
Mimir: Memory-Efficient and Scalable MapReduce
for Large Supercomputing Systems
Tao Gao,a,d Yanfei Guo,b Boyu Zhang,a Pietro Cicotti,c Yutong Lu,e,f,d

Pavan Balaji,b and Michela Taufera

aUniversity of Delaware
bArgonne National Laboratory

cSan Diego Supercomputer Center

dNational University of Defense Technology
eNational Supercomputing Center in Guangzhou

fSun Yat-sen University

Abstract—In this paper we present Mimir, a new implementa-
tion of MapReduce over MPI. Mimir inherits the core principles
of existing MapReduce frameworks, such as MR-MPI, while
redesigning the execution model to incorporate a number of
sophisticated optimization techniques that achieve similar or
better performance with significant reduction in the amount of
memory used. Consequently, Mimir allows significantly larger
problems to be executed in memory, achieving large performance
gains. We evaluate Mimir with three benchmarks on two high-
end platforms to demonstrate its superiority compared with that
of other frameworks.

Keywords: High-performance computing; Data analytics; MapRe-
duce; Memory efficiency; Performance and scalability

I. INTRODUCTION

With the growth of simulation and scientific data, data
analytics and data-intensive workloads have become an in-
tegral part of large-scale scientific computing. Analyzing and
understanding large volumes of data are becoming increasingly
important in various scientific computing domains, often as a
way to find anomalies in data, although other uses are being
actively investigated as well. Big data analytics has recently
grown into a popular catch-all phrase that encompasses vari-
ous analytics models, methods, and tools applicable to large
volumes of data. MapReduce is a programming paradigm
within this broad domain that—loosely speaking—describes
one methodology for analyzing such large volumes of data.

We note that big data analytics and MapReduce are not
inventions of the scientific computing community, although
several ad hoc tools with similar characteristics have existed
for several decades in this community. These are generally
considered borrowed concepts from the broader data analytics
community [10] that has also been responsible for developing
some of the most popular implementations of MapReduce,
such as Hadoop [27] and Spark [30]. While these tools provide
an excellent platform for analyzing various forms of data, the
hardware/software architectures that they target (i.e., generally
Linux-based workstation clusters) are often different from
that which scientific computing applications target (i.e., large
supercomputing facilities).

While commodity clusters and supercomputing platforms
might seem similar, they have subtle differences that are
important to understand. First, most large supercomputer in-

stallations do not provide on-node persistent storage (although
this situation might change with chip-integrated NVRAM).
Instead, storage is decoupled into a separate globally acces-
sible parallel file system. Second, network architectures on
many of the fastest machines in the world are proprietary.
Thus, commodity-network-oriented protocols, such as TCP/IP
or RDMA over Ethernet, do not work well (or work at all)
on many of these networks. Third, system software stacks on
these platforms, including the operating system and compu-
tational libraries, are specialized for scientific computing. For
example, supercomputers such as the IBM Blue Gene/Q [3]
use specialized lightweight operating systems that do not
provide the same capabilities as what a traditional operating
system such as Linux or Windows might.

Researchers have attempted to bridge the gap between
the broader data analytics tools and scientific computing
in a number of ways. These attempts can be divided into
four categories: (1) deployment of popular big data process-
ing frameworks on high-performance computers [24], [17],
[26], [9]; (2) extension to the MPI [5] interface to support
〈key, value〉 communication [16]; (3) building of MapReduce-
like libraries to support in situ data processing on supercom-
puting systems [25]; and (4) building of an implementation
of MapReduce on top of MPI [21]. Of these, MapReduce
implementations over MPI—particularly MR-MPI [21]—have
gained the most traction for two reasons: they provide C/C++
interfaces that are more convenient to integrate with scientific
applications compared with Java, Scala, or Python interfaces,
which are often unsupported on some large supercomputers;
and they do not require any extensions to the MPI interface.

MR-MPI has taken a significant first step in bridging the gap
between data analytics and scientific computing. It embodies
the core principles of MapReduce, including scalability to
large systems, in-memory processing where possible, and
spillover to the I/O subsystem for handling large datasets; and
it does so while allowing scientific applications to easily and
efficiently take advantage of the MapReduce paradigm [31],
[22]. Yet despite its success, the original MR-MPI implemen-
tation still suffers from several shortcomings. One shortcoming
is its inability to handle system faults: we addressed this
shortcoming in our previous work [12]. Another significant
shortcoming is its simple memory management. Specifically,



MR-MPI uses a model based on fixed-size “pages”: MR-MPI
pages are static memory buffers that are allocated at the start
of each MapReduce phase and used throughout this phase. As
long as the application dataset can fit in these pages, the data
processing is in memory. But as soon as the application dataset
is larger than what fits in these pages, MR-MPI spills over the
data into the I/O subsystem. While this model is functionally
correct, it leads to a tremendous loss in performance.

Figure 1 illustrates this point with the WordCount bench-
mark on a single compute node of the Comet cluster at the San
Diego Supercomputing Center (cluster details are presented
in Section IV). We note that while MR-MPI provides the
necessary functionality for this computation, it experiences
significant slowdown in performance for datasets larger than 4
GB, even though the node itself contains 128 GB of memory.
Consequently, increasing the dataset size from 4 GB to 64
GB results in nearly three orders of magnitude degradation in
performance.

0
1000
2000
3000
4000
5000
6000

1G 2G 4G 8G 16G32G64G

1000X
degradation in
performance

dataset	  size

ex
ec
ut
io
n
tim

e	  
(s
ec
on

d)

Fig. 1: Single-node execution time of WordCount with MR-MPI on
Comet.

The goal of the work presented here is to overcome such in-
efficiencies and design a memory-efficient MapReduce library
for supercomputing systems. To this end, we present a new
MapReduce implementation over MPI, called Mimir. Mimir
inherits the core principles of MR-MPI while redesigning
the execution model to incorporate a number of sophisticated
optimization techniques that significantly reduce the amount of
memory used. Our experiments demonstrate that for problem
sizes where MR-MPI can execute in memory, Mimir achieves
equal or better performance than does MR-MPI. At the same
time, Mimir allows users to run significantly larger problems in
memory, compared with MR-MPI, thus achieving significantly
better performance for such problems.

The rest of this paper is organized as follows. We provide
a brief background of MapReduce and MR-MPI in Section II.
In Section III, we introduce the design of Mimir and present
experimental results demonstrating its performance in Sec-
tion IV. Other research related to our paper is presented in
Section V. We finally draw our conclusions in Section VI.

map

map

aggregate

aggregate

convert

convert

reduce

reduceinput

output

output

shuffle  phase

Process  0

Process  1

input KVs

KVs

KMVs

KMVs

Exchange KVs

barrier barrier barrier barrier

Fig. 2: The map, shuffle, and reduce phases in MR-MPI.

II. BACKGROUND

In this section, we provide a high-level overview of the
MapReduce programming model and the MR-MPI implemen-
tation of MapReduce.

