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ABSTRACT

This paper provides an in-depth analysis of the software overheads
in the MPI performance-critical path and exposes mandatory per-
formance overheads that are unavoidable based on the MPI-3.1
specification. We first present a highly optimized implementation
of the MPI-3.1 standard in which the communication stack—all the
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way from the application to the low-level network communication
API—takes only a few tens of instructions. We carefully study these
instructions and analyze the root cause of the overheads based
on specific requirements from the MPI standard that are unavoid-
able under the current MPI standard. We recommend potential
changes to the MPI standard that can minimize these overheads.
Our experimental results on a variety of network architectures and
applications demonstrate significant benefits from our proposed
changes.
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1 INTRODUCTION

MPI is widely considered to be the de facto standard for commu-
nication on distributed-memory systems. Despite its wide success,
however, MPI is often criticized as being a heavyweight runtime
system that can add significant overhead, particularly for applica-
tions that need very fine-grained communication on fast networks,
such as those relying on strong scaling on large supercomputing
systems. There is some truth in such criticism. For instance, MPI
provides a generalized API where multiple kinds of communication
are funneled through the same function API. That is, whether the
application wants to send a small single-integer contiguous buffer
or a large noncontiguous multidimensional data structure, the com-
munication is funneled through MPI_ISEND, for example. The MPI
implementation internally needs to check for and distinguish these
different communication patterns, thus adding overhead to the
performance-critical path.

Most publications that draw such conclusions evaluate specific
implementations of MPI without carefully distinguishing whether
the performance degradation is an artifact of the MPI implementa-
tion or the MPI standard. If the MPI implementation is performing
poorly, is it because the design or implementation choices made in
the MPI library are suboptimal for performance? Or is it because
of fundamental limitations in the MPI standard that make a more
optimized implementation impossible?

In this paper we try to understand and illustrate what the short-
comings of the current MPI-3.1 standard [26] are for applications
that rely on time to solution at the strong-scaling limit of the prob-
lem they are trying to solve. We use a three-step approach.

1. We first present a highly optimized implementation of the MPI-
3.1 standard, such that the communication stack—all the way from
the application to the low-level network communication API—takes
only a few tens of instructions. The purpose of this implementation
is to demonstrate the “best case” for the shortest path from the
application to the network communication APL

2. We then carefully study the instruction counts in each aspect
of this implementation. The focus here is on accounting for each
instruction and associating it with the requirements in the MPI
standard that result in that instruction.

3. We use this analysis to recommend potential changes to the
MPI standard to address the overheads. We also evaluate these
proposed changes and showcase the performance improvements
such changes can achieve.

Raffenetti et al.

We analyze a small subset of the communication routines with
examples from point-to-point communication and one-sided com-
munication and use them to illustrate the kind of overheads each of
these calls has to deal with. In addition to a detailed description and
analysis of the highly optimized MPI implementation, this paper
presents performance evaluation results from a variety of bench-
marks and applications on a number of hardware platforms. We
evaluate the applications close to their strong-scaling limit in order
to showcase the core capability range that this paper targets.

Recommended reading. This paper is not meant to be a tutorial
on MPI. It assumes that the reader is fairly familiar with the MPI
standard and has some notion of the workings of MPI implemen-
tations. For readers unfamiliar with these aspects, we recommend
reading [20, 21, 25] to obtain the relevant background before reading
this paper. These references provide an easier-to-read alternative to
the MPI standard, although in doing so they sometimes introduce
approximations to the true intent of the standard. We caution all
readers that the only authoritative reference to correctness in MPI
is the latest MPI standard.

What this paper does not handle. The goal of this paper is to
provide an overview of the complexities an MPI implementation has
to address and the associated overheads these complexities incur.
While the MPI standard defines a large number of communication
functions, this paper does not focus on all of them and instead picks
a small sample set of functions and studies their overheads. The
intent here is to give a rough idea of these overheads; we expect the
reader to be able to extend these observations to other functions.
In particular, this paper makes no mention of some segments of
the MPI standard such as MPI I/O, dynamic processes, threads, and
Fortran bindings, all of which would impose additional checks and
requirements on the MPI implementation.

The rest of the paper is organized as follows. In Section 2
we present a highly optimized implementation of MPI including
possible optimizations to minimize the instruction counts in the
performance-critical path. In Section 3 we analyze the root cause of
the overheads in the MPI standard. Performance results showcasing
our implementation and analysis are presented in Section 4. Other
work related to our research is described in Section 5, followed by
concluding remarks in Section 6.

2 HIGHLY OPTIMIZED MPI
IMPLEMENTATION

Before we discuss what the fundamental limits in implementing
MPI-3.1 are, we need to first understand what can be optimized
within the confines of the MPI standard. Therefore, in this sec-
tion, we present a highly optimized implementation of the MPI-3.1
standard. This implementation is done in the context of MPICH.
MPICH is a multilayered software stack. In the topmost
layer, known as the “MPI layer,” MPICH implements machine-
independent code such as machine-independent collectives, derived
datatype management, and group management. Below the MPI
layer comes the machine-dependent code, known as the “abstract
device” or simply the “device” layer. Since this layer is machine
dependent, multiple implementations of it exist, each suited to a
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Figure 1: Overview of the MPICH software stack.

different architecture, although some architectures share a com-
mon device. MPICH currently provides two devices: ch3 (for most
platforms) and pamid (for the IBM Blue Gene/Q). For the optimized
implementation that we are describing here, we developed a new
device called ch4. Each device internally has further abstract layers
for managing specific aspects of the code.

We architect ch4 from the ground up, keeping low instruction
and cycle counts as a primary design goal. Artifacts of this goal
will become evident in a number of design choices that we describe
in this section. The overall architecture of ch4 can be viewed as a
combination of three layers: the ch4 core, the netmods, and the
shmmods (see Figure 1). The ch4 infrastructure is designed to allow
flow-through of most MPI-level information all the way down to
the netmods and shmmods. That is, the netmods and shmmods know
what MPI-level call triggered a particular data movement operation,
including all its parameters. Thus, each netmod and shmmod can
decide the best way to implement the operation. If it does not have
a network or shared-memory-specific method for optimizing that
communication operation, it simply falls back to the active-message-
based implementation provided by the ch4 core. For instance, let
us consider the MPI_PUT operation and walk through the steps it
takes.

