
Memory Compression Techniques for Network
Address Management in MPI

Yanfei Guo∗, Charles J. Archer†, Michael Blocksome†, Scott Parker∗, Wesley Bland†, Ken Raffenetti∗ and Pavan Balaji∗
∗Argonne National Laboratory, Lemont, IL, USA †Intel Corporation, Santa Clara, CA, USA

This work is supported by the U.S. Department of Energy, Office of Science, under contract number DE-AC02-06CH11357. This research used Blues, a
high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. This research used resources
of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility.

Abstract—MPI allows applications to treat processes as a logi-
cal collection of integer ranks for each MPI communicator, while
internally translating these logical ranks into actual network
addresses. In current MPI implementations the management and
lookup of such network addresses use memory sizes that are
proportional to the number of processes in each communicator.
In this paper, we propose a new mechanism, called AV-Rankmap,
for managing such translation. AV-Rankmap takes advantage of
logical patterns in rank-address mapping that most applications
naturally tend to have, and it exploits the fact that some parts
of network address structures are naturally more performance
critical than others. It uses this information to compress the
memory used for network address management. We demonstrate
that AV-Rankmap can achieve performance similar to or better
than that of other MPI implementations while using significantly
less memory.

I. INTRODUCTION
MPI is the most commonly used programming model for

scientific computing on large supercomputing systems. Conse-
quently, keeping up with the growing scale of such systems is
a critical aspect in the design of MPI implementations. In the
past few years, tremendous improvements have been made in
MPI implementations with respect to avoiding data structures
that scale linearly or superlinearly with system size [1].
Despite these improvements, however, MPI implementations
today still have scalability limitations. One example is MPI’s
network address management.

MPI processes are logically represented as integer ranks
within communicators, while the MPI implementation in-
ternally maintains the physical network addresses of these
processes. When an application moves data between processes
by addressing them as ranks, the MPI implementation inter-
nally translates such ranks into the corresponding network
addresses before communication is performed. Such network
address management has two closely related aspects. First, a
network address for each peer process needs to be maintained;
this includes the hardware communication address itself as
well as other associated data structures. Second, a mapping
between the ranks and the network addresses, namely, a
rank-address mapping, needs to be maintained for each
communicator. These structures exist in practically every MPI
implementation today, even though the terminology used is
sometimes different. For example, MPI implementations such
as MPICH, MVAPICH, Intel MPI, Cray MPI, IBM Blue
Gene MPI, Microsoft MPI, Tianhe MPI, and Sunway MPI
use the terminology of virtual connections (VCs) for network
addresses and virtual connection reference tables (VCRTs) for
the rank-address mapping structures. Open MPI and Fujitsu
MPI, on the other hand, use the terminology of “proclist” and
“plist”, although conceptually they are no different from VCs
and VCRTs.

Most MPI implementations manage network address and
rank-address mapping structures in a way that is optimized
for performance. For example, the number of dereferences or
lookups is minimized, and few or no branches occur in the
performance-critical path. Unfortunately, not much attention
has been paid to the memory usage of these data structures. For
example, data structures related to different transports (e.g.,
network and shared memory) are embedded in the network
address structures, rather than referenced from it. Similarly,
data structures related to the shared-memory topology, which
are required for transport selection, are embedded in the
network address structures for fast lookup. Such a model,
while optimized for performance, costs substantial memory.

This situation is also true for the rank-address mapping
structures. Maintaining the rank-address mapping metadata is
complicated by the fact that the MPI standard allows users
to create new communicators by arbitrarily reordering the
ranks compared with the parent communicator. That is, a
single process can have two completely different ranks within
two different communicators, with no correlation between the
two. Because there are P ! (P factorial) valid mappings of
communicator ranks to network addresses, where P is the
number of processes in the communicator, lookup tables—
such as VCRTs—remain the common practice for maintaining
this metadata. Although this simple approach works for any
possible reordering of ranks, it is not memory efficient. It takes
O(P ) memory space on each process for each communicator,
that is, O(nP ) total memory space on each process, where
n is the number of communicators created by the process.
Consequently, such metadata can result in the MPI imple-
mentation consuming a significant fraction of the available
memory, particularly for very large supercomputers.

Our objective in this paper is to reduce the memory
consumption of such network address management for MPI
processes by using appropriate compression techniques. The
important aspect here is not how we can compress the net-
work address management but, rather, how we can do so
with virtually no performance degradation. For most MPI
implementations performance is the most significant metric
for measuring impact, and generally any nonzero performance
overhead is considered too high. We propose a new mecha-
nism, AV-Rankmap, for network address management that uses
several compression techniques to minimize the memory space
used for network address management. We study the behavior
of AV-Rankmap with respect to two properties: memory usage
and performance.