A. MapReduce Programming Model

MapReduce is a programming model intended for data-
intensive applications [10] that has proved to be suitable for
a wide variety of applications. A MapReduce job usually
involves three phases: map, shuffle, and reduce. The map phase
processes the input data using a user-defined map callback
function and generates intermediate 〈key, value〉 (KV) pairs.
The shuffle phase performs an all-to-all communication that
distributes the intermediate KV pairs across all processes. In
this phase KV pairs with the same key are also merged and
stored in 〈key, 〈value1, value2...〉〉 (KMV) lists. The reduce
phase processes the KMV lists with a user-defined reduce
callback function and generates the final output. A global
barrier between each phase ensures correctness. The user needs
to implement the map and reduce callback functions, while
the MapReduce runtime handles the parallel job execution,
communication, and data movement.

Several successful implementations of the MapReduce
model exist, such as Hadoop [1] and Spark [30]. These
frameworks seek to provide a holistic solution that includes
the MapReduce engine, job scheduler, and distributed file
system. However, large supercomputing facilities usually have
their own job scheduler and parallel file system, thus making
deployment of these existing MapReduce frameworks in such
facilities impractical.

B. MapReduce-MPI (MR-MPI)

MR-MPI is a MapReduce implementation on top of MPI
that supports the logical map-shuffle-reduce workflow in four
phases: map, aggregate, convert, and reduce. The
map and reduce phases are implemented by using user call-
back functions. The aggregate and convert phases are
fully implemented within MR-MPI but need to be explicitly
invoked by the user. Figure 2 shows the workflow of MR-
MPI. The aggregate phase handles the all-to-all movement
of data between processes. Within the aggregate phase,
MR-MPI calculates the data and buffer sizes and exchanges
the intermediate KV pairs using MPI_Alltoallv. After the
exchange, the convert phase merges all received KV pairs
based on their keys.

Similar to traditional MapReduce frameworks, MR-MPI
uses a global barrier to synchronize at the end of each phase.



Because of this barrier, the job must hold all the intermediate
data either in memory or on the I/O subsystem until all
processes have finished the current stage. For large MapRe-
duce jobs, intermediate data can use considerable memory.
Especially for iterative MapReduce jobs, where the same
dataset is repeatedly processed, buffers for intermediate data
need to be repeatedly allocated and freed.

Frequent allocation and deallocation of memory buffers with
different sizes can result in memory fragmentation. Unfortu-
nately, some supercomputing systems, such as the IBM BG/Q,
use lightweight kernels with a simple memory manager that
does not handle such memory fragmentation [7]. In order
to avoid memory fragmentation, MR-MPI uses a fixed-size
buffer structure called page to store the intermediate data. An
MR-MPI page is simply a large memory buffer and has no
relationship to operating system pages. By default, the size
of a page is 64 MB, although it is configurable by the user.
Generally, a user needs to set a larger page size in order to
use the system memory more effectively. For each MapReduce
phase, MR-MPI tries to allocate all the pages it needs at once.
The minimum number of pages needed by the map, aggregate,
convert, and reduce phases is 1, 7, 4, and 3, respectively.

The coarse-grained memory allocation in MR-MPI leads to
an efficiency problem: not all the allocated pages are fully
utilized. For some MapReduce jobs, the size of intermediate
data decreases as the data passes through different phases. For
example, during the conversion from KVs to KMVs, the values
with the same key are grouped together, and the duplicate keys
are dropped. If all KVs fit in one page, the merged KMVs
will be smaller than the page size, and thus the buffer storing
the KMVs will be underutilized. While some pages still have
space, other pages may already be full. When a page is full,
MR-MPI writes the contents of the page to the I/O subsystem
(referred to as I/O spillover in MapReduce frameworks). MR-
MPI supports three out-of-core writing settings: (1) always
write intermediate data to disk; (2) write intermediate data
to disk only when the data is larger than a single page; and
(3) report an error and terminate execution if the intermediate
data is larger than a single page size. Because supercomputing
systems generally do not have local disks, the I/O subsystem
to which the page can be written is often the global parallel
file system. This makes the I/O spillover expensive.

Aside from the inefficient use of memory buffer space, MR-
MPI suffers from redundant memory buffers and unnecessary
memory copies. Figure 3 shows the seven pages used in
the aggregate phase. The first step in aggregate is to
partition the KVs using the hash function. MR-MPI determines
to which process each KV should be sent and the total size
of the data to be sent to each process. MR-MPI uses two
temporary buffers to store structures related to partitioning of
data. After partitioning, MR-MPI copies the KVs from map’s
output buffer to the send buffer and uses MPI_Alltoallv
to exchange the data with all processes. The received KVs are
then stored in the receive buffer. Because the partitioning of
KVs is not guaranteed to be fully balanced, some processes
may receive significantly more data than others. MR-MPI

KV before communication KV after communication

receive buffersend buffer

temporary buffer

temporary buffer 

Fig. 3: Memory usage in aggregate phase.

allocates two pages for the receive buffer to prevent buffer
overflow due to partitioning skew. The aggregate phase
copies the received KVs to the input buffer of the succeeding
convert phase. Overall, the aggregate uses seven pages.
However, at least two of them—the map’s output buffer and
the convert’s input buffer—are redundant. They can be
avoided if the preceding map phase uses the send buffer as
the output buffer and the succeeding convert phase uses the
receive buffer as the input buffer. Inserting the output of the
preceding map directly into send buffer also can reduce the
use of temporary buffers by partitioning the KVs directly. A
more sophisticated workflow can also eliminate the possibility
of receive buffer overflow, thus reducing the size of the receive
buffer by half.

III. DESIGN OF MIMIR

The primary design goal of Mimir is to allow for a memory-
efficient MapReduce implementation over MPI. The idea is to
have Mimir achieve the same performance as MR-MPI for
problem sizes where MR-MPI can execute in memory, while
at the same time allowing users to run significantly larger
problems in memory, compared with MR-MPI, thus achieving
substantial improvement in performance for such problems.

Mimir’s execution model offers three classes of improve-
ments that allow it to achieve significant memory efficiency.
The first two classes (Sections III-A and III-B) are “core”
optimizations; that is, they are an essential part of the Mimir
design and are independent of the user application. The third
class (Section III-C) is “optional” optimizations; that is, the
application needs to explicitly ask for these optimizations
depending on the kind of dataset and the kind of processing
being done on the data.

Mimir inherits the concepts of KVs and KMVs from MR-
MPI. However, it introduces two new objects, called KV
containers (KVCs) and KMV containers (KMVCs), to help
manage KVs and KMVs. The KVC is an opaque object that
internally manages a collection of KVs in one or more buffer
pages based on the number and sizes of the KVs inserted. KVC
provides read/write interfaces that Mimir can use to access the
corresponding data buffer. The KVC tracks the use of each
data buffer and controls memory allocation and deallocation.
In order to avoid memory fragmentation, the data buffers are
always allocated in fixed-size units whose size is configurable



input  elements

input  elements

MPI_Alltoallv communication

User-defined
map

User-defined
map

…..

