In contrast with the previous scenarios, we have not included
the GNU OpenMP implementation because of the original CG im-
plementation uses the Intel Math Kernel Library [35] and, there-
fore, the comparison between this library and other GNU-available
solutions would not be fair.

Fig. 8 displays the results for granularities of 10, 20, 50, and
100 rows per task. ICC, GLTO(ABT), GLTO(QTH), and GLTO(MTH)
refer to Intel OpenMP, GLT on top of Argobots, Qthreads, and Mas-
siveThreads respectively. Those results reflect the average time of
1000 executions. Since a smaller number of tasks implies less run-
time overhead, it makes sense that the execution time decreases
whenmoving from fine-grained to coarse-grained tasks. However,
the execution time of the GLTO solutions is much lower (up to 3



28 A. Castelló et al. / Future Generation Computer Systems 84 (2018) 22–31

(a) Granularity 10 rows per task (1488 tasks).

(b) Granularity 20 rows per task (744 tasks).

(c) Granularity 50 rows per task (298 tasks).

(d) Granularity 100 rows per task (149 tasks).

Fig. 8. Execution time of CG with different task granularity on top of OpenMP
runtimes increasing the number of OpenMP threads.

times faster when using Argobots as the underlying solution) than
that of the Intel OpenMP runtime for granularities of 10 and 20

(Figs. 8a and 8b, respectively). For this benchmark, only GLTO on
top of Argobots maintains an acceptable performance for a granu-
larity of 50 (Fig. 8c). If we compare the GLTO options among them,
we observe the effect of different implementation details of the
underlying libraries. On the one hand, GLTO(ABT) exhibits almost
flat performance lines for the 4 scenarios, which means that the
interaction among the GLT_threads is almost non-existent. On
the other hand, GLTO(MTH) andGLTO(QTH) suffer from contention
(the execution time increases as the number of threads does).
The former because of work-stealing between GLT_threads and
the latter because of the mutex-protected access to each word in
memory.

In the Intel OpenMP runtime, the execution time gap between
fine-grained and coarse-grained tasks is critical. However, this
solution shows good performance for up to 4 threads in the
finest-grained scenario (Fig. 8a) and up to 8 for granularities of
20 (Fig. 8b) and 50 (Fig. 8c) rows per task. Once this number
of threads is reached, the performance of Intel OpenMP drops.
This loss is caused by two combined causes: (1) the contention
introduced by the work-stealing mechanism; and (2) an internal
cut-off mechanism implemented in the runtime. In this scenario,
the producer thread creates the tasks into its own task queuewhile
the consumers try to gain access to that queue, in order to steal a
task each time. Moreover, the cut-off mechanism is triggered once
a certain number of tasks are queued – 256 in the case of the Intel
OpenMP runtime – and then the new tasks are executed directly
as a sequential code. It is important to remark that a task that
is directly executed is less expensive than a queued task. This is
because the latter needs to be handled by the runtime scheduler
and thus has to wait to be executed.

If task creation is faster than task consumption, the cut-off
mechanism is triggered and performance is maintained. Con-
versely, if task creation is slower than task consumption, the size
of the task queue never reaches the limit to trigger themechanism,
and all tasks must pass through the internal OpenMP task mecha-
nism, decreasing performance.

We have analyzed those issues in detail by measuring both the
number of queued tasks and the cut-off mechanism separately.
Table 1 summarizes the percentage of the number of queued tasks
for each granularity size. There it is relevant to note that a reduced
number of non-queued tasks benefits the overall performance.
That scenario suggests that the OpenMP task management needs
additional development effort.

In contrast with the previous scenarios, the Intel OpenMP
runtime outperforms the GLTO implementations for the coarse-
grained problem (Fig. 8d). Although all the tasks are queued and
scheduled, the time spent in the task execution stage prevents that
the threads immediately request more work, reducing contention.
In this case, the behavior of the Intel OpenMP runtime is close
to that observed in the for loop case. Also, the work dispatch in
GLTO does not help because work stealing is not leveraged. As an
exception, GLTO over MassiveThreads (GLTO(MTH)) outperforms
the other alternatives up to 4 threads because this library does
employ work stealing by default.

Summarizing, the results in the Intel OpenMP implementation
indicate that, compared with LWT-based solutions, it cannot deal
successfully with the fine-grained parallel paradigm. In that case,
a LWT-based approach should be selected.