With respect to memory usage, although AV-Rankmap does
not improve memory usage in the worst-case scenario, it does
significantly improve the common cases into which most ap-



plications fall. For example, we decouple the network address
structure to distinguish elements based on various properties
such as commonality of use, compressibility, and network-
specific attributes. This decoupling allows applications that use
only a subset of the features in MPI, without relying on the full
generality of MPI, to benefit from a smaller overall memory
footprint. Similarly, for applications that create communicators
whose rank-address mapping follows certain patterns—three
forms of which are studied in this paper: direct, offset, and
strided—we detect such patterns and use them to reduce the
rank-address mapping metadata storage. When we are unable
to detect any pattern in the rank-address mapping, we simply
fall back on the original lookup-table-based model.

With respect to performance, we study both the commu-
nicator creation path (which is typically not performance
critical) and the data communication path (which is typically
performance critical) and measure the overhead added in each
case. For the noncritical path, we aim to keep the additional
cost low, although some extra overhead is often tolerable. The
additional cost is due primarily to the rank-mapping pattern
detection involved in AV-Rankmap.

For the performance-critical path, however, the overhead
needs to be virtually invisible for the proposed approach to be
viable. For a more quantitative measure, a high-performance
and finely tuned MPI implementation would cost as little as
∼50 instructions on the communication path all the way from
the application to the low-level network communication layer
(e.g., in MPI_Put). Adding just five additional instructions
in this path would lead to a 10% overhead in performance
(assuming, for simplicity, that all instructions are equally
expensive) which can be too expensive if this performance
loss is not balanced elsewhere. Keeping this cost in mind, we
perform a detailed instruction and cache-level analysis of the
performance-critical path and show that although AV-Rankmap
adds a few additional instructions for address translation in
the performance-critical path, the lost performance due to
the additional instructions is more than compensated for by
the improved cache activity because of the smaller memory
footprint, thus leading to similar or better performance while
using significantly less memory.

The overall design of AV-Rankmap and a detailed evalu-
ation with both microbenchmarks and real applications are
showcased in this paper on up to 786,432 MPI processes.
We demonstrate that AV-Rankmap can improve the memory
usage of current MPI implementations by several orders of
magnitude in many important cases.

II. SURVEY OF COMMUNICATORS IN APPLICATIONS

MPI provides a number of different communicator cre-
ation techniques. An overview of these communicator cre-
ation techniques can be found in [2]. In practice, however,
some techniques are more commonly used than others. To
understand the communication creation models used in various
applications, we performed a survey of a large number of
applications comprising the NAS parallel benchmarks [3],
CORAL benchmarks [4], DOE codesign applications [5], [6],
and other large applications that consume significant compute
cycles at large supercomputing centers [7], [8]. Although our

survey covered 62 applications, we highlight only a small
subset of the survey here, because of space constraints.
Nek5000. Nek5000 is a highly scalable spectral-element
method for solving computational fluid dynamics problems.
Its computational model relies on solving computational grids
at an increasing level of refinement. That is, for a given
computational problem, it creates multiple grids, each at a
different granularity or coarseness. Solving each grid gives
an approximate solution to the problem. Solving the next-
finer grid then refines the result based on the approximation
generated by solving the previous coarser grid.

Because each grid requires its own communication con-
text, Nek5000 creates a new communicator for each
grid. These communicators are essentially duplicates of
MPI_COMM_WORLD, and the number of communicators cre-
ated increases as the number of levels of refinement desired
by the application increases. A rule of thumb is that as the
problem size grows, the number of refinement levels (and
hence the number of communicators created) grows as well. In
current production runs of the application, a “medium-scale”
problem typically creates 24 refinement levels (i.e., 24 new
communicators), and a “large-scale” problem typically creates
86 refinement levels (i.e., 86 new communicators).
NWChem. NWChem is a quantum chemistry application suite
featuring a broad set of simulation capabilities targeted at
many areas including quantum simulation of molecules with
heavy isotopes and multiscale methods relevant to environ-
mental chemistry. For its core linear algebra computations,
NWChem (using libraries such as ScaLAPACK) creates virtual
two-dimensional data grids on which the computation is car-
ried out. It splits the MPI processes into “row” and “column”
communicators using MPI_Comm_split, so each process
is a part of a “row” and a “column” communicator. Data
exchange and synchronization are then limited along these
smaller communicators. We note that during the split, process
ranks are not reordered. Thus, the ranks of the processes
in the “row” communicator are essentially the same as the
ranks of the processes in MPI_COMM_WORLD but are offset
by a constant value. Similarly, the ranks of the processes
in the “column” communicator can be calculated with fixed
offset and stride values. Such row/column communicators are
common in other applications, such as QBOX [9], as well.