KVs

…..

KVs

send  buffer receive  buffer

Process  1

Process  0

copy

copy

Fig. 4: Workflow of map and aggregate phases in Mimir.

by the user. When KVs are inserted into the KVC, it gradually
allocates more memory to store the data. When the data is read
(consumed), the KVC frees buffers that are no longer needed.
KMVCs are functionally identical to KVCs but manage KMVs
instead of KVs.

A. Mimir Workflow Phases (Core Optimizations)

Like MR-MPI, Mimir’s MapReduce workflow consists of
four phases: map, aggregate, convert, and reduce. A
key difference from MR-MPI, however, is that in Mimir the
aggregate and convert phases are implicit; that is, the
user does not explicitly start these phases. This design offers
two advantages. First, it breaks the global synchronization
between the map and aggregate phases and between the
convert and reduce phases. Thus, Mimir has more flexi-
bility to determine when the intermediate data should be sent
and merged. It also has the flexibility to pipeline these phases
to minimize unnecessary memory usage. We still retain the
global synchronization between the map and reduce phases,
which is required by the MapReduce programming model.
Second, it enables and encourages buffer sharing between the
map and aggregate phases, which can help reduce memory
requirements.

Figure 4 shows the workflow within the map and
aggregate phases. Each MPI process has a send buffer
and a receive buffer. The send buffer of the MPI process is
divided into p equal-sized partitions, where p is the number of
processes in the MapReduce job. Each partition corresponds
to one process. The execution of the map phase starts with the
computation stage. In this stage, the input data is transformed
into KVs by the user-defined map function executed by each
process. The new KVs are inserted into one of the send buffer
partitions by using a hash function based on the key. The aim
is to ensure that KVs with the same key are sent to the same
process. Users can provide alternative hash functions that suit
their needs, but the workflow stays the same.

If a partition in the send buffer is full, we temporarily
suspend the map phase and switch to the aggregate phase.
In this phase, all processes exchange their accumulated inter-
mediate KVs using MPI_Alltoallv: each process sends the
data in its send buffer partitions to the corresponding destina-
tion processes and receives data from all other processes into
its receive buffer partitions. Once the KVs are in the receive

user-‐defined	  
reduce

…..

KVs

…..

KMVs

convert output  elements

Fig. 5: Workflow of convert and reduce phases in Mimir.

buffer, each process moves the KVs into a KVC. The KVC
serves as an intermediate holding area between the map and
reduce phases. After the data has been moved to this KVC, the
aggregate phase completes, and the suspended map phase
resumes. In this way, the map and aggregate phases are
interleaved, allowing them to process large volumes of input
data without correspondingly increasing the memory usage.

In the core design of Mimir, two user-defined callback func-
tions must be implemented by the application: the map and
reduce callback functions. In Section III-C we will introduce
additional optional callback functions that user applications
can implement for additional performance improvements.

Mimir supports three different types of input data sources:
files from disk, KVs from previous MapReduce operations for
multistage jobs or iterative MapReduce jobs, and sources other
than MapReduce jobs (e.g., in situ analytics workflows).

Figure 5 shows the workflow of the convert and reduce
phases in Mimir. In the convert phase, the input KVs are
stored in a KVC that is generated by the aggregate phase.
The convert phase converts these KVs into KMVs and
stores them in a KMVC. We adopt a two-pass algorithm to
perform the KV-KMV conversion. In the first pass, the size of
the KVs for each unique key is gathered in a hash bucket and
used to calculate the position of each KMV in the KMVC.
In the second pass, the KVs are converted into KMVs by
inserting them into the corresponding position in the KMVC.
When all the KVs are converted to KMVs, the convert
phase is complete. We then switch to the reduce phase and
call the user-defined reduce callback function on the KMVs.
We note that unlike the map and aggregate phases, the
convert and reduce phases cannot be interleaved.

B. Memory Management in Mimir (Core Optimizations)

Mimir uses two types of memory buffers: data buffers
for storing intermediate KVs and KMVs, and communication
buffers. Unlike MR-MPI, which statically allocates two large
data buffers for the KVs and KMVs, Mimir allows data buffers
to be dynamically allocated as the sizes of KVs and KMVs
grow. We create KVCs and KMVCs to manage the data
buffers.

Mimir creates two communication buffers: a send buffer and
a receive buffer. These buffers are statically allocated with the
same size. The size is configurable by the user and does not
need to be equal to the size of a data buffer. As mentioned in
Section III-A, the send buffer is equally partitioned for each
process, and the user-defined map function inserts partitioned
KVs directly into the send buffer: there is no additional data
copying from a map buffer to a send buffer. Thus, unlike MR-



MPI, we no longer need a temporary buffer to function as
a staging area for partitioning the KVs. An unexpected side
benefit of this design is that it ensures that the size of received
data is never larger than the send buffer, even when the KV
partitioning is highly unbalanced. As a result, Mimir never
needs to allocate a receive buffer that is larger than the send
buffer.

C. Mimir Workflow Hints (Optional Optimizations)

This section describes the “optional” optimizations in
Mimir. That is, these optimizations are not automatic and need
to be explicitly requested for by the application. The reason
that these optimizations cannot be automatically enabled is
that they assume certain characteristics in the dataset and
the computation. If the dataset and computation do not have
those characteristics, the result of the computation can be
invalid or undefined. Therefore, we provide these capabilities
in Mimir but ask that the user explicitly enable them after
(manually) verifying that the dataset and computation follow
these requirements. These optimizations can be classified into
two categories.

The first category is for “advanced functionality.” As men-
tioned in Section III-A, Mimir requires two mandatory user-
defined callback functions to be implemented by the user
application: the map and reduce callback functions. In this
first category of optimizations, the user application can im-
plement additional callbacks that give the user more fine-
grained control of the data processing and movement. The
“partial reduction” (Section III-C1) and “KV compression”
(Section III-C2) optimizations come under this category.

The second category is for “hints,” where the user essen-
tially just gives a hint to the Mimir runtime with respect to
certain properties of the dataset being processed. There is no
change to either the dataset or the computation on the dataset
by the application—the application is simply telling Mimir
whether the dataset has certain properties or not. The “KV-
hint” (Section III-C3) optimization comes under this category.

1) Partial-Reduction: As mentioned in Section III-A, the
basic Mimir workflow performs the convert and reduce
phases in a noninterleaved manner. This requires potentially a
large amount of memory to hold all the intermediate KMVs in
the convert phase before reduce starts to consume them.
While this model ensures correctness for reduce functions, it
is conservative. For some jobs, this model leaves unexploited
some properties in the dataset, such as “partial-reduce invari-
ance,” which is essentially a combination of commutativity and
associativity in the reduction operations. With partial-reduce
invariance, merging the reduce output in multiple steps, each
step processing a partial block of intermediate data, does not
affect the overall correctness of the results. An example of
such a job is WordCount. For these types of MapReduce jobs,
the reduce can start as soon as some of the intermediate KVs
are available, without waiting for the KVs to be converted
to KMVs. This design allows us to perform reductions even
when the available memory is less than that required to store
all KMVs.