MPI Layer: The MPI library, MPICH in this case, provides an entry
point for MPI_PUT as a function call, which also is aliased to another
function call PMPI_PUT (the equivalent function in the profiling
interface). The MPI_PUT function is implemented at the MPI layer
inside the MPICH library, where three actions are performed: (1)
we check for any errors in the parameters, such as bad arguments
or invalid MPI objects being referenced by the call; (2) we look up
the actual MPI window object in whose context the communication
is taking place: this window object describes the scope of processes
and memory that is accessible for that communication; and (3) we
check to see whether the communication needs to be thread safe,
and accordingly we take either the thread-safe or the thread-unsafe
communication path.

CH4 Core: Once these three actions at the MPI layer are done, the
control passes down to the appropriate device, which is ch4 in this
case. First, ch4 core does a check for locality. When the target is
self), ch4 core handles the communication; when the target is on
the same node, it hands over control to the shmmod; and when the
target is on a different node, it hands over control to the netmod.
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netmod/shmmod: Once the ch4 core passes down control to
the netmod/shmmod, we need to analyze the operation and decide
whether it can be fully implemented in hardware or whether it
needs to be implemented as an active-message fallback. For instance,
suppose the network hardware can implement MPI_PUT only in
hardware (as an RDMA operation) for simple contiguous data but
needs to fall back to active messages for more complex data layouts.
In this case, a check is performed at the netmod, and a branch is
added either to implement the MPI_PUT operation “natively” in the
netmod or to fall back to the active-message implementation in
the ch4 core. If the operation can be supported natively, which
we refer to as the fast-path for the communication operations, the
netmod then performs the necessary translation of the MPI-level
parameters to network-level parameters (e.g., MPI target offset to
OS virtual address) and performs one or more network operations
to correspond with the MPI operation.

To summarize, we highlight two takeaways in the way the dif-
ferent layers of ch4 are designed.

(1) The communication fast-path, which is the most common
performance-critical path that MPI data movement takes,
flows as directly as possible to either the netmod or the
shmmod using the fewest instructions.

(2) The communication semantics (e.g., which MPI function is
being used to perform this data movement) are never lost all
the way through the software stack. Thus, any layer of the
stack can freely perform communication optimizations with
a full view of the communication path.

In the next few subsections, we present a detailed instruction
and cache-level analysis of the MPICH/CH4 communication stack.
We have two goals: (1) identifying the smallest number of instruc-
tions that an MPI implementation needs in order to implement
the full MPI standard and (2) determining where the remaining
instructions are spent and what aspects of the MPI standard cause
these instruction overheads.

2.1 Instruction-Count Analysis of the
MPICH/CH4 Stack

Let us first analyze the number of instructions used by the
MPICH/CH4 stack in a simple “default” build.! This build enables
a number of features that make it friendlier for users and admin-
istrators, although it is not fully optimized for performance. The
configuration includes checking for errors in arguments, ensuring
that datatypes are correctly created and committed before being
used, and making certain that the target process rank is within
the communicator range. In this configuration, the MPICH/CH4
stack takes 221 instructions for MPI_ISEND and 215 instructions
for MPI_PUT: these instructions cover the entirety of instructions
contributed by the MPI implementation, all the way from the ap-
plication to the network communication APL In other words, this
is the additional number of instructions that would be used if the
application used MPI instead of directly using the low-level net-
work communication API. We omit analysis of MPI_IRECV, as the
software path is largely identical to MPI_ISEND for network APIs
that support matching.

IThe default build enables both shared and static libraries; we used static libraries in
our experiments.
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The first observation we make is that this is already a significant
improvement in instruction count compared with that of tradi-
tional MPI implementations. For instance, the MPICH/CH3 device
(referred to as MPICH/Original in the rest of the paper), which is
used in multiple MPI implementations such as MVAPICH, Intel MPI,
and Cray MPI, takes 253 instructions for MPI_ISEND and 1,342 in-
structions for MPI_PUT—a reduction of 13% and 84% for MPI_ISEND
and MPI_PUT, respectively. The bulk of these savings is attributed to
the low-instruction fast-path that MPICH/CH4 provides compared
with most other MPI implementations.

While these savings are useful, the real question is, Where are
the remaining instructions being used? We carefully analyzed the
instructions being used and mapped them to the source path used
for MPI_ISEND and MPI_PUT in order to identify the source of these
instructions. Our analysis results are listed in Table 1.

Table 1: Instruction analysis for MPI calls

MPI_ISEND MPI_PUT
74 instructions | 72 instructions

Reason

Error checking
Thread-safety check
MPI function call
Redundant runtime checks | 59 instructions | 62 instructions
MPI mandatory overheads

6 instructions | 14 instructions

23 instructions | 25 instructions

59 instructions | 44 instructions

Some of the overheads described in Table 1 are easy to work
around. For instance, although error checking is a useful feature—it
looks for incorrect arguments, invalid buffer accesses, and other
such user errors—it is, technically, not mandated by the MPI stan-
dard. Thus, a valid optimization would be to provide two builds of
the MPI library—one with error checking enabled and the other
without—so that applications looking for extreme performance
would have their pick.

Thread-safety checks are, in some sense, similar to error checks.
In theory, two different MPI libraries could be provided: one that is
thread safe and another that is not. Combining these into a single
library and having them check for thread-safety requirements at
runtime is really a software distribution optimization to deal with
users who might accidentally link to the wrong library. It has the
side effect, however, of costing additional instructions even when
thread safety is not needed.