Apart from the core linear algebra computations, NWChem
spends a large fraction of its computation on force calculations.
These are typically done through one-sided communication
that, after passing through multiple layers of the software
stack, eventually use MPI-3 one-sided communication (or
RMA) windows internally. For each RMA window, the MPI
implementation internally creates a new communicator that is
a duplicate of the parent communicator from which the RMA
window is being created, in order to perform the required data
movement and synchronization. NWChem creates three to four
RMA windows, depending on the problem being solved. When
it is used together with the Casper [10] software stack for
asynchronous progress, for each window created by NWChem,
Casper creates as many duplicate windows as the number
of cores on each node of the machine. For example, when



TABLE I: Mapping models for communicators.

Application Dup MPI Comm split Topo IntercommOffset Stride Irreg.
Nek5000 x
NWChem x x x x
HACC x
QBOX x x
QMCPACK x x
CAM-SE x x
NAMD x x
LSMS x x
SP x x
BT x x x
FT x x
Graph500 x x x
Nekbone x
SNAP x x
MCB x
cian2 x
MCCK x x
mocfe bone x x
pynamic x x x
MACSio x
AMG2013 x
CNS x
SMC x
AMR x

NWChem is executed on the IBM Blue Gene/Q with 16
processes on each node, it creates 64 RMA windows (and thus
64 new communicators). When it is executed on the Intel Xeon
Phi with 60–70 processes on each node, it creates on the order
of 300 RMA windows (and thus 300 new communicators).
HACC. HACC is an astrophysics framework that simulates
the formation of structure in the expanding universe. HACC’s
computational model is similar to the linear algebra portion of
NWChem in that they both rely on multidimensional data grids
for their computation. However, HACC does not split its com-
municators; instead, it creates multiple topology-aware Carte-
sian communicators (using MPI_Cart_create) represent-
ing three-dimensional, two-dimensional, and one-dimensional
distributions of the problem. Like NWChem, HACC does not
reorder the processes in the new communicator. Thus, apart
from the additional topology information that is attached to
the communicator, the process mapping itself is identical to
that of the parent communicator.
Summary. Table I summarizes the communicator creation
models used in a number of applications. In this table, we
have classified the communicator creation models into several
categories: “dup” refers to the case where a duplicate com-
municator is created either directly by using one of the com-
municator duplication functions or indirectly (e.g., creating an
RMA window); “offset” refers to the case where the process
ranks in the new communicator are identical to that of the
parent communicator, but at a fixed offset; “stride” refers to
the case where the process ranks in the new communicator can
be calculated based on a fixed offset and stride from the parent
communicator; “irreg” refers to the case where no pattern
in the mapping is detected; “topo” refers to the cases where
a topology-aware communicator is created; and “intercomm”
refers to the case where intercommunicators are used.

III. DESIGN OF AV-RANKMAP

In this section, we first focus on the traditional VC-VCRT
approach, the data structures it maintains, and its advantages.

Then we describe AV-Rankmap, its overall design, how it
differs from VC-VCRT, and its benefits and disadvantages.

A. Traditional VC-VCRT Approach

The traditional VC-VCRT approach used in most MPI
implementations uses a simple two-level hierarchy. At the top
level is a VCRT structure, which essentially is a collection of
pointers to each VC structure. The VCRT is an O(P ) structure
that is statically allocated at initialization time.

At the bottom level is a VC structure that contains the
required information for communicating with a process. In
theory, the VCs themselves can be fully dynamically allocated,
for example at the time of the first communication with
the corresponding process. In practice, however, most MPI
implementations today choose to statically allocate a small part
of the VC (basic bookkeeping information) and dynamically
allocate the more expensive portions of the VC on demand
(such as network connections and communication buffers).
Thus, the VCs use another O(P ) memory space.

The VC is organized to minimize the number of derefer-
ences. Consequently, all the information required for commu-
nication is embedded in this structure, rather than referenced
from it. We classify the elements of the VC into three
categories: core network access information, multitransport
functionality, and functionality for dynamic processes.
Core Network Access Information. The core network access
information refers to the basic network-specific functionality
that is necessary for accessing a remote process. This includes
information such as target endpoint information. For example,
for InfiniBand, this would be the queue-pair information
to which we can send data. Such information is the most
basic and essential part of the VC and is required for any
communication operation.
Multitransport Functionality. Almost every MPI imple-
mentation allows for data to be communicated over mul-
tiple transports. At least two transports are provided by
all MPI implementations—shared memory for intranode
communication and a network interconnect for internode
communication—although some MPI implementations allow
for more than two transports to be used simultaneously. Each
transport has its own collection of information, such as com-
munication functionality to use, communication thresholds for
eager/rendezvous communication, and queues for temporary
communication buffers. For fast lookup, such information is
directly embedded in the VC structure itself, thus avoiding
a dereference. The cost of doing so, however, is that (1)
the transport-specific information is replicated a large number
of times across the different VCs and (2) some VCs might
maintain more information than what they need for communi-
cation with the peer process that they correspond to (despite
minimizing such additional information using unions).
Functionality for Dynamic Processes. Dynamically spawned
or connected processes are a core part of the MPI standard,
although they are rarely used in applications. However, current
VCs tend to give such functionality importance (with respect
to performance) equal to that of more commonly used func-
tionality such as send/receive. Consequently, elements that are



required to implement dynamic processes are embedded in the
VC structure as well and use up memory space irrespective of
whether the application uses dynamic processes or not.