<K1,V1>

<K3,V3>

<K2,V2>

hash bucket
unique KV

<K1,V1>
<K2,V2>
<K3,V3>
<K2,V4>

<K2,V4>
User-define  reduce

Fig. 6: Design of partial-reduction in Mimir.

Mimir introduces data partial-reduction as an optimization
method for such cases, as shown in Figure 6. The optimization
is exposed as an additional user callback function that the
user can set, if desired. This callback function would then
replace the convert and reduce phases. The semantics of
the partial-reduction callback function are as follows. Mimir
scans the KVs and hashes them to buckets based on the key.
When it encounters a KV with a key that is already present
in the bucket, the partial-reduction callback is called, which
reduces these two KVs into a single KV. The existing KV
in the hash bucket then is replaced with the reduced version.
We note that the partial-reduction callback is called multiple
times; in fact, it is called as many times as there are KVs with
duplicate keys that need to be reduced.

2) KV Compression: KV compression is a common op-
timization used by many MapReduce frameworks, including
MR-MPI. It is conceptually similar to the partial-reduction
optimization. Like the partial-reduction optimization, this opti-
mization is exposed as an additional user callback function that
the user can set, if desired. The difference between KV com-
pression and partial reduction, however, is that the KV com-
pression callback function is called before the aggregate
phase, instead of during the reduce phase.

The general working model of KV compression is similar
to that of the partial-reduction optimization. When the map
callback function inserts a KV, it is inserted into a hash bucket
instead of the aggregate buffer. If a KV with an identical
key is found, the KV compression callback function is called,
which takes the two KVs and reduces them to a single KV.
The existing KV in the hash bucket then is replaced with the
reduced version.

The goal of the KV compression optimization is to reduce
the size of the KVs before the aggregate phase. As a result,
the data that is sent over the network in the aggregate phase
is greatly reduced. Since KV compression is used during the
map phase rather than the reduce phase, it can be applied
to a broader range of jobs, including map-only jobs.

We note, however, that KV compression has some down-
sides. First, KV compression uses extra buffers to store
the hash buckets. Thus, it reduces memory usage only if
the compression ratio reaches a certain threshold. Second,
it introduces extra computational overhead. Third, in Mimir
when KV compression is enabled, the aggregate phase is
delayed until all KVs are compressed to maximize the benefit



8G 16G 32G
dataset size

0
10
20
30
40
50
60
70
80

K
V 

si
ze

 (G
B

)

74.10%
74.21%

74.11%

without KVhint
with KVhint

Fig. 7: KV size of WordCount with Wikipedia dataset.

of compression. This third shortcoming is an implementation
issue and not a fundamental shortcoming of KV compression
itself, and we hope to improve it in a future version of
Mimir. While we implemented KV compression in Mimir for
completeness and compatibility with MR-MPI, based on these
shortcomings we caution users from trying to overexploit this
functionality.

3) KV-hint: The key and value in a KV are conventionally
represented as byte sequences of variable lengths, for gener-
ality. As a result, in Mimir we add an eight-byte header (two
integers), containing the lengths of the key and value, before
the actual data of the KV. For some datasets, however, these
keys and values are fixed-length types; for example, in some
graph processing applications, vertices and edges are always
64-bit and 128-bit integers, respectively. In this case, storing
the lengths for every key and value is highly redundant and
unnecessary. Mimir introduces an optimization called KV-hint
that allows users to tell Mimir that the length of the key and
value are constant for all keys. We implemented the KV-hint
optimization in the KVC so that the KVCs used by different
MapReduce functions can have their own setting of key and
value lengths.

Mimir provides interfaces for the user to indicate whether
the key or value has a fixed length throughout the entire
job. For example, the key in the WordCount application is
usually a string with variable length, but the value is always
a 64-bit integer. In this case, the user can provide a hint to
Mimir that the length of the value will always be 8 bytes.
We reserve a special value of -1 to indicate that the key or
value is a string with a null-character termination. While the
length of the string is variable in this case, it can be internally
computed by using the strlen function and thus does not
need to be explicitly stored. Figure 7 shows the memory usage
of the WordCount application while processing the Wikipedia
dataset [8]. The KV-hint optimization can save close to 26%
memory for the KVs. As an unexpected side benefit, this
optimization also reduces the amount of data that needs to
be communicated during the aggregate phase, thus improving
performance.

IV. EVALUATION

In this section, we evaluate Mimir with respect to memory
usage and performance and compare it with MR-MPI.

A. Platforms, Benchmarks, and Settings

Our experiments were performed on two different platforms:
the XSEDE cluster Comet [2] and the IBM BG/Q supercom-
puter Mira [4]. Comet is an NSF Track2 system located at the
San Diego Supercomputer Center. Each compute node has two
Intel Xeon E5-2680v3 CPUs (12 cores each, 24 cores total)
running at 2.5 GHz. Each node has 128 GB of memory and
320 GB of flash SSDs. The nodes are connected with Mellanox
FDR InfiniBand, and the parallel file system is Lustre. Mira
is an IBM BG/Q supercomputer located at Argonne National
Laboratory. It has 786,432 compute nodes. Each node has 16
1.6 GHz IBM PowerPC A2 cores and 16 GB of DRAM. The
nodes are connected with a 5D torus proprietary network, and
the parallel file system is GPFS. Mira uses I/O forwarding
nodes, with a compute-to-I/O ratio of 1:128; that is, each I/O
forwarding node is shared by 128 compute nodes. We used
MPICH 3.2 [6] for the experiments.

For our evaluation, we used three benchmarks: WordCount
(WC), octree clustering (OC), and breadth-first search (BFS).

WC is a single-pass MapReduce application. It counts the
number of occurrences of each unique word in a given input
file. We tested WC with two datasets: (1) a uniform dataset of
words (Uniform), which is a synthetic dataset whose words are
randomly generated following a uniform distribution, and (2)
the Wikipedia dataset (Wikipedia) from the PUMA dataset [8],
which is highly heterogeneous in terms of type and length of
words.

OC is an iterative MapReduce application with multiple
MapReduce stages. As the application name suggests, OC
is essentially a clustering algorithm for points in a three-
dimensional space. We use the MapReduce algorithm de-
scribed by Estrada et al. [11] for classifying points represent-
ing ligand metadata from protein-ligand docking simulations.
The original application was written in MR-MPI. We ported
it to Mimir for our experiments. The dataset is open source
and described by Zhang et al. in [31]. In the dataset, the
position of the points follows a normal distribution with a
0.5 standard deviation and a 1% density, meaning that the
MapReduce library searches for and finds regions that have
more than 1% of the total points.