MPI function call overheads are trickier to deal with. Each MPI
function call can take around 16-18 instruction just to load the stack
and registers before the function can start executing. This also has
the side effect that since the compiler generally views the func-
tion call as a black box, some unnecessary or redundant runtime
checks might need to be performed by the MPI library. For instance,
suppose the application calls MPI_ISEND for data represented with
MPI_DOUBLE. Since the MPI function call is generic and can be used
for any datatype, the MPI library cannot assume the usage of any
specific datatype by the user and must check for what datatype is
used in order to calculate the actual size of the data being transmit-
ted at runtime. In theory, since the application provided a constant
datatype, the exact size of the data is known at compile/link time,
and thus checking for it at runtime is unnecessary—this check is
simply an artifact of the MPI library exposing its communication
routines as functions rather than as compile-time macros.

Raffenetti et al.

2.2 Link-Time Inlining

One can work around the MPI function call and the associated
redundant runtime check overheads by using interprocedural and
link-time optimizations, such as link-time inlining. Link-time in-
lining must be used carefully, however, since it increases the total
number of instructions used and can potentially result in additional
instruction cache misses if used indiscriminately, especially for
large applications. Fortunately, most standard compilers (including
the Intel compiler suite, GCC, and LLVM) provide sophisticated
link-time inlining capabilities that enable specific files to be targeted
for inlining while leaving other files behind.

The first set of functions we consider are those in the MPI library.
The ability to inline specific files gives an opportunity for the MPI
implementation to inline performance-critical functions, such as
MPI_ISEND and MPI_PUT, while leaving noncritical functions, such
as MPI_INIT, as regular function calls. Doing so significantly re-
duces the amount of inlined code and consequently the number of
redundant instructions generated.

While inlining just the MPI function calls removes the function
call overhead, as shown in Table 1, it might not always be able
to remove the redundant runtime checks overhead. We therefore
surveyed 62 applications in order to understand their usage of
datatypes as an example of the redundant runtime checks. This
survey comprised the NAS parallel benchmarks [6], CORAL bench-
marks [3], DOE codesign applications [1, 2], and other large ap-
plications that consume significant compute cycles at large super-
computing centers [17, 33]. Based on our survey, we divided the
application usage of datatypes into three classes.

e Class 1 (derived datatypes): Most applications primarily
use predefined datatypes in their performance-critical path.
The use of derived datatypes was observed only in two appli-
cations, HACC [23] and MCB [5]; and both applications use
such datatypes in the setup phase and not the performance-
critical path.

e Class 2 (predefined datatypes as compile-time con-
stants): Several applications directly use compile-time con-
stants such as MPI_DOUBLE or MPI_INT in the MPI commu-
nication call to describe the data layout.

e Class 3 (predefined datatypes as runtime constants): A
few applications use predefined datatypes but not directly
as compile-time constants passed in the MPI communica-
tion call. Instead, they perform some runtime checks to find
the datatype to use but then use it as a runtime constant
throughout the application.

Of these three classes of applications, we target the latter two
for performance optimization because of their widespread use in
the performance-critical path of most applications.

For the second class of datatype usage, simply inlining the MPI
function calls is sufficient. If the compiler can see that a constant is
being used for the datatype, it can calculate the datatype properties,
including its size, at compile time, thus avoiding the additional
instructions at runtime. In such cases, for all practical purposes,
the code would function in a way that is similar to forcing MPI to
assume the usage of a single datatype by the application.

The third class of datatype usage is the trickiest. Simply inlining
the MPI function call is not sufficient to remove the datatype checks
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since the compiler will not be able to tell that the datatype variable
is indeed constant for the remaining lifetime of the application.
This behavior is used in applications primarily as an interlibrary
type conversion mechanism to provide type compatibility between
multiple libraries and languages. This is usually done by creating
a user-defined MPI_Datatype and conditional mapping it to a pre-
defined datatype. For example, LULESH [4] maps the user-defined
baseType to MPI_FLOAT or MPI_DOUBLE depending on the size of
Real_t. While the size of Real_t is available at compile time, the
assignment of the datatype is often hidden inside wrapper func-
tions, making it hard for the compiler to know that the variable
baseType is indeed immutable once it has been assigned. Conse-
quently, when the MPI communication routine is called, it sees
only the baseType variable and must do a runtime check in order
to understand what predefined type that variable corresponds to.
Nekbone [7] performs a check similar to that of LULESH, although
it uses a switch statement within an internal function to perform
this assignment and returns the type as a function parameter, thus
making it hard for the compiler to understand. Other applications
such as QMCPACK [8], LSMS [9], and miniFE [24] use a C++ tem-
plate to implement this type mapping, although conceptually the
mapping is equivalent to that in LULESH.

For such applications, the link-time inlining needs to be ex-
panded to include more files and functions potentially subsuming
all files in the application and its libraries into the link-time inlined
executable. We tested each applications by expanding the scope of
link-time inlining to subsume the entire application. As expected,
the datatype checks eventually turn into compile-time checks with-
out any redundant runtime checks when enough of the application
is subsumed into the inlined code, although at the cost of a largely
increased instruction count for the application executable itself.

2.3 Summary of Instruction Analysis

Figure 2 shows a summary of the instruction counts in the
MPICH/CH4 library with various capabilities disabled. In partic-
ular, we notice that after including all the performance optimiza-
tions described above, the MPICH/CH4 stack uses as few as 59
instructions for MPI_ISEND and 44 instructions for MPI_PUT—an
overall reduction of 77% and 97% compared with the default build
of MPICH/Original, respectively.
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So, what’s remaining? Despite the instruction count reductions
described, the MPI library still takes 44-59 instructions in the
performance-critical path, encompassed in the large black box of
“mandatory MPI overheads” in Table 1. We have identified six such
overheads in the MPI implementation that cannot be removed with-
out modifying the MPI standard beyond MPI-3.1. In Section 3 we
present details of these overheads, including potential changes to
the MPI standard to address these overheads.