6.3.2. OmpSs in task parallelism
As discussed earlier, the PM offered by OmpSs is task-oriented

and the only runtime that is currently available lies on top of the
ad-hoc LWT library called Nanos++. Therefore, our main goal in
this scenario does not aim to obtain a performance gain, but to
analyze this PM on top of different LWT solutions and to compare
the ad-hoc implementation with the generic solution. The current



A. Castelló et al. / Future Generation Computer Systems 84 (2018) 22–31 29

Table 1
Percentage of queued tasks for each task granularity configuration.

Task granularity (rows per task) # OMP threads

1 2 4 8 16 18 32 36–72

10 100 80 88 90 94 94 95 100
20 100 93 81 97 100 100 100 100
50 100 84 63 39 100 100 100 100

100 100 100 100 100 100 100 100 100

OmpSs runtime release uses a shared queue among all the OmpSs
threads and all the created tasks are queued there waiting to be
executed.

In order to study the differences between the current OmpSs
and GOmpSs runtime implementations, we started by analyzing
the time spent in task management. With this work, we tried to
assess whether our implementation adds any overhead in this
procedure. We implemented a microbenchmark that creates a
certain number of tasks and then joins them. Figs. 9a and 9b show
the average time of 100 executions of creating and joining 1000
and 10,000 empty tasks without dependencies, respectively. The
line labeled as OmpSs refers to the OmpSs 16.06.3 version while
those labeled as GLT (ABT), GLT (QTH), and GLT (MTH) correspond
to our OmpSs implementation over Argobots, Qthreads, ans Mas-
siveThreads, respectively.

Those times are negligible if a task is composed by heavy-
coarsed code: however, this indicates that our implementation
results are close to those obtained with the current OmpSs release
with a reduced number of threads, and they improve upon the
current OmpSs solution performance when more than 18 threads
are used. As expected, with fine-grained tasks, using a single
queue and increasing the number of consumers (OmpSs threads)
produces contention. This behavior was also experimented when
exploiting the task parallelism with OpenMP. In this case, GLT
(MTH) delivers the worst performance because the internal work-
stealing requires extra synchronization points. GLT (QTH) performs
close to OmpSs and GLT (ABT) when less than 36 threads are used.
The reason is that, when 2 threads share a CPU, the performance
in this library drops because of the memory locks, as we saw in
the OpenMP work-sharing evaluation. In the other, GLT (ABT) is
the best solution in almost all the situations, overperforming (up
to 2 times faster) the ad-hoc solution when more than 36 threads
are used because of its independence among threads that avoids
internal synchronization procedures.

We also evaluated GOmpSs with a production application. We
selected the SparseLU Decomposition application from [36]. This
application performs an LU decomposition over a square sparse
matrix that is allocated by blocks of contiguous memory. We used
two different matrix sizes: the default size 3200 × 3200 (Fig. 10a),
and 12,800 × 12,800 (Fig. 10b) in both cases with real double ele-
ments. The execution of these problems spawns 1500 and 89,000
tasks, respectively.

Figs. 10a and 10b show the average of 100 executions for the
SparseLU Decomposition and reveal that the time gap among all
the OmpSs implementations is almost negligible. Also, the error
bars indicate the small time variability.

In summary, the resultswith OmpSs PMdemonstrate that there
is room for improvement in themanagement of fine-grained tasks.
However, once that time becomes negligible, the selected LWT
implementation does not significantly affect performance.

7. Conclusions

We have presented two directive-based PMs, OpenMP and
OmpSs, implemented on top of the GLT API, named GLTO and

(a) 1000 OmpSs tasks.

(b) 10,000 OmpSs tasks.

Fig. 9. Execution time for creating and joining OmpSs tasks on top of OmpSs
runtimes increasing the number of OmpSs threads.

GOmpSs, respectively. GLT presents a common API for LWT so-
lutions and is currently implemented on top of Argobots, Mas-
siveThreads, and Qthreads. The GLTO and GOmpSs runtimes al-
low us to execute codes written in OpenMP and OmpSs on top
of different underlying LWT solutions without modifying the
code.

We discussed the design decisions taken during the imple-
mentation of both runtimes, and we showed how they behave in
different parallel scenarios. Moreover, we compared the current
production releases of OpenMP (GNU and Intel implementations)
andOmpSs runtimes and our approaches for those PMs in different
scenarios: work-sharing constructs (compute bound for loop-
based codes and nested parallelism), and task parallelism.

For each case, we have shown the performance difference and
analyzed the reasons (if any) for the disparity of results.

In the case of work-sharing constructs, the results indicate
that no OpenMP implementation is a clear winner because each
implementation shows benefits for different cases: pthreads for
the compute-bound scenario and LWT for the nested parallelism.