BFS is an iterative map-only application. It is a graph
traversal algorithm that generates a tree rooted at a source
vertex. BFS is one of the three kernels of the Graph500
benchmark [20] and is a popular benchmark for evaluating
supercomputer performance for data-intensive applications.
We used the graph generator of the Graph500 benchmark
to generate the BFS data. The graphs that are generated are
scale free (i.e., the distribution of the edges follows a power
law) with an average degree of 32 (i.e., the ratio of edges to
vertices).

Of the optimizations presented in Section III-C, the KV-hint
and KV compression optimizations were applied to all three
benchmarks, while the partial-reduction optimization could be
applied only to WC and OC. In this section, we use hint, pr,
and cps when referring to the KV-hint, partial-reduction, and
KV compression optimizations, respectively. While Mimir can



potentially set the page size to a small number in order to
maximize page use, we set the size to 64 MB for all tests to
ensure a fair comparison with MR-MPI, which uses 64 MB as
the default page size. We also set the communication buffer
to 64 MB to be consistent with the send buffer in MR-MPI.

Our metrics of success in this evaluation are peak memory
usage and execution time. Peak memory usage is the maximum
memory usage at any point in time during the application
execution. Execution time is the time from reading input data
to getting the final results of a benchmark. The input data is
stored in the parallel file system of our experimental platforms.
When comparing Mimir with MR-MPI, times were measured
for the two frameworks when the tests were performed in
memory (i.e., no process spills data to the I/O subsystem).
When performance metrics are missing in our results, the
reason is that the associated test ran out of memory and
spilled over to the I/O subsystem, thus causing substantial
performance degradation (which can be measured in orders
of magnitude of performance degradation).

B. Baseline Comparison with MR-MPI
In this section, we evaluate the core functionality and

optimizations present in Mimir (Sections III-A and III-B),
not including the optional optimizations from Section III-C.
We consider this the “baseline” implementation of Mimir and
compare it with MR-MPI in terms of peak memory usage and
execution time (on a single node) and weak scalability (on
multiple nodes). The page size of MR-MPI was set to 64 MB
and 512 MB on Comet and to 64 MB and 128 MB on Mira.
The default page size for MR-MPI is 64 MB; 512 MB and
128 MB are the maximum sizes possible for MR-MPI pages on
Comet and Mira, so that MR-MPI can use all of the memory
on these platforms, respectively.

Figure 8 shows the memory usage and job execution times
for all three benchmarks running on a single node of Comet.
For WC with a uniform dataset, when both frameworks can
run in memory, Mimir always uses less memory than MR-MPI
does (e.g., at least 25% less memory compared with MR-
MPI (64 MB)). For datasets larger than 512 MB, MR-MPI
(64 MB) runs out of memory; and for datasets larger than
4 GB, MR-MPI (512 MB) runs out of memory. Mimir, on the
other hand, supports in-memory computation for up to 16 GB
datasets (i.e., 4-fold larger than the best case of MR-MPI).
This improvement is due solely to Mimir’s workflow, which
uses memory more efficiently. Similar results are observed for
WC with the Wikipedia dataset. For OC and BFS, Mimir still
uses less memory (i.e., at least 34% and 64% less than MR-
MPI (64 MB) does) for small datasets and allows execution
of larger datasets (i.e., 4-fold larger for OC and 8-fold larger
for BFS) compared with MR-MPI. As long as the dataset
can be computed in memory, the execution times of the two
frameworks are comparable. Once the dataset can no longer be
computed in memory, we observe a substantial degradation of
the performance for the impacted framework (data not shown
in the figure).

Figure 9 shows the memory usage and job execution times
of the three benchmarks running on a single node of Mira.

Peak Memory Usage
Mimir
MRMPI (64M)
MRMPI (512M)

Execution Time
Mimir
MRMPI (64M)
MRMPI (512M)

25
6M

51
2M 1G 2G 4G 8G 16

G

dataset size

0

1

2

3

4

5

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

10
0
10
20
30
40
50
60
70

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(a) WC (Uniform)

25
6M

51
2M 1G 2G 4G 8G 16

G

dataset size

0

1

2

3

4

5

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

10
0
10
20
30
40
50
60
70

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(b) WC (Wikipedia)

2^
24

2^
25

2^
26

2^
27

2^
28

2^
29

2^
30

number of points

0

1

2

3

4

5

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

20
0
20
40
60
80
100
120
140

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(c) OC

2^
19

2^
20

2^
21

2^
22

2^
23

2^
24

2^
25

2^
26

number of vertices

0

1

2

3

4

5

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

20

0

20

40

60

80

100

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(d) BFS

Fig. 8: Peak memory usage and execution times on one Comet node.

Peak Memory Usage
Mimir
MRMPI (64M)
MRMPI (128M)

Execution Time
Mimir
MRMPI (64M)
MRMPI (128M)

64
M

12
8M

25
6M

51
2M 1G 2G

dataset size

0.0

0.2

0.4

0.6

0.8

1.0

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

0
20
40
60
80
100
120
140

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)
(a) WC (Uniform)

64
M

12
8M

25
6M

51
2M 1G 2G

dataset size

0.0

0.2

0.4

0.6

0.8

1.0

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

0

20

40

60

80

100

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(b) WC (Wikipedia)

2^
22

2^
23

2^
24

2^
25

2^
26

2^
27

number of points

0.0

0.2

0.4

0.6

0.8

1.0

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

0
50
100
150
200
250
300
350

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(c) OC

2^
18

2^
19

2^
20

2^
21

2^
22

number of vertices

0.0

0.2

0.4

0.6

0.8

1.0
pe

ak
 m

em
or

y 
us

ag
e 

(G
B

)

0

50

100

150

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(d) BFS

Fig. 9: Peak memory usage and execution times on one Mira node.

We see the same trend on Mira as on Comet in terms of
more efficient use of memory (i.e., with a minimum gain of
40% across all tests), increased dataset sizes (i.e., 4-fold larger
for all benchmarks), and similar performance for in-memory
executions. Tests with 128 MB page sizes for MR-MPI were
not performed for OC and BFS because MR-MPI runs out of
memory.