B. AV-Rankmap: Address Vector Elements

AV-Rankmap retains the concept of network address and
rank-address mapping structures and instantiates them with
data structures called address vector elements (AVEs) and
Rankmap, respectively. These would be logically equivalent
to VCs and VCRTs in the VC-VCRT model. AVEs reduce the
size of the network address, compared with VCs, based on var-
ious properties such as commonality of use, compressibility,
and network-specific attributes. The collection of AVEs for all
peer processes is together referred to as the address vector
(AV). Rankmap reduces the memory footprint required for
rank-address mapping, where possible, by detecting common
mapping patterns, unlike VCRTs that always allocate an O(P )
lookup table.

In this section, we discuss AVEs and the AV. As described
in Section III-A, the traditional VC structure has three classes
of components. Of these, the core network access information
is the most critical part and is retained mostly as-is in the
AVE structure. The only, relatively minor, difference is that
AVE allows the actual network address to be either directly
embedded in the structure (if it is small) or dereferenced from
it (if it is large enough that it needs to be dynamically allocated
on-demand). Multitransport and dynamic process functionality,
on the other hand, are significantly compressed, compared with
VCs, as we demonstrate below.
Compressing the Multitransport Functionality. As men-
tioned in Section III-A, traditional VCs maintain functionality
associated with multitransport communication within the VC
structure itself. This approach is highly redundant since the
number of transports used is typically much smaller than
the number of VCs. The number of VCs is equal to the
total number of processes in the system, while the number
of transports is equal to the number of networks being used
(which is typically just two: shared memory and an internode
network). Consequently, if we can decouple the transport-
specific functionality, such information can be highly com-
pressible. The challenge, however, is that such decoupling
must be done in a way that it still retains fast lookup of this
data—the primary reason these fields were embedded in the
VC in the traditional model.

In AV-Rankmap, we carefully decouple such functionality
from the corresponding AVE structure by considering two
sets of transport-specific variables: (1) a single variable that
identifies which transport to use and (2) a collection of
variables that are used by the transport itself. These two sets
have significantly different properties.
Identifying Which Transport to Use. The variable that identifies
which transport must be used for a given peer process should
either be embedded directly in the AVE (similar to what we do
in VCs) or be easily and quickly computable. Fast computabil-
ity is, unfortunately, not easy, particularly when the processes
are not laid out in a homogeneous manner. Thus, we chose to
always store this information inside the AVE structure, using

just enough bits to store the number of available transports
(single bit for two transports). While in theory this is an
O(P ) data structure, in practice network transport addresses
tend to have unused bits that can be used here without adding
additional memory overhead. For example, the libfabric [11]
network API allows network transports to use 63-bit network
addressing, thus leaving behind one bit for such transport-
selection functionality. Similarly, the UCX [12] network API
uses aligned pointers for network addressing where the last
two to three bits are unused (depending on whether the
alignment is 4-byte or 8-byte). Extracting this information at
runtime requires a bit-mask or bit-shift operation, which is a
single (fast) instruction on most architectures.

Accessing Transport-Specific Information. Decoupling
transport-specific information from the AVE structure
improves compressibility, but it adds an additional address
dereference (e.g., a pointer lookup) to access this information.
There is no escaping this dereference, unfortunately. But we
can attempt to minimize its cost. Two costs are associated
with this additional dereference: (1) cache penalty for looking
up the additional information and (2) instruction costs (or
instructions per cycle). Of these, we expect the cache penalty
not to be a significant issue. Specifically, for applications that
perform frequent communication, these fields would already
be in the processor cache anyway, and embedding them in
the AVE structure or not does not add any additional penalty
as long as the processor cache has sufficient associativity. On
the other hand, for applications that do not perform frequent
communication and might not be able to retain the transport-
specific information in their cache, the communication cost
itself will likely not be as big a concern, and the additional
cache-miss to access this information will not be as important.

For the instruction costs, however, we have not yet been able
to identify a satisfactory solution. The additional dereference
results either in additional instructions (to load the transport-
specific information to registers) or in more expensive instruc-
tions (e.g., memory-based instructions rather than register-
based instructions). Even if the data is in cache, memory-
based instructions seem to be fairly expensive compared with
register-based instructions, thus impacting the instructions per
cycle that we can achieve. While this is certainly a concern,
as we will demonstrate later, the smaller memory footprint
of AV-Rankmap leads to fewer cache misses and hence more
than compensates for such additional instruction cost. From an
overall performance perspective, therefore, such decoupling of
transport-specific information is still a win.