In the task parallelism scenario with OpenMP, LWTs attain
better performance than do pthreads with fine-grained tasks.

In the case of task parallelism using OmpSs, our implementa-
tion performs close to the original runtime (implemented with



30 A. Castelló et al. / Future Generation Computer Systems 84 (2018) 22–31

(a) Matrix size of 3200 × 3200 elements.

(b) Matrix size of 12,800 × 12,800 elements.

Fig. 10. Execution time for SparseLU application on top of OmpSs runtimes increas-
ing the number of OmpSs threads.

an ad hoc solution) in the application scenario and improves the
time spent in fine-grained task management when more than 18
threads are used, achieving the best performance when Argobots
is used as the underlying library.

These results reinforce our findings within the OpenMP PM;
in general, LWTs are highly appropriate to leverage fine-grained
tasks, which may be well described by employing high-level
PMs.

Acknowledgments

The researchers from the Universitat Jaume I de Castelló were
supported by project TIN2014-53495-R of the MINECO, Spain and
FEDER, Spain, the Generalitat Valenciana fellowship programme,
Spain Vali+d 2015. Antonio J. Peña is cofinanced by the Spanish
Ministry of Economy and Competitiveness, Spain under Juan de
la Cierva fellowship number IJCI-2015-23266. This work was par-
tially supported by the U.S. Dept. of Energy, Office of Science, Office
of Advanced Scientific Computing Research (SC-21), under con-
tract DE-AC02-06CH11357. We gratefully acknowledge Enrique S.
Quintana-Ortí (Universitat Jaume I) and Sangmin Seo (Samsung
Corp.) for their advice in this work and the computing resources
provided and operated by the Joint Laboratory for System Evalua-
tion (JLSE) at Argonne National Laboratory.

References

[1] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue, F. Liu, F. Qiao,
W. Zhao, X. Yin, C. Hou, C. Zhang, W. Ge, J. Zhang, Y. Wang, C. Zhou, G. Yang,
The Sunway TaihuLight supercomputer: system and applications, Sci. China
Inf. Sci. 59 (7) (2016) 072001.

[2] TOP500 Supercomputer Sites, (June 2016). www.top500.org/.

[3] Pthreads API, computing.llnl.gov/tutorials/pthreads/.
[4] L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory

programming, IEEE Comput. Sci. Eng. 5 (1) (1998) 46–55.
[5] BSC, The OmpSs Programming Model, http://pm.bsc.es/ompss/.
[6] D. Stein, D. Shah, Implementing lightweight threads, in: USENIX Summer,

1992.
[7] Microsoft MSDN Library, Fibers.
[8] Programming with Solaris Threads, docs.oracle.com/cd/E19455-01/806-5257

/6je9h033n/index.html.
[9] L.V. Kalé, M.A. Bhandarkar, N. Jagathesan, S. Krishnan, J. Yelon, Converse: An

interoperable framework for parallel programming, in: Proceedings of the
10th International Parallel Processing Symposium, IPPS, 1996, pp. 212–217.

[10] BSC, Nanos++, pm.bsc.es/projects/nanox/.
[11] L.V. Kale, S. Krishnan, CHARM++: A Portable Concurrent Object Oriented Sys-

tem Based on C++, Vol. 28, ACM, 1993.
[12] J. Nakashima, K. Taura, MassiveThreads: A thread library for high productivity

languages, in: Concurrent Objects and beyond, in: Lecture Notes in Computer
Science, vol. 8665, 2014, pp. 222–238.

[13] K.B. Wheeler, R.C. Murphy, D. Thain, Qthreads: An API for programming
with millions of lightweight threads, in: Proceedings of Workshop on Multi-
threaded Architectures and Applications, 2008.

[14] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns, A. Castelló, D.
Genet, T. Herault, S. Iwasaki, P. Jindal, S. Kale, S. Krishnamoorthy, J. Lifflander,
H. Lu, E.Meneses,M. Snir, Y. Sun, K. Taura, P. Beckman, Argobots: A lightweight
low-level threading and tasking framework, IEEE Trans. Parallel Distrib. Syst.
PP (99) (2017). http://dx.doi.org/10.1109/TPDS.2017.2766062. 1–1.

[15] Generic Lightweight Threads API, github.com/adcastel/GLT.
[16] A. Castelló, S. Seo, R.Mayo, P. Balaji, E.S. Quintana-Ortí, A.J. Peña, GLT: A unified

API for lightweight thread libraries, in: Proceedings of the IEEE International
European Conference on Parallel and Distributed Computing, Santiago de
Compostela, Spain, 2017.