We also studied the weak scalability of the three bench-
marks on Comet and Mira. We show in Figure 10 the results
for the WC benchmarks. In Figures 10a and 10b, we keep the
input data size per node to 512 MB because it is the largest
dataset that MR-MPI (64 MB) configurations can run on the
24 processes of Comet. In Figures 10c and 10d, we keep the
input data size per node to 256 MB because it is the largest



Mimir MRMPI (64M) MRMPI (512M for Comet; 128M for Mira)

2 4 8 16 32 64
number of node

0

10

20

30

40

50

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(a) WC (Uniform, Comet)

2 4 8 16 32 64
number of node

0

10

20

30

40

50

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(b) WC (Wikipedia, Comet)

2 4 8 16 32 64
number of node

0

10

20

30

40

50

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(c) WC (Uniform, Mira)

2 4 8 16 32
number of node

0

10

20

30

40

50

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(d) WC (Wikipedia, Mira)

Fig. 10: Weak scalability of MR-MPI and Mimir.

dataset that MR-MPI (64 MB) configurations can run on the
16 processes of Mira. On Comet, Mimir can easily scale up
to 64 nodes.1 On the other hand, MR-MPI (64 MB) can scale
up only to 32 nodes for WC (Uniform) and cannot scale up
to even 2 nodes for the highly imbalanced dataset in WC
(Wikipedia). When the page size increases from 64 MB to
512 MB, MR-MPI still scales up only to 16 nodes for WC
(Wikipedia). The loss in scalability for MR-MPI is due to data
imbalance: some processes have more intermediate data, thus
exceeding the page size and spilling to the I/O subsystem.
For a fair comparison between Mimir and MR-MPI across
platforms, we also ran the scalability study on up to 64 nodes
on Mira. We see similar trends in scalability on Mira as on
Comet: Mimir exhibits good scalability on Mira, while MR-
MPI with both 64 MB and 128 MB page sizes scales poorly
for imbalanced datasets.

Scalability studies of OC and BFS on Comet and Mira (not
shown in the paper) confirm the conclusions observed for WC.

C. Performance of KV Compression
In this section and in Section IV-D, we evaluate the optional

optimizations that we presented in Section III-C. Of the three
optimizations presented, only KV compression is available
in MR-MPI. Thus, for fairness, we compared Mimir with
MR-MPI only with this optimization enabled. The other two
optimizations (i.e., partial reduction and KV-hints) are not
enabled here. In Section IV-D we showcase the capabilities
of all three optional optimizations in Mimir.

We compared the impact of the KV compression optimiza-
tion on the memory usage of the three benchmarks when using
a single node on Comet and Mira. We used the maximum
page size from the previous comparisons for MR-MPI (i.e.,
on Comet we used 512 MB for all benchmarks; on Mira we
used 128 MB for WC (Uniform) and WC (Wikipedia) and
64 MB for OC and BFS), because the increased page size

1We note that 64 is the maximum number of nodes available to XSEDE
users on Comet.

Peak Memory Usage
Mimir
Mimir (cps)

MRMPI
MRMPI (cps)

Execution Time
Mimir
Mimir (cps)

MRMPI
MRMPI (cps)

51
2M 1G 2G 4G 8G 16

G
32

G
64

G

dataset size

0

1

2

3

4

5

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

0

50

100

150

200

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(a) WC (Uniform)

51
2M 1G 2G 4G 8G 16

G
32

G
64

G

dataset size

0

1

2

3

4

5

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

20
0
20
40
60
80
100
120
140

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(b) WC (Wikipedia)

2^
25

2^
26

2^
27

2^
28

2^
29

2^
30

2^
31

2^
32

number of points

0

1

2

3

4

5

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

0
50
100
150
200
250
300
350

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(c) OC

2^
20

2^
21

2^
22

2^
23

2^
24

2^
25

2^
26

number of vertices

0

1

2

3

4

5

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

0

20

40

60

80

100

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(d) BFS

Fig. 11: Performance of KV compression on one Comet node.

allows MR-MPI to support larger datasets. For Mimir, we set
the page size and buffers to 64 MB.

Results for peak memory usage and execution time on a
single Comet node are shown in Figure 11. The KV compres-
sion implementation of Mimir reduces the peak memory usage
and allows processing more data in memory compared with the
baseline Mimir as well as with MR-MPI (with and without KV
compression) for WC (Uniform), WC (Wikipedia), and OC.
The reason is that the buffers in Mimir are carefully managed:
when KV compression reduces the size of the intermediate
data, the empty buffers are freed to reclaim the memory. For
BFS, Mimir has the same memory usage with and without
compression because the compression reduces the size of data
only during the graph traversal phase of the benchmark, while
the peak memory usage occurs in the graph partitioning phase,
which remains unaffected. Still, Mimir has a smaller, more
efficient memory usage than does MR-MPI. For both WC
(Uniform) and WC (Wikipedia) the figure shows datasets of
up to 64 GB; we note, however, that with KV compression
Mimir can support even larger datasets. KV compression
in Mimir improves the performance of WC (Uniform), WC
(Wikipedia), and OC but not that of BFS because of the
additional computational cost in KV compression, as described
in Section III-C2. With MR-MPI we do not observe any impact
on peak memory usage because, despite the compression, the
framework uses a fixed number of pages. In other words, the
compression just reduces the shuffled data but does not impact
the memory usage. Therefore, MR-MPI cannot support larger
datasets as Mimir can.

The single-node results on Mira are shown in Figure 12. The
peak memory usage and execution time patterns are similar
to those on Comet with Mimir, while processing up to 16-
fold larger datasets compared with MR-MPI when using KV
compression.



Peak Memory Usage
Mimir
Mimir (cps)

MRMPI
MRMPI (cps)

Execution Time
Mimir
Mimir (cps)

MRMPI
MRMPI (cps)

25
6M

51
2M 1G 2G 4G 8G

dataset size

0.0

0.2

0.4

0.6

0.8

1.0

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

0

100

200

300

400

500

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)
(a) WC (Uniform)

25
6M

51
2M 1G 2G 4G 8G

dataset size

0.0

0.2

0.4

0.6

0.8

1.0

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

0

50

100

150

200

250

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(b) WC (Wikipedia)

2^
24

2^
25

2^
26

2^
27

2^
28

2^
29

number of points

0.0

0.2

0.4

0.6

0.8

1.0

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

0
100
200
300
400
500
600
700
800

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(c) OC

2^
18

2^
19

2^
20

2^
21

2^
22

2^
23

number of vertices

0.0

0.2

0.4

0.6

0.8

1.0
pe

ak
 m

em
or

y 
us

ag
e 

(G
B

)

0

50

100

150

200

250

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(d) BFS

Fig. 12: Performance of KV compression on one Mira node.

D. Impact of Optional Optimizations in Mimir

As mentioned earlier, MR-MPI does not provide the
partial-reduction and KV-hint optimizations described in Sec-
tion III-C). Thus we focus here on understanding the limits of
Mimir alone, with respect to memory usage, execution time,
and scalability. We measured the peak memory usage and
execution time on a single node of Mira, as well as weak
scalability on up to 1,024 nodes of this supercomputer. The
page size and buffers used on Mimir were set to 64 MB.

Single-node results on Mira are shown in Figure 13. We see
that starting with the baseline implementation of Mimir and
by adding the KV-hint, partial-reduction, and KV compression
optimizations, one at a time, the peak memory usage reduces
accordingly for the WC (Uniform), WC (Wikipedia), and the
OC benchmarks. The BFS algorithm used by Mimir does
not support the partial-reduction optimization. BFS has a
reduction in memory usage with KV-hint but no improvement
with KV compression, as outlined in Section IV-C. The three
optimizations not only increase the amount of data that can
be processed on a single node of Mira—4-fold larger for WC
(Uniform), WC (Wikipedia), and OC and 2-fold larger for BFS
compared with the baseline implementation—but also improve
the performance of WC (Uniform), WC (Wikipedia), and OC.
The KV-hint optimization also improves the performance of
BFS.