Deprioritizing Dynamic Processes. As described in Sec-
tion III-A, the traditional VC structure gives equal importance
to all fields, irrespective of how widely they are used in
applications. In particular, dynamically spawned or connected
processes need additional information such as which process
group they belong to. Embedding this information into AVE
can improve performance, but it also increases the size of
the data structure for applications that do not use them. In
AV-Rankmap, we decided to deprioritize dynamic processes
so that applications that do not use dynamic processes use
lesser memory. However, this deprioritization comes at a cost:



applications that do use dynamic processes can, in some cases,
use more memory than VC-VCRT does.

Specifically, communicators that contain a combina-
tion of processes where some of them are from one
MPI_COMM_WORLD and some others from a different
MPI_COMM_WORLD need to maintain two pieces of infor-
mation: the process group that the remote process belongs
to and its rank within that process group. In VC-VCRT,
both these pieces of information were stored inside the VC.
Thus, it would increase the base memory usage but would
not add extra memory usage for each new communicator
created. In AV-Rankmap, however, we move this information
out of AVE and into the communicator structure. Thus, the
base memory usage would be small; but if the ranks of the
new communicator are arbitrarily reordered compared with
the parent communicator, the incremental memory usage per
communicator would be O(P ), where P is the size of the
communicator. Fortunately, as we describe in Section III-C,
this is the worst-case scenario. In most cases, we can detect
patterns in the formation of such communicators and can
substantially compress this information.

Based on these compression techniques, we have been able
to reduce the size of the AVE structure to 12 bytes compared
with the 480 bytes needed by the VC structure: a 40-fold
compression.

C. AV-Rankmap: Rank-Address Translation with Rankmap
Rank-address translation is essentially the process of finding

the appropriate network address to communicate with, given
a communicator and a rank within that communicator. For
any given process, the index of the AVE for that process is
referred to as the lpid (local process ID). If the application
spawns or connects to another MPI_COMM_WORLD, then a
new AV is created that contains AVEs corresponding to the
new group of processes. Each such spawned or connected
group is referred to as a “process group” and has its own
unique ID, called the pgid. A pgid refers to both the process
group and the AV associated with that process group. Thus,
a pgid and an lpid together can uniquely identify any process
in the application. The rank-address translation process can be
formally represented as the following mapping.

< comm, rank >→< pgid, lpid >
Once the AV is created, the next step is to create a mapping

between the communicator and one or more AVs. As discussed
in Section II, for the communicators created in most applica-
tions, the rank-address mappings are not arbitrary: they follow
a simple, predefined pattern. AV-Rankmap takes advantage
of this behavior to try to identify common patterns and use
this information to compress the memory space required for
maintaining such mapping. It identifies three regular mapping
models: direct, offset, and stride, which represent the most
common use cases in applications.

The direct model indicates that the ranks in the new
communicator map to the same AV and its lpids in exactly
the same order as MPI_COMM_WORLD. Thus, we do not need
any additional storage other than the AV. The index in the AV
(i.e., lpid) is the same as the communicator rank in this model.
Communicators that are duplicates of MPI_COMM_WORLD fall

into this model. We note that in VC-VCRT such communica-
tors still needs at least one O(P ) VCRT.

The offset model indicates that the ranks in the new
communicator map to the same AV and its lpids in exactly
the same order, but at a fixed offset, as MPI_COMM_WORLD.
In this model, apart from the AV itself, the only additional
piece of information that needs to be stored is the offset.
The index in the AV (i.e., the lpid) can be calculated as the
communicator rank plus the offset. Communicators that have
been split without reordering from MPI_COMM_WORLD or one
of its duplicates fall into this model.

The stride model allows the rank in a communicator to be
mapped to a noncontiguous subgroup of MPI_COMM_WORLD
with a fixed stride. The stride model has two parameters:
stride and offset. The stride is the interval between the start
of each block. The offset is the start index of rank 0 in the
communicator.

Aside from these models, AV-Rankmap considers several
other regular models, namely, blockstride, md-blockstride, lut-
stride, mlut-stride, lut-blockstride, mlut-blockstride, lut-md-
blockstride, and mlut-md-blockstride. blockstride is a gener-
alization of the stride model that allows multiple contiguous
ranks at each stride (e.g., a 2D subarray of ranks). md-
blockstride is a generalization of the blockstride model for
higher-dimensional arrays of ranks (e.g., a 3D subarray of
ranks). lut-stride, mlut-stride, lut-blockstride, mlut-blockstride,
lut-md-blockstride, and mlut-md-blockstride are generaliza-
tions of the stride, blockstride, and md-blockstride models
where the parent communicator uses the lut or mlut models.
We do not present additional details on these models here
because, in our survey, we have not encountered any appli-
cations that can use these models; thus they might not be of
practical relevance at this point, although, academically, they
are still interesting to study. All regular mapping models use
constant memory regardless of the number of ranks in the
communicator.