3 SHORTCOMINGS IN MPI

In Section 2 we presented a highly optimized implementation of
MPI-3.1. Using this, we demonstrated that with the right set of
implementation optimizations we can build a lightweight imple-
mentation of MPI: one that takes only a few tens of instructions all
the way from the application to the network communication API.
While we may congratulate ourselves on this achievement, a keen
reader might observe that MPI’s role is really to expose as much
of the network performance as possible. Thus, the real question
is why the instruction count from the application to the network
communication API is not zero. That is, why is MPI taking any
instructions at all?

To answer that question, we present an analysis of what we
cannot optimize in an implementation of MPI, at least not without
improving the MPI standard beyond MPI-3.1.

We acknowledge that performance is not the only metric used
in real application development. Productivity—with respect to sim-
plicity in writing code, debugging, and maintaining newer software
releases—is important, too. However, the focus of this paper is on
performance: where we are losing performance and what can be
done to regain that performance. Whether such changes hurt pro-
ductivity is an orthogonal question that is not addressed in this

paper.

3.1 Network Address Virtualization with MPI
Communicators

MPI processes are logically represented as integer ranks within
opaque objects known as communicators. A process provides a com-
municator and a rank within that communicator to specify whom
to send data to (or receive data from). This communicator/rank
tuple is then internally converted by the MPI implementation to
a physical network address that is used for the communication.
The communicator, in some sense, provides a level of virtualization
between the physical network addresses and the application. An ap-
plication can create multiple communicators, each with a different
mapping of integer ranks to physical network addresses.
Converting the communicator rank to the network address is
not trivial and can cost several instructions. The simplest address
translation model uses an array lookup, where a separate array is
maintained for each communicator that provides a mapping from
the rank in that communicator to the network address. This model
provides a lookup mechanism in two instructions; but at least one
of those instructions is a memory dereference, making it expen-
sive in practice. More important, such simple lookup mechanisms
are extremely expensive with respect to the memory used, since
they maintain an O(P) table for each communicator, where P is
the number of processes in the communicator. More sophisticated
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mechanisms, such as those described in [22], optimize the memory
usage of such network address lookups but can further increase
the instruction counts to around 11 instructions even for simple
communicators.

Proposal for the MPI Standard: We propose a mechanism that
would allow the application to bypass the communicator virtual-
ization layer for network address translation by querying for the
physical network address index. The execution of this idea would
involve two steps. In the first step, if the application wanted to
communicate with rank X in its communicator, it would translate
X to the equivalent rank in MPI_COMM_WORLD. This could be done
by using the function MPI_GROUP_TRANSLATE_RANKS that already
exists in the current MPI standard. In the second step, the applica-
tion would communicate with this translated rank by using new
specialized functions that would assume MPI_COMM_WORLD ranks,
for example, MPI_ISEND_GLOBAL.

Such a model would be useful for applications that communicate
with a small set of processes. An example would be a five-point
stencil computation on a Cartesian grid where the application could
simply store the MPI_COMM_WORLD ranks of its north, south, east,
and west neighbors in four separate variables and use those for the
appropriate communication.

We note that the remaining parameters passed to
MPI_ISEND_GLOBAL would still be the same as MPI_ISEND,
including the user communicator that provides the context
isolation for the communication. The only difference compared
with MPI_ISEND is that the rank provided would be that in
MPI_COMM_WORLD rather than that in the actual communicator
being used. We also note that this function would not be
“intercommunicator-safe” That is, one could not use this function
for communicating across processes that belong to different
MPI_COMM_WORLD communicators.

Instruction Savings: We implemented this proposal in
MPICH/CH4 and noticed a reduction of around 10 instructions in
the performance-critical path.

3.2 Virtual Memory Addressing

In MPI one-sided communication operations, each process can
declare a part of its memory as remotely accessible. The collection
of such remotely accessible memory across all processes is referred
to as a window. Once a window has been declared, any process
within that window’s communicator can access any of the remotely
accessible memory. Such communication, however, treats the target
process’s window as an array, and all communication operations
refer to the memory to be accessed in terms of an offset from the
base address of that array. Networks, on the other hand, perform
communication in terms of virtual and physical addresses rather
than as offsets from a base address, thus requiring a translation
from the offset to the actual virtual address.

In some situations, a simpler approach is for the application to
keep track of the remote virtual address. For example, when the
application has allocated a symmetric virtual address across all pro-
cesses, the local address and the remote address of a given variable
are equivalent. Similarly, if an application is communicating with
only a small number of processes, it can easily store the base ad-
dresses of those processes and perform the appropriate translation,
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rather than relying on MPI to do so. Without such application-level
algorithmic knowledge, however, the MPI implementation must
always perform this translation in the performance-critical path,
resulting in at least one dereference (to look up the base address
in the window) and at least two additional arithmetic instructions
to calculate the virtual address based on the base address and dis-
placement unit.

We note that MPI-3.1 also defines dynamic windows where com-
munication calls directly use virtual addresses rather than offsets.
This model, however, has some disadvantages. Most important, dy-
namic windows are harder to optimize for the MPI implementation
since they give more flexibility to the user compared with stati-
cally created windows. Directly passing virtual addresses by the
user requires the MPI implementation to potentially disable some
optimizations, thus losing performance. A second disadvantage is
that since the same communication calls are used for all types of
windows, the MPI implementation still needs to check for what
the type the MPI window is. It can assume virtual-address-based
communication only if the window is a dynamic window. This
check, however, costs nearly the same number of instructions as
does the translation from an offset to virtual address, thus washing
out any potential benefit.

Proposal for the MPI Standard: We propose to add new func-
tions to the MPI standard, for example, MPI_PUT_VIRTUAL_ADDR
that would allow the user to directly communicate based on virtual
addresses. These routines would be usable on all types of windows,
thus removing any disadvantages of dynamic windows. Moreover,
since these functions would guarantee that the application was
using virtual addresses, no additional check would need to be done
by the MPI implementation.

Instruction Savings: This proposal eliminates 3-4 instructions
in our implementation, including an expensive memory-access
instruction.