We studied the weak scalability of Mimir on up to 1,024
nodes (i.e., 16,384 cores) of Mira. We used 2 GB/node
for the two WC settings, 227 points/node for OC, and 222

vertices/node for BFS as the dataset size per node; these
represent the maximum dataset sizes that the Mimir base-
line implementation can process on each node. Because the
maximum Wikipedia data that we can download from the
PUMA dataset is small (≈400 GB), we can test the weak
scalability of WC (Wikipedia) on up to 128 nodes only. As
shown in Figure 14, some versions of Mimir cannot scale to

Peak Memory Usage
Mimir
Mimir (hint)
Mimir (hint;pr)
Mimir (hint;pr;cps)

Execution Time
Mimir
Mimir (hint)
Mimir (hint;pr)
Mimir (hint;pr;cps)

25
6M

51
2M 1G 2G 4G 8G

dataset size

0.0

0.2

0.4

0.6

0.8

1.0

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

0

100

200

300

400

500

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(a) WC (Uniform)

25
6M

51
2M 1G 2G 4G 8G

dataset size

0.0

0.2

0.4

0.6

0.8

1.0

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

0

50

100

150

200

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(b) WC (Wikipedia)

2^
24

2^
25

2^
26

2^
27

2^
28

2^
29

number of points

0.0

0.2

0.4

0.6

0.8

1.0

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

0
100
200
300
400
500
600
700
800
900

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(c) OC

2^
18

2^
19

2^
20

2^
21

2^
22

2^
23

number of vertices

0.0

0.2

0.4

0.6

0.8

1.0

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

0

50

100

150

200

250

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(d) BFS

Fig. 13: Performance of different optimizations on one Mira node.

1,024 nodes because of the load imbalance of the data across
MPI processes: load imbalances cause some processes to run
out of memory. For example, the baseline implementation
can scale up to only 2 nodes (32 MPI processes) for WC
(Uniform), WC (Wikipedia), and OC before running out of
memory. The baseline implementation of BFS scales up to
256 nodes (4,096 MPI processes). After applying the KV-hint
optimization, WC (Uniform) and BFS scale up to 1,024 nodes;
WC (Wikipedia) and OC scale up to only 4 nodes. The latter
two benchmarks exhibit a much more severe load imbalance
for the datasets that we are using in our tests. By adding
the partial-reduction optimization, WC (Wikipedia) and OC
scale up to 8 nodes. Only after applying the KV compression
optimization does WC (Wikipedia) scale up to 128 nodes
and OC up to 1,024 nodes. In general, the optimizations
improve the overall execution times for WC (Uniform), WC
(Wikipedia), and OC. A few exceptions exist: for example,
when applied to WC (Uniform) and BFS, the KV compression
optimization does not improve performance because of the
extra compression overhead.

V. RELATED WORK

Apart from MR-MPI, other implementations of MapReduce
over MPI exist. K-MapReduce is a MapReduce framework
developed and optimized for the K supercomputer [18].
Contrary to K-MapReduce, Mimir was designed keeping in
mind a broader range of scientific computing platforms and
applications.

Smart [25] is a MapReduce-like system for in situ data pro-
cessing on supercomputing systems. Smart does not provide
the complete MapReduce semantics and its programming in-
terfaces, however, thus departing from the traditional MapRe-
duce model to serve the needs of in situ data processing. While
Smart certainly has a role to play in its target domain, it is



Mimir
Mimir (hint)

Mimir (hint;pr)
Mimir (hint;pr;cps)

2 4 8 16 32 64 12
8

25
6

51
2

10
24

number of nodes

100

200

300

400

500

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(a) WC (Uniform, 2 GB/node)

2 4 8 16 32 64 12
8

number of nodes

0

50

100

150

200

250

300

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(b) WC (Wikipedia, 2 GB/node)

2 4 8 16 32 64 12
8

25
6

51
2

10
24

number of nodes

200
300
400
500
600
700
800
900

1000

ex
ec

ut
io

n 
tim

e 
(s

ec
on

d)

(c) OC (227 points/node)

2 4 8 16 32 64 12
8

25
6

51
2

10
24

number of nodes

0

200

400

600

800

1000
ex

ec
ut

io
n 

tim
e 

(s
ec

on
d)

(d) BFS (222 vertices/node)

Fig. 14: Weak scalability of different optimizations on Mira.

not a valid replacement for applications relying on the full
semantics of MapReduce. Mimir, on the other hand, rigorously
supports the MapReduce model while still enabling efficient
in situ data analytics on supercomputing systems.

DataMPI [16] is a proposal to extend MPI to support
MapReduce-like communication. The proposal is a work in
progress, although it is unlikely to be integrated into the MPI
standard mainly because it does not articulate the need to
integrate such functionality into the MPI standard as opposed
to implementing it as a high-level library above MPI. That is,
the key question as to whether one can do MapReduce more
portably or efficiently by integrating DataMPI into the MPI
standard has not been answered by the researchers. In contrast
to DataMPI, Mimir implements the MapReduce model as a
lightweight portable framework on top of MPI.

Hoefler et al. [14] discuss using advanced MPI features to
optimize MapReduce implementations. Mohamed et al. [19]
discuss overlapping map and reduce functions in MapReduce
over MPI. These optimizations focus on improving the perfor-
mance of the shuffle communication. While such performance
optimizations are important for any MapReduce framework,
they are orthogonal to the memory efficiency improvements
that Mimir targets.

Efforts targeting cloud-based MapReduce frameworks on
supercomputing systems include adaptations of Hadoop [28]
and Spark [26], [28], acceleration of communication by us-
ing RDMA [17], and tuning scalability [9] in cloud-based
MapReduce frameworks. These projects, while working on
the underlying implementation of Hadoop and Spark, provide
unmodified Java/Python programming interfaces. Mimir’s pro-
gramming interface supports bindings for C and C++, which
are often more suitable for scientific computing applications.

Other research has focused on implementing the MapRe-
duce model on shared-memory systems. Phoenix [29], [23]
targets thread-based parallel programming on shared-memory
systems; Mars [13] is a MapReduce implementation on GPUs;

and Mrphi [15] is a MapReduce implementation optimized for
the Intel Xeon Phi. Different from these systems, Mimir works
on large-scale distributed-memory systems.