When the rank-process mapping does not fit any of the
regular mapping models, AV-Rankmap falls back to irregular
mapping using a lookup table. We designed two lookup tables
for irregular mapping: lut and mlut. The lut is a dense array
of lpids, similar to VCRT. It is used when all the associated
processes are in the same process group. The mlut is an array
of < pgid, lpid > pairs. It is used only when some of the
processes in the communicator belong to a different process
group from others. We note that the lut requires only that all
ranks have the same pgid; this pgid does not need to be zero.
An example is an intercommunicator that is created when a
new process group is connected. The remote group and the
local group have different pgids, but the ranks in each group
have the same pgid. Hence, both the remote group and the
local group are represented by using lut instead of mlut. We
need mlut only when we merge these two groups together
using MPI_Intercomm_merge.

Note that there is an inclusive property in both the regular
and the irregular mapping models. For example, a direct model
can also be described as an offset model with the offset value
equal to zero. This inclusive property is carefully exploited



TABLE II: Child communicator mapping models for a given parent
communicator mapping model (row) and indirect mapping array
model (column).

Direct Offset Stride Irregular
direct direct offset stride lut
offset offset offset stride lut
stride stride lut lut lut

lut luta luta lut lut
mlut mluta mluta mlut mlut

[a] The child communicator does not create a new lookup table but points to
the lookup table of the parent communicator.

during communicator creation.
For each communicator, AV-Rankmap stores the mapping

model and its corresponding metadata in a structure called
Rankmap. As mentioned earlier, Rankmap is logically equiv-
alent to the VCRT, though the VCRT always uses an O(P )
lookup table.

1) Creating the Rank-Address Translation for a Commu-
nicator: Users create new communicators based on existing
communicators. When a new communicator is created, we
have two pieces of information: (1) the indirect mapping
array that maps the ranks from the new communicator to
the ranks in the parent communicator and (2) the compressed
mapping model that allows us to translate a rank in the parent
communicator to the corresponding AVs and lpids. Our task
here is to create a similar compressed mapping model that
allows us to translate a rank in the new communicator to
the corresponding AVs and lpids. This is done in three steps.
First, we try to detect a pattern in how the ranks in the child
communicator correspond to the ranks in the parent com-
municators, i.e., the mapping model of the indirect mapping
array. Second, we use this detected pattern together with any
mapping pattern that exists between the parent communicator
and the AVs/lpids, to generate a new mapping pattern between
the child communicator and the AVs/lpids. Third, if the child
has an irregular mapping, we try reduce it to one of the regular
mapping models.

During the creation of a communicator, the MPI implemen-
tation first creates an indirect mapping between the ranks in the
child and the parent communicators. This indirect mapping is a
constant-size data structure for simple duplicated communica-
tors but can be an O(P ) array for more complex communicator
creation routines, although it is only temporarily allocated
and is deallocated at the completion of the communication
creation operation. The mapping information directly follows
from the communicator creation function being used. Once
this information is obtained, the next step is to convert this
indirect mapping to a compressed mapping pattern. To this
end, we start by assuming that the mapping pattern is offset
based, and we calculate the offset value based on rank 0 in
the child communicator. We then try to validate the offset
value with the remaining ranks in the indirect mapping. If
successful, we set the mapping pattern between the child and
parent communicator ranks to be offset based. If not, we move
on to stride mode and attempt to calculate the possible block
size; and we follow a similar validation process before finally
falling back to the irregular model if the stride mode cannot
be validated.

After detecting the mapping pattern between the child and

parent communicator ranks, the next step is to detect the map-
ping pattern between the child communicator ranks and the
AVs/lpids. Recall that the mapping model of a communicator
describes how the ranks are translated to AV table indices.
Therefore, the mapping model of a child communicator is
determined by both the rank-address mapping of the parent
communicator and the pattern of the mapping between the
child and parent communicators. Table II shows the state
machine for determining the child communicator’s mapping.

If the child communicator has an irregular mapping model
(lut or mlut), the ranks are not necessarily irregularly ordered.
The child communicator might have reordered the ranks in the
parent communicator to create a regular mapping between the
ranks and AV indices. AV-Rankmap performs an additional
scan of the ranks to determine whether an irregular model
can be converted to a regular mapping model. After all the
indirect mappings are processed and the rank-address mapping
is created, AV-Rankmap scans the lookup table using the same
algorithm as the first step.