3.3 Communication Isolation with
Communicators, Windows, and Files

All MPI communication is isolated into communication objects. Any
point-to-point or collective operation must happen in the context
of a specific communicator and is isolated from communication
on other communicators. Similarly, all one-sided communication
must happen in the context of a window, and all I/O operations
must happen in the context of a file handle. This model enables
users to easily reason about their communication pattern without
worrying about interference from communicators being used by
other libraries. Such isolation also allows users to set properties
on specific communicators, windows, or files (such as info hints
or window base address for one-sided communication) without
affecting other objects. In the rest of this section, we focus on
communicators, although the same concepts are valid for windows
and file objects as well.

While such separation based on communicators is valuable, since
the MPI implementation does not know how many such communi-
cators the user needs, they are created dynamically by using func-
tions such as MPI_COMM_DUP or MPI_COMM_SPLIT. Consequently,
when a communication operation references a communicator, the
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corresponding properties of that communicator must be looked up
at runtime through at least one expensive pointer dereference and
potentially some additional arithmetic instructions.

Proposal for the MPI Standard: Obviously, we cannot remove
communicators, windows, and file handles in MPI. These objects
give MPI the flexibility and ability to express a variety of complex
algorithms. However, we can reduce the instruction complexity
of referencing the communication object by making two subtle
changes to the MPI standard.

(1) Communicator handles would no longer be dynamically cre-
ated. Instead, a set of communicator handles would be precre-
ated by the MPI library. The user application would then be
responsible for managing them. For example, mpi.h would
include a compile-time defined number of predefined com-
municator handles. Let us assume four such predefined han-
dles are provided: MPI_COMM_1, MPI_COMM_2, MPI_COMM_3,
and MPI_COMM_4.

(2) Communicator properties, such as which processes it cov-
ers and info hints, would still be dynamically assigned
to each communicator handle. The only difference would
be that the communicator handle would now be an input
parameter to the communicator creation function, rather
than an output parameter. For instance, the new function
MPI_COMM_DUP_PREDEFINED would take the predefined han-
dle, for example, MPI_COMM_1, as an input argument but
would internally associate the corresponding set of processes
with this handle.

How would the MPI implementation use this model? During
compile time, if the MPI library knew how many communica-
tors would be used by the application, it could preallocate the
space for it as global variables: PREDEFINED_COMMS[MAX_COMMS].
Next, when the communicator MPI_COMM_1 was actually cre-
ated, the corresponding preallocated space for that communica-
tor would be populated with the appropriate information, for ex-
ample, PREDEFINED_COMMS[MPI_COMM_1].var = value. When
a communication function, say MPI_ISEND, was called with the
predefined communicator MPI_COMM_1, the MPI library would
look up the information associated with this communicator as a
global variable: PREDEFINED_COMMS[MPI_COMM_1].var. We note
that even though we technically still would be dereferencing
into the PREDEFINED_COMMS[] array, the array index would be a
compile-time constant, making it easy for the compiler to convert
that dereference to a simple global-variable lookup instead of an ex-
pensive dereference into the dynamically allocated communicator
object.

Instruction Savings: This proposal eliminates 8 instructions in
our implementation, including the expensive memory-reference
instructions associated with dereferencing to the dynamically allo-
cated communicator object.

3.4 Handling MPI_PROC_NULL

The MPI standard defines MPI_PROC_NULL as a possible desti-
nation for all communication operations: any communication
to MPI_PROC_NULL is discarded by the MPI implementation.
MPI_PROC_NULL is not a true communication target but serves as a
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convenient mechanism, especially for applications that need to deal
with boundary conditions, for example, in an application that does
neighborhood communication where some subset of the processes
does not have neighbors in all directions.

While MPI_PROC_NULL is convenient and helps reduce applica-
tion code complexity, however, it potentially does so at the expense
of additional overhead to MPI in the performance-critical path. In
particular, every MPI communication call needs to add comparison
and branch instructions to check for MPI_PROC_NULL and perform
the associated processing. More important, these checks cost over-
head even for applications that do not use MPI_PROC_NULL, since
the MPI implementation must assume that the application might
use this functionality.

Proposal for the MPI Standard: We propose new routines within
MPI that would explicitly disallow the usage of MPI_PROC_NULL.
These routines, for example, MPI_ISEND_NPN, could be used only
with non-MPI_PROC_NULL destinations. For applications that do
not use MPI_PROC_NULL, the choice is simple: they would simply
replace MPI_ISEND with MPI_ISEND_NPN. Applications that do use
MPI_PROC_NULL could use MPI_ISEND; or they could add a branch
themselves to check for MPI_PROC_NULL and, when the target was
not MPI_PROC_NULL, use the routine MPI_ISEND_NPN.

Instruction Savings: This proposal can save 3 instructions in our
implementation, including a branch instruction that can be expen-
sive on some platforms.

3.5 Per-Operation Completion Semantics

Point-to-point communication in MPI allows the user to have very
fine-grained per-operation completion semantics. For applications
that issue many communication operations, a request object is re-
turned for each operation and needs to be managed and completed
(or freed) explicitly. This model is flexible, although in some appli-
cations such fine-grained completion is unnecessary. Often, these
applications issue several communication operations and cannot
move to the next iteration until they have all completed. Stencil
computations are a simple example, although this communication
model is also common in several fluid dynamics and quantum chem-
istry applications.

In order to meet this requirement in the MPI standard, MPI imple-
mentations need to maintain request objects for each operation and
must assume that the application might ask for separate comple-
tion of each individual communication operation. This is expensive
for the MPI implementation in terms of both memory usage and
instruction counts.

Proposal for the MPI Standard: We propose a completion model
that is closer to MPI one-sided communication, where operations
would be completed in bulk, rather than individually. Specifically,
the application would use new routines, such as MPI_ISEND_NOREQ,
that would perform data transfer just like MPI_ISEND but would
not return an explicit user request. At a later point, the application
could call another new function, MPI_COMM_WAITALL, that would
complete all requestless operations on that communicator.