VI. CONCLUSIONS

In this paper, we present Mimir, a memory-efficient and
scalable MapReduce framework for supercomputing systems.
Compared with other MPI-based MapReduce frameworks,
such as MR-MPI, Mimir reduces memory usage significantly.
The improved memory usage comes with better performance,
ability to process larger datasets in memory (e.g., at least
16-fold larger for WordCount), and better scalability. Mimir’s
advanced optimizations improve performance and scalability
on supercomputers such as Mira (an IBM BG/Q supercom-
puter). Overall, our results for three benchmarks, four datasets,
and two different supercomputing systems show that Mimir
significantly advances the state of the art with respect to effi-
cient MapReduce frameworks for data-intensive applications.
Mimir is an open-source software, and the source code can be
accessed at https://github.com/TauferLab/Mimir.git.

ACKNOWLEDGMENT

Yanfei Guo and Pavan Balaji were supported by the
U.S. Department of Energy, Office of Science, under con-
tract number DE-AC02-06CH11357. Boyu Zhang, Pietro Ci-
cotti, Tao Gao, and Michela Taufer were supported by NSF
grants #1318445 and #1318417. Tao Gao was also supported
by China Scholarship Council. Yutong Lu was supported by
National Key R&D Project in China 2016YFB1000302. Part
of the research in this paper used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of Sci-
ence User Facility. XSEDE resources, supported by NSF grant
ACI-1053575, were used to obtain some other performance
data.

REFERENCES

[1] Apahce Hadoop. http://hadoop.apache.org/.
[2] Comet Cluster. http://www.sdsc.edu/support/user guides/comet.html.
[3] IBM BG/Q Architecture. https://www.alcf.anl.gov/files/IBM BGQ

Architecture 0.pdf.
[4] Mira Supercomputer. https://www.alcf.anl.gov/mira.
[5] MPI: A Message-Passing Interface Standard. http://www.mpi-forum.

org/docs/mpi-3.1/mpi31-report.pdf.
[6] MPICH Library. http://www.mpich.org.
[7] Turing: Memory Fragmentation Problem. http://www.idris.fr/eng/turing/

turing-fragmentation memoire-eng.html.
[8] F. Ahmad, S. Lee, M. Thottethodi, and T. N. Vijaykumar. PUMA:

Purdue MapReduce Benchmarks Suite. 2012.
[9] N. Chaimov, A. Malony, S. Canon, C. Iancu, K. Z. Ibrahim, and

J. Srinivasan. Scaling Spark on HPC Systems. In Proceedings of the
International Symposium on High-Performance Parallel and Distributed
Computing (HPDC), pages 97–110, 2016.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Communications of the ACM, 51(1):107–113, 2008.

[11] T. Estrada, B. Zhang, P. Cicotti, R. S. Armen, and M. Taufer. A
Scalable and Accurate Method for Classifying Protein–ligand Binding
Geometries Using a MapReduce Approach. Computers in Biology and
Medicine, 42(7):758–771, 2012.

[12] Y. Guo, W. Bland, P. Balaji, and X. Zhou. Fault Tolerant Mapreduce-
MPI for HPC Clusters. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC), 2015.



[13] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars:
A MapReduce Framework on Graphics Processors. In Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, pages 260–269, 2008.

[14] T. Hoefler, A. Lumsdaine, and J. Dongarra. Towards Efficient Mapre-
duce Using MPI. In Proceedings of the European Parallel Virtual
Machine/Message Passing Interface Users Group Meeting, pages 240–
249. Springer, 2009.

[15] M. Lu, Y. Liang, H. P. Huynh, Z. Ong, B. He, and R. S. M. Goh. Mrphi:
An Optimized MapReduce Framework on Intel Xeon Phi Coprocessors.
IEEE Transactions on Parallel and Distributed Systems, 26(11):3066–
3078, 2015.

[16] X. Lu, F. Liang, B. Wang, L. Zha, and Z. Xu. DataMPI: Extending MPI
to Hadoop-like Big Data Computing. In Proceedings of the 28th IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2014.

[17] X. Lu, M. W. U. Rahman, N. Islam, D. Shankar, and D. K. Panda. Accel-
erating Spark with RDMA for Big Data Processing: Early Experiences.
In Proceedings of the 22nd Annual Symposium on High-Performance
Interconnects, pages 9–16, 2014.

[18] M. Matsuda, N. Maruyama, and S. Takizawa. K MapReduce: A
Scalable Tool for Data-Processing and Search/Ensemble Applications on
Large-Scale Supercomputers. In Proceedings of the Cluster Computing
Conference (CLUSTER), 2013.

[19] H. Mohamed and S. Marchand-Maillet. MRO-MPI: MapReduce Over-
lapping Using MPI and an Optimized Data Exchange Policy. Parallel
Computing, 39(12):851–866, 2013.

[20] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang. Introducing
the Graph 500. Cray Users Group (CUG), 2010.

[21] S. J Plimpton and K. D. Devine. MapReduce in MPI for Large-Scale
Graph Algorithms. Parallel Computing, 37(9):610–632, 2011.

[22] S.-J. Sul and A. Tovchigrechko. Parallelizing BLAST and SOM
Algorithms with MapReduce-MPI Library. In Proceedings of the
25th International Symposium on Parallel and Distributed Processing

Workshops and Phd Forum (IPDPSW), pages 481–489, 2011.
[23] J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: Modular MapRe-

duce for Shared-memory Systems. In Proceedings of the 2nd Interna-
tional Workshop on MapReduce and Its Applications, pages 9–16, 2011.

[24] M. Wasi ur Rahman, X. Lu, N. Sh. Islam, R. Rajachandrasekar, and
D. K. Panda. High-Performance Design of YARN MapReduce on
Modern HPC Clusters with Lustre and RDMA. In Proceedings of the
29th IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2015.

[25] Y. Wang, G. Agrawal, T. Bicer, and W. Jiang. Smart: A MapReduce-
like Framework for in-situ Scientific Analytics. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2015.

[26] Y. Wang, R. Goldstone, W. Yu, and T. Wang. Characterization and
Optimization of Memory-Resident MapReduce on HPC Systems. In
Proceedings of the 28th International Parallel and Distributed Process-
ing Symposium (IPDPS), pages 799–808, 2014.

[27] T. White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.
[28] X. Yang, N. Liu, B. Feng, X.-H. Sun, and S. Zhou. PortHadoop:

Support Direct HPC Data Processing in Hadoop. In Proceedings of
the International Conference on Big Data (Big Data), pages 223–232,
2015.

[29] R. M. Yoo, A. Romano, and C. Kozyrakis. Phoenix Rebirth: Scalable
MapReduce on a Large-Scale Shared-Memory System. In Proceedings
of the International Symposium on Workload Characterization, pages
198–207, 2009.

[30] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster computing with working sets. HotCloud,
10(10-10):95, 2010.

[31] B. Zhang, T. Estrada, P. Cicotti, and M. Taufer. On Efficiently Capturing
Scientific Properties in Distributed Big Data without Moving the Data:
A Case Study in Distributed Structural Biology Using MapReduce. In
Proceedings of the 16th International Conference on Computational
Science and Engineering (CSE), pages 117–124, 2013.