2) Accessing the Rank-Address Mapping: In this section,
we discuss how the rank-address mapping is accessed in AV-
Rankmap. This translation is accessed inside the performance-
critical path, and hence any overhead created in this path can
slow practically every performance-critical operation in the
MPI implementation. Therefore, we need to be particularly
cautious with respect to the performance overheads of our
implementation choices in this path.

The translation is done in three steps: (1) checking the
mapping model of the communicator, (2) calculating the corre-
sponding index in the AV table for the rank, and (3) accessing
the AVE structure for the network address. To understand the
overhead of our implementation, we use the Intel Software
Development Emulator (SDE) [13] to obtain the instructions
that are being executed for the translation. We studied three
different implementations for such translation.

1 mov rax, qword ptr [rbp+0x60]
2 mov rdx, qword ptr [rip+0x43566d]
3 mov rax, qword ptr [rax+0x188]
4 mov eax, dword ptr [rax+r12*4+0xc]
5 shr eax, 0x1
6 cdqe
7 mov rax, qword ptr [rdx+rax*8+0x8]

Fig. 1: Rank-address translation: VC-VCRT.

1 cmp dword ptr [rdi+0x1a8], 0xa
2 jnbe 0x435039
3 mov eax, dword ptr [rdi+0x1a8]
4 jmp qword ptr [rax*8+0x5cfcc8]
5 movsxd rax, esi
6 add rax, 0x1
7 shl rax, 0x4
8 add rax, qword ptr [rip+0x4682c6]
9 mov rax, qword ptr [rax]

Fig. 2: Rank-address translation: AV-Rankmap (direct mode).

The most intuitive implementation of the rank-address trans-
lation is using a switch statement where each case contains
the translation code for a specific model. Figures 1 and 2
show the assembly code for the translation in VC-VCRT and
AV-Rankmap. For a communicator with direct mapping, AV-
Rankmap uses two additional instructions compared with VC-
VCRT. For other mapping models, like offset and stride, there
are additional instructions for calculating the index from the



communicator rank. Note that the jnbe instruction in the
switch statement is the branch to the default case. This is an
unfortunate overhead because the AV-Rankmap approach does
not have a “default” case and it is not possible to explicitly
tell the compiler not to add this branch.

We also studied two additional implementations—one us-
ing hybrid if-switch statements and another using goto
statements—to improve the instruction count for the network
address lookup. However, neither approach yielded positive
results compared with the switch-based implementation.
Because of space limitations, we do not describe those two
approaches in this paper, but their details can be found in [2].

IV. EVALUATION
In this section, we experimentally compare VC-VCRT

and AV-Rankmap from two perspectives: memory usage and
performance. We used two different test platforms for our
evaluation. The first platform was the Mira supercomputer at
Argonne National Laboratory, which is a 49,152-node IBM
BG/Q system. Each node on Mira has 16 cores and 16 GB
memory, which allow running 768K processes at the full
system scale. Most of our experiments were performed on
Mira. However, the IBM BG/Q environment does not provide
some capabilities such as MPI dynamic processes and special
tools such as the Intel SDE, which is available only on Intel
processors. For experiments that needed these capabilities, we
used the Argonne “Blues” cluster. Each Blues node has two
Intel Xeon E5-2670 processors (8 cores on each processor)
and 64 GB memory. We ran experiments on Blues up to
256 nodes (4K processes). The baseline implementation for
our comparison was MPICH 3.2, which uses VC-VCRT. The
libraries and applications in all experiments were compiled
by using GCC 4.7.2 with the -O2 option and were statically
linked.

A. Memory Usage for Split Communicators

In this experiment, we used a benchmark that splits the odd
and even ranks of MPI_COMM_WORLD into two subcommuni-
cators without reordering the ranks. Thus, the ranks in the split
communicator have the stride mapping model in AV-Rankmap.
This process is repeated a number of times in order to create
a fixed number of split communicators.

Figure 3(a) shows the memory usage of 10 and 100 split
communicators with up to 768K processes in the parent
communicator. AV-Rankmap uses significantly less memory
than does VC-VCRT. At the full scale on Mira, AV-Rankmap
uses only 9 MB of memory for 100 split communicators. VC-
VCRT, on the other hand, consumes more than 40% of system
memory for 10 communicators and exceeds the total system
memory for 100 communicators.

Figure 3(b) shows the breakdown of the memory usage
for 10 communicators in AV-Rankmap and VC-VCRT with
increasing numbers of processes in the parent communicator.
We note that the memory usage of both approaches is O(P )
with respect to the total number of processes in the system:
this is because both approaches need to store the network
physical addresses, which takes O(P ) memory. But, AV-
Rankmap has a memory usage advantage in two aspects. First,

since the size of the network addresses used in AV-Rankmap
is smaller (based on the implementation choices described in
Section III-B), the constant associated with the O(P ) increase
in memory is smaller. Second, for the rank-address mapping:
since AV-Rankmap does not use a lookup table in common
communicator patterns but instead dynamically computes the
rank-address mapping (based on the implementation choices
described in Section III-C), in the common case we use
constant memory instead of an O(P ) structure, while VC-
VCRT uses an O(P ) structure for the lookup.