[17] BOLT: A Lightning-Fast OpenMP Implementation, bolt-omp.org/.
[18] LLVM project, http://openmp.llvm.org/.
[19] Intel OpenMP Runtime Library, https://www.openmprtl.org/.
[20] A. Duran, E. Ayguadé, R.M. Badia, J. Labarta, L. Martinell, X. Martorell, J. Planas,

OmpSs: A proposal for programming heterogeneous multi-core architectures,
Parallel Process. Lett. 21 (02) (2011) 173–193.

[21] P. Chang, W. Hwu, Inline function expansion for compiling C programs,
in: Procedings of the ACM SIGPLAN 1989 Conference on Programming Lan-
guage Design and Implementation, ACM, 1989, pp. 246–257.

[22] A. Castelló, S. Seo, R. Mayo, P. Balaji, E.S. Quintana-Ortí, A.J. Peña, GLTO: On the
adequacy of lightweight thread approaches for OpenMP implementations, in:
Proceedings of the International Conference on Parallel Processing, Bristol, UK,
2017.

[23] OpenMPArchitecture ReviewBoard, OpenMPApplication Programming Inter-
face Version 4.5, (Nov. 2015).

[24] PGI Compilers & Tools, http://www.pgroup.com/.
[25] C. Liao, O.Hernandez, B. Chapman,W. Chen,W. Zheng, OpenUH: anoptimizing,

portable OpenMP compiler, Concurr. Comput.: Pract. Exper. 19 (18) (2007)
2317–2332.

[26] BSC, Mercurium, pm.bsc.es/mcxx.
[27] A. Castelló, A.J. Peña, S. Seo, R. Mayo, P. Balaji, E.S. Quintana-Ortí, A review

of lightweight thread approaches for high performance computing, in: Pro-
ceedings of the IEEE International Conference on Cluster Computing, Taipei,
Taiwan, 2016.

[28] P.E. Hadjidoukas, V.V. Dimakopoulos, Nested parallelism in the OMPI
OpenmP/C compiler, in: European Conference on Parallel Processing, Springer,
2007, pp. 662–671.

[29] Y. Tanaka, K. Taura, M. Sato, A. Yonezawa, Performance evaluation of OpenMP
applications with nested parallelism, in: International Workshop on Lan-
guages, Compilers, and Run-Time Systems for Scalable Computers, Springer,
2000, pp. 100–112.

[30] F. Broquedis, N. Furmento, B. Goglin, P.-A. Wacrenier, R. Namyst, ForestGOMP:
an efficient OpenMP environment for NUMA architectures, Int. J. Parallel
Program. 38 (5) (2010) 418–439.

[31] S.L. Olivier, A.K. Porterfield, K.B.Wheeler, J.F. Prins, Scheduling task parallelism
on multi-socket multicore systems, in: Proceedings of the 1st International
Workshop on Runtime and Operating Systems for Supercomputers, ACM,
2011, pp. 49–56.

[32] Clang project, http://clang.llvm.org/.
[33] CloverLeaf miniapp, http://uk-mac.github.io/CloverLeaf/.
[34] J.I. Aliaga, H. Anzt, M. Castillo, J.C. Fernández, G. León, J. Pérez, E.S. Quintana-

Ortí, Unveiling the performance-energy trade-off in iterative linear system
solvers for multithreaded processors, Concurr. Comput.: Pract. Exp. 27 (4)
(2015) 885–904.

[35] Intel Math Kernel Library, https://software.intel.com/en-us/intel-mkl.
[36] BSC, Bsc Application Repository, pm.bsc.es/projects/bar.

http://refhub.elsevier.com/S0167-739X(17)32881-9/sb1
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb1
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb1
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb1
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb1
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb1
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb1
http://www.top500.org/
http://computing.llnl.gov/tutorials/pthreads/
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb4
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb4
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb4
http://pm.bsc.es/ompss/
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://docs.oracle.com/cd/E19455-01/806-5257/6je9h033n/index.html
http://pm.bsc.es/projects/nanox/
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb11
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb11
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb11
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb12
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb12
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb12
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb12
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb12
http://dx.doi.org/10.1109/TPDS.2017.2766062
http://github.com/adcastel/GLT
http://www.bolt-omp.org/
http://openmp.llvm.org/
https://www.openmprtl.org/
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb20
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb20
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb20
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb20
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb20
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb21
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb21
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb21
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb21
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb21
http://www.pgroup.com/
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb25
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb25
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb25
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb25
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb25
http://pm.bsc.es/mcxx
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb28
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb28
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb28
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb28
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb28
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb29
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb29
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb29
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb29
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb29
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb29
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb29
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb30
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb30
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb30
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb30
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb30
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb31
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb31
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb31
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb31
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb31
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb31
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb31
http://clang.llvm.org/
http://uk-mac.github.io/CloverLeaf/
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb34
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb34
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb34
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb34
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb34
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb34
http://refhub.elsevier.com/S0167-739X(17)32881-9/sb34
https://software.intel.com/en-us/intel-mkl
http://pm.bsc.es/projects/bar