How would the MPI implementation use this model? For com-
munication operations that can complete immediately, the working
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model would be trivial: no request would be allocated. For opera-
tions that are not immediately completed, the MPI implementation
could simply maintain a count of the operations issued, rather than
request objects for each operation. This would completely remove
all the instructions associated with allocating and dereferencing
into the request and would add approximately three instructions to
increment a counter instead.

Instruction Savings: This proposal saves approximately 10 in-
structions in our implementation, including dereference instruc-
tions into the request structure.

3.6 MPI Matching Bits

MPI point-to-point communication provides the ability for the
receiver to match messages to buffers in a different order from what
the messages were sent in. This semantics, known as MPI matching
semantics, is based on the triplet of communicator, source, and tag.
While convenient in some cases, such semantics are unnecessary in
many cases where the application can, algorithmically, guarantee
the order of communication, thus making these extra matching
semantics redundant.

Proposal for the MPI Standard: We propose new routines in the
MPI standard, such as MPI_ISEND_NOMATCH, that would completely
disable match bits for the source and tag but would retain isolation
based on the communicator. Thus, different messages coming from
different sources or different tags would simply be matched to
buffers in arrival order at the destination process. We still would
retain the communicator match bits to allow per-communicator
isolation. We believe that disabling the communicator isolation
would be too disruptive for applications, causing interference with
communication being performed by other libraries.

One can envision an alternative proposal using an MPI info hint
on the communicator that would guarantee that the application
would always use MPI_ANY_SOURCE and MPI_ANY_TAG for all com-
munication. Such a proposal would be semantically equivalent to
our proposal, but it would add an additional dereference into the
communicator object to look up the info hint and an additional
branch to add a special case for path with no match bits. When
combined with the proposal in Section 3.3, however, the additional
dereference would no longer exist, but the extra branch would still
add two additional instructions.

Instruction Savings: This proposal eliminates 5 instructions in
our implementation. When combined with the proposal in Sec-
tion 3.3, this would allow us to set the communicator match bits as
a single load instruction.

3.7 Putting It All Together

Although the proposals presented in this section are somewhat or-
thogonal concepts, they also are designed to work together. Specif-
ically, we designed new functions, such as MPI_ISEND_ALL_OPTS,
that encompass all of the proposed optimizations under a common
roof. With all the proposed changes, the final instruction count we
were able to achieve is 16 instructions for MPT_ISEND_ALL_OPTS.
That is a 94% reduction in instruction count compared with
MPICH/Original. Compared with the optimized MPICH/CH4 im-
plementation that stays within the MPI-3.1 standard (showcased
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in Section 2), we still get a 73% reduction in instruction count,
highlighting the fact that the current MPI standard still leaves con-
siderable performance on the table.

4 EVALUATION

In this section we evaluate the performance of the MPICH/CH4
stack and compare it with MPICH/Original on various benchmarks
and applications on multiple platforms. The goal of MPICH/CH4 is
to optimize the communication overhead down to the least possible
number of instructions. That is, it focuses on optimizing applica-
tions that rely on the strong-scaling limit of computation on large
supercomputing systems. Accordingly, our evaluation involves on
benchmarks and applications in that realm.

4.1 Experimental Testbeds

We used four different platforms for our experimentation evaluation.
The first two platforms were IBM Blue Gene/Q supercomputers:
Cetus and Mira, both at Argonne National Laboratory. Cetus is a
4,096-node system, and Mira is a 49,152-node system; apart from
that, both systems are identical with respect to their software and
hardware infrastructure. Each has 16 cores and 16 GB of memory.
Our application experiments were performed on Cetus and Mira
because of their larger scale. However, the IBM BG/Q environment
does not provide some special tools, such as the Intel SDE, that are
available only on Intel processors. Therefore, for experiments such
as our instruction count analysis that needed these capabilities, we
ran small-scale experiments on the “IT” and “Gomez” clusters at the
Argonne Joint Laboratory for System Evaluation. IT is equipped
with two Intel E5-2699 v4 processors each with 22 cores running at
2.20 GHz and relies on an Intel Omni-Path network fabric. Gomez
runs four 16-core Intel E7-8867 v3 processors at 2.5 GHz with a
Mellanox EDR-based network fabric. Both machines have dynamic
frequency scaling disabled for stable and reproducible results.

4.2 Microbenchmark Evaluations

In this section, we first measure the message-issue rate of
the MPICH/CH4 library and compare it with that of the
MPICH/Original library, for MPI_ISEND and MPI_PUT. The bench-
mark is designed to demonstrate the maximum rate at which a
single core can inject data into the network. All performance num-
bers are shown for a single byte of data transfer.

We performed three experiments. The first experiment was on
on the IT cluster for MPICH/CH4/OFI evaluations using the Intel
OPA network with PSM2 (Figure 3). The second experiment was
on the Gomez cluster for MPICH/CH4/UCX using the Mellanox
EDR network (Figure 4). The third experiment (Figure 5) emulated
an infinitely fast network: for this purpose, we modified the MPI
library to perform all the relevant operations except the actual
network communication. Thus, the communication went through
the entire MPI stack, but no data was transmitted over the network.

In all three experiments we compared five cases: (1) the base-
line MPICH/Original implementation (legend: “mpich/original”);
(2) the default MPICH/CH4 implementation (legend: “mpich/ch4
(default)”); (3) the MPICH/CH4 implementation with error checking
disabled (legend: “mpich/ch4 (no-err)”); (4) the MPICH/CH4 imple-
mentation with no error checking and no checks for thread safety
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Figure 3: Message rates with OFI/PSM2.
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Figure 4: Message rates with UCX.
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Figure 5: Message rates with infinitely fast network.

(legend: “mpich/ch4 (no-err-single)”); and (5) the MPICH/CH4 im-
plementation with no error checking, with no checks for thread
safety, and with link-time inlining enabled (legend: “mpich/ch4
(no-err-single-ipo)”). We note that in all three experiments the
performance dramatically improves as we reduce the instruction
counts in each step. For the experiments with real networks, we see
nearly a 50% increase in the message rate for MPI_ISEND and close
to a fourfold increase in the message rate for MPI_PUT. Despite the
large increase in performance, however, we note that the improve-
ment here is still limited by the fact that the networks themselves
add a significant number of cycles in transmitting the actual data.
On future networks with hardware capable of injecting hundreds
of millions of messages per second, we expect the lightweight stack
of MPICH/CH4 to make an even larger difference in performance.
This situation can be viewed in the third experiment results shown
in Figure 5), where the message rate increase is several orders of
magnitude.

Based on the best-case performance demonstrated above, we
next evaluated the performance improvements achievable in
MPICH/CH4 with the improvements to the MPI standard that we
proposed in Section 3. The evaluation is done with the same “in-
finitely fast” network which the low-level network transmission
completes instantaneously. The performance numbers are shown
in Figure 6. We note that each of the proposed changes provides
a large improvement to the MPI performance, peaking at around
132.8 million messages per second for a single communication core.
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Figure 6: MPI standard improvements for MPI_ISEND on in-
finitely fast network.

4.3 Nek5000

Nek5000 is a high-order spectral element code used for the simu-
lation of turbulence and heat transfer. Nek5000 is a Gordon Bell
winner [31] that strong-scales to over a million ranks and has been
analyzed extensively in [16, 18, 27]. It is one of the codes that is
forming the basis of a new set of libraries being developed by the
DOE Center for Efficient Exascale Discretizations (CEED), which is
targeting several large scale applications in DOE’s Exascale Com-
puting Project (ECP).

Typical Nek5000 simulation campaigns require 10°-107 core
hours and n = 107-10'° gridpoints to simulate turbulent flows
containing a broad range of space and time scales. The long time-
integrations required for direct numerical simulation and large
eddy simulation of turbulence put an imperative on speed, that is,
on strong scaling. Virtually every simulation of this type on high-
performance computing platforms is run at the strong-scale limit.
A natural question therefore is what factors are setting the strong-
scale limit and what can be done to push this limit further, that is,
to increase the number of processors P used to solve a problem of
fixed size, n.

The per-timestep computational complexity for most domain-
decomposition-based partial differential equation (PDE) solvers
is linear in n. (The number of steps, however, is often dependent

onn, e.g., O(n%), such that the overall complexity is superlinear
in n.) If the substeps are explicit, then time advancement simply
involves nearest-neighbor data (e.g., halo) exchanges and, to leading
order, the solution time per step depends only on the ratio n/P
and not on P explicitly [16]. Large values of n/P yield order-unity
efficiency because the run time is dominated by computation and
the communication overhead is relatively small. Conversely, in the
strong-scale limit (n/P small), communication overhead is relatively
high and can account for a significant fraction of run time. It is
in this important (fast) regime where message sizes are small and
the impact of lightweight MPI is important. As a first step towards
quantifying this impact, we have established a model problem that
solves the linear system Bu = f using conjugate gradient iteration,
where B is the mass matrix associated with a spectral element (SE)
discretization comprising E elements of order N covering the unit
cube, Q := [0, 1]3, for a problem size of n = EN3 grid points. This
problem is relevant because it is a central substep in time-dependent
solution of many transport problems.

Figure 7 shows performance results on the ALCF BG/Q Cetus
at Argonne National Laboratory. All tests were performed with
512 nodes in -c32 mode (16384 ranks) in an all-MPI mode. The
underlying mesh is a tensor product array of brick elements, each
of order N, and the problem is perfectly load balanced, with E = 2k,
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for k = 14,...,21. Here, we consider N=3, 5, and 7, such that
n/P € [27,43904]. Earlier analysis [16] suggested that BG/Q should
yield order-unity efficiency for this problem with n/P > 1000—
2000, a transition point well within the range covered here. In
Figure 7 (left), we plot the performance as the number of gridpoint-
iterations that can be realized per CPU-second (larger is better).
For large n/P the problem becomes work dominated; for small n/P
it is communication dominated. The solid lines show the perfor-
mance for MPICH/Original, while the dashed lines show results for
MPICH/CH4. Each pair of curves reflects a different value of N. We
see that the lower value of N does not perform well, in part because
of caching and vectorization strategies in Nek5000, but also because
of the O(M3N) interpolation overhead, which is large when N is
small. In all cases, MPICH/CH4 outperforms MPICH/Original ex-
cept for the largest values of n/P, where the two models are equal.
We reiterate that in this application space large values of n/P are
relevant only when the application is using all available resources.

The performance ratio is plotted in Figure 7 (center). In the range
n/P ~ 100-1000, there is a 1.2 to 1.25 performance gain for the
three values of N considered. For all the cases, there is a reduction
in the ratio moving from E/P = 2 to E/P=1 (one element per rank
being the finest realizable granularity in Nek5000). In the left panel
we see that the downturn in the ratio is due to a slight uptick in the
performance for MPICH/Original. Although this is a curiosity, we
note that the parallel efficiency is so low at this extreme granularity
that the anomaly is not relevant to practical computation.

From a performance standpoint, the most interesting points in
Figure 7 are near n/P =1000 for N =5 and 7 (the N =3 case being
too slow to be of interest). This is the area where performance-
oriented simulations are executed and it is precisely at this point
where gains offered by MPICH/CH4 are most important. While a
20% performance gain is desirable, there is a more critical issue at
hand: the reduction in communication overhead boosts the parallel
efficiency and, under fixed costs (e.g., power), can allow significant
reductions in runtime. To illustrate the point, consider for example
a standard (Amdahl) parallel complexity estimate with runtime
on P processors modeled as Tp = O + W/P, where O represents
overhead and W is the parallel work. In the strong-scale limit where
local problem sizes are small, O consists primarily of overhead from
short, latency-dominated, messages (e.g., [16]). Energy costs scale
as the number of cores times the occupancy time, Ep = cPTp, where
c is a scaling constant, which yields Ep = ¢(PO + W). A reduction
in O (say O’ = %O) allows an increase in P for the same simulation
cost, E;p, = c2P[0" + W/(2P)] = ¢(PO + W). At this (fixed) cost,
the solution time reduces two-fold T,, = O’ + W/(2P) = %(O +
W/P). Away from the strong-scale limit (W /P > O), reductions in
overhead have little benefit, but this is also not the regime where
most turbulence simulations are executed in HPC environments.