A. Castelló et al. / Future Generation Computer Systems 84 (2018) 22–31 31

Adrián Castelló is a Ph.D. student in the Departamento
de Ingeniería y Ciencia de los Computadores at Univer-
sitat Jaume I de Castelló. He received his B.S. degree in
computer science and the M.S. degree in advanced com-
puter systems from Universitat Jaume I in 2009 and 2011,
respectively. His research interests include lightweight
thread programming models and distributed and shared
memory systems.

Rafael Mayo received the B.S. degree from Polytechnic
Valencia University in 1991. He obtained his Ph.D. in
Computer Science in 2001 at the same University. Since
October 2002 he has been an Associate Professor in the
department of Computer Science and Engineering in the
University Jaume I. His research interests include the opti-
mization of numerical algorithms for general processors as
well as for specific hardware, and their parallelization on
both message-passing parallel systems (mainly clusters)
and shared-memory multiprocessors. Nowadays he is in-
volved in several research efforts on HPC energy-aware

systems, cloud computing and HPC system and development tools.

Kevin Sala received his Bachelor Degree in Informatics
Engineering in 2016 from the Technical University of Cat-
alonia (UPC). Since 2016, he is a student of the Master
in Innovation and Research in Informatics from the UPC.
Also in the same year, he joined the Programming Models
group of the Barcelona Supercomputing Center (BSC) as
a Resident Student focused on parallel and distributed
programming models for HPC systems. He is interested in
parallel programming models, parallel architectures and
high performance computing.

Vicenç Beltran received his Engineering and Ph.D. degrees
in Computer Science in 2004 and 2009 respectively, both
from the Technical University of Catalonia (UPC). Since
2009, he is Senior Researcher at the Barcelona Super-
computing Center (BSC), where he works on parallel and
distributed programming models, hardware accelerators,
domain specific languages, operating systems and tools for
HPC systems. He has participated in several EU and in-
dustrial projects, including DEEP, DEEP-ER and DEEP-EST
(leading theWPs on programmingmodels and resiliency),
INTERTWinE (leading theWP on runtime interoperability)

and REPSOLVER II (leading the development of a DSL infrastructure).

Pavan Balaji holds appointments as a Computer Scientist
and Group Lead at the Argonne National Laboratory, as
an Institute Fellow of the Northwestern-Argonne Institute
of Science and Engineering at Northwestern University,
and as a Research Fellow of the Computation Institute
at the University of Chicago. He leads the Programming
Models and Runtime Systems group at Argonne. His re-
search interests include parallel programmingmodels and
runtime systems for communication and I/O on extreme-
scale supercomputing systems, modern system architec-
ture, cloud computing systems, data-intensive computing,

and big-data sciences.

Antonio J. Peña holds a B.S. + M.S. degree in Computer
Engineering (2006), and M.S. and Ph.D. degrees in Ad-
vanced Computer Systems (2010, 2013), from Universitat
Jaume I, Spain. He is currently a Sr. Researcher at Barcelona
Supercomputing Center (BSC), Computer Sciences Depart-
ment. Antonio works within the Programming Models
group where he is Activity Leader for ‘‘Accelerators and
Communications for HPC’’. Dr. Peña is also the Manager of
the BSC/UPCNVIDIA GPU Center of Excellence. He is a Juan
de la Cierva Fellow and prospective Marie Curie Fellow.


	On the adequacy of lightweight thread approaches for high-level parallel programming models
	Introduction
	Background
	OpenMP
	OmpSs
	Generic lightweight threads

	Related work
	OpenMP over GLT
	GLTO interactions
	GLTO implementation details
	GLTO work-sharing construct
	GLTO task parallelism
	GLTO nested parallelism
	GLTO specific implementation issues

	OmpSs over GLT
	GOmpSs interactions
	GOmpSs implementation details
	GOmpSs task parallelism

	Performance evaluation
	Hardware and software
	Work-sharing constructs
	OpenMP in a compute-bound code
	OpenMP with nested parallelism

	Task-parallelism
	OpenMP in task parallelism
	OmpSs in task parallelism


	Conclusions
	Acknowledgments
	References