4.4 LAMMPS

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simu-
lator) is an open-source molecular dynamics code maintained by
Sandia National Laboratories. Like many molecular dynamics appli-
cations the current algorithm does a 3-D spatial decomposition over
the real space coordinates of a given atomic system and assigns the
volume with atomic contents of each grid box to an MPI rank. It uses
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point-to-point communication extensively throughout most simu-
lations for each rank to communicate atomic information for atoms
residing in its box to its nearest neighbors on timestep intervals
normally on the order of femtoseconds in simulation duration.

Strong scaling for faster timesteps is of utmost importance be-
cause several areas of research require simulations to run for rela-
tively long periods of time in order to observe various phenomena
at the atomic level, requiring the simulation to run on larger hard-
ware resources, making the 3-D mesh finer and the boxes smaller,
containing fewer atoms. The timestep processing time therefore
diminishes because less force computation is required for each in-
dividual rank, since it holds fewer atoms within its box. As a result,
the neighbor exchange communication bottleneck is magnified. Be-
cause there are fewer neighbor atoms with which to communicate,
the size of the MPI messages also decreases, making the latency of
MPI much more apparent. A lower-latency MPI implementation
therefore will have a direct effect on strong scaling, as exhibited by
the following benchmark.

This simulation was performed on a 3-million=atom face-
centered cubic crystal structure for 10,000 timesteps using a simple
Leonard-Jones potential. We used an MPI/OpenMP hybrid mode
with 1 MPI rank per core (16 per node) and 4 OpenMP threads.
We compared the MPICH/Original library with the MPICH/CH4
library, and we showcase the results in Figure 8. As the atoms per
core decreases with the larger block sizes, the message sizes also
decrease, making the point-to-point communication much more
sensitive to MPI latency. As the results indicate, the simulation is
sped up overall, with more speedup at higher scale as the scaling
limit is approached. We note, however, that the MPICH/Original
library completely stops scaling at 8,192 nodes.

5 RELATED WORK

Various improvements have been proposed to address performance
and scalability challenges in MPI implementations. Several opti-
mizations are generic improvements to MPI performance, such
as improvements to datatype handling [14, 29], performance of
collective operations [30], communication progress [28], and in-
teroperability with threads [11, 12, 15]. While these are significant
improvements, however, they do not directly address the issue of
the communication overheads in MPI at the strong-scaling limit,
in other words, reducing MPI message latencies to close to that
provided by the network hardware.

Some research has been done to improve message matching [19],
which, broadly speaking, can be considered to have the same goal
as we have: very lightweight MPI communication. However, the
authors do not address the overheads of message matching; instead,
they focus on the ability to parallelize such matching across multiple
network endpoints for different messages.

Little research directly focuses on the implications of the MPI
implementation on lightweight communication. Even less work
correlates these overheads from the MPI implementation with the
specific requirements of the MPI standard. Recent investigations of
MPI operations highlighted their expensive nature on throughput-
oriented cores, such as Intel Xeon Phi processors [13]. Some works
have investigated lightweight MPI implementations on custom
hardware [32] or in non-HPC environments, such as embedded
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Figure 8: LAMMPS strong scaling.

systems [10], thus requiring adapting MPI to lighter hardware and
system software. None of these works, however, presents the funda-
mental limits of implementing MPI or suggests improvements to the
standard in order to run as close to native hardware performance
as possible.

6 CONCLUDING REMARKS

As applications look to scale to the largest systems in the world,
their ability to perform efficient fine-grained communication de-
termines how close to their strong-scaling limit they can get. This
paper focused on understanding the limits in MPI in pushing ap-
plications toward this limit. We first presented a highly optimized
implementation of MPI that reduces the number of instructions
used by the MPI library—all the way from the application to the
low-level network communication API—to only a few tens of in-
structions. The idea of this implementation is to demonstrate the
“best case” for the shortest path from the application to the network
communication API. We then associated each instruction with the
various requirements in the MPI standard, and we proposed changes
to the MPI standard to eliminate unnecessary or redundant instruc-
tions. All the work was prototyped as a new device in MPICH,
called CH4, and evaluated with several microbenchmarks and real
applications.
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A ARTIFACT DESCRIPTION

This appendix presents the software environment used in our ex-
periments.

A.1 Obtaining Our Software

A.1.1  MPICH. Our MPI implementation is based on the open
source MPICH software available on GitHub (https://github.com/
pmodels/mpich).

A.1.2  Benchmarks. Source files for the benchmarks used in this
paper can be found in the supplemental materials.

A.1.3  Analysis Traces. SDE traces used in this paper can be
found in the supplemental materials. These serve for inspection as
well as for comparison with traces generated by the reader.

A.2 Target Platforms

Because our derived MPI implementation is based on MPICH. It is
portable to various hardware and environments. It was tested on
Linux and OS/X operating systems, on various fabrics (Intel Omni-
Path, Mellanox FDR/EDR, Cray Aries, and Blue Gene/Q), and on x86
and Power architectures. Our microbenchmarks are also portable
across similar environments. The Intel SDE tool does not depend
on any compiler but requires running on an x86 architecture.

A.3 Building and Running

Building our MPICH derivatives follows the same model as the orig-
inal MPICH, that is, the common configure, make, make install
method. Scripts to generate the various MPICH builds and conve-
nience scripts to construct the benchmarks and performance and
analysis traces are found in the supplemental materials.
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