Figure 3(c) shows a different breakdown of the memory
usage, this time keeping the number of processes fixed at
768K but increasing the number of communicators created.
As expected, the memory usage of VC-VCRT grows quickly
with the number of communicators because it uses a new
VCRT for each new communicator. In AV-Rankmap, on the
other hand, each new communicator uses only a small constant
memory space (e.g., to store the offset and stride, which are
two integers) if its rank-address mapping is regular, as is the
case in our benchmark.

Aside from split intracommunicators, we have also studied
the memory usage of duplicated intracommunicators, irregu-
lar intracommunicators, intercommunicators without dynamic
processes (split and duplicated) and intercommunicators with
dynamic processes. Because of space limitations, we do not
present those results in this paper, but they can be found in [2].

B. Performance
We studied two performance aspects associated with AV-

Rankmap: (1) communicator creation overhead and (2) net-
work address lookup overhead.

As discussed earlier, communicator creation is not on the
performance-critical path for most applications. Thus, while
we do not want to make it too expensive, some overhead is
typically acceptable. In our implementation, we noticed 3–8%
overhead for communicator creation with AV-Rankmap. More
detailed results for this part are omitted here because of space
restrictions but can be found in [2].

Network address lookup, on the other hand, must show
no observable overhead for the approach to be practically
viable. As mentioned in Section III-C2, in order to look up the
network address corresponding to a communicator rank, the
MPI implementation must first check what mapping model that
communicator is using and then use that information to either
compute or look up the actual network address. To study the
performance impact of AV-Rankmap on the network address
lookup, we developed a microbenchmark that issues 1 million
MPI_Put operations to each rank in the communicator in a
round-robin fashion (message size of 8 bytes). We tested five
mapping models: direct, offset, stride, lut, and mlut. All five
communicators had the same number of ranks (half of the
ranks in MPI_COMM_WORLD) to ensure that all experiments
sent the same total number of messages. The direct commu-
nicator splits MPI_COMM_WORLD into two contiguous halves
and performs the experiment on the first-half communicator.
The offset communicator also splits MPI_COMM_WORLD into
two contiguous halves but performs the experiment on the
second-half communicator. The stride communicator splits



0.03

1

32

1024

128 256 512 1K 2K 4K 8K 16K 32K 64K
128K

256K
512K

768K

M
e

m
o

ry
 U

s
a

g
e

p
e

r 
e

a
c
h

 M
P

I 
P

ro
c
e

s
s
 (

M
B

)

Number of Processes

VC-VCRT 10 COMM
AV-Rankmap 10 COMM

VC-VCRT 100 COMM
AV-Rankmap 100 COMM

10% System Memory
20% System Memory
40% System Memory

100% System Memory

(a) Different numbers of processes

0.03

1

32

1024

128 256 512 1K 2K 4K 8K 16K 32K 64K
128K

256K
512K

768K

M
e

m
o

ry
 U

s
a

g
e

 p
e

r
e

a
c
h

 M
P

I 
P

ro
c
e

s
s
 (

M
B

)

Number of Processes

VCRT
VC

Rankmap
AV

(b) Detail memory usage of 10 communicators

0.03

1

32

1024

10 20 30 40 50 60 70 80 90 100

M
e

m
o

ry
 U

s
a

g
e

p
e

r 
e

a
c
h

 M
P

I 
P

ro
c
e

s
s
 (

M
B

)

Number of Communicators

VCRT
VC

Rankmap
AV

(c) Detail memory usage with 768K processes

Fig. 3: Memory usage of MPI_Comm_split with different numbers of processes and communicators.

TABLE III: Instruction Counts for Rank-Address Mapping.
direct offset stride lut mlut

VC-VCRT 7 7 7 7 7
AV-Rankmap 9 11 13 11 15

MPI_COMM_WORLD into odd/even ranks and performs the ex-
periment on the even half. The lut communicator is similar to
the stride communicator but with the ranks reversed. The mlut
communicator is created by merging ranks from a dynamically
spawned group of processes. We studied the performance from
three aspects: instruction-count, cache misses, and message
issue rate.

Instruction-Count Analysis: For this analysis, we added trace
points (i.e., markers) before and after the network address
lookup and used Intel SDE to record the instructions executed
between the two markers. As noted earlier, Intel SDE is
available only on x86 architecture, so these experiments used
the Blues cluster at Argonne. Table III shows the instruction
counts for rank-address mapping with VC-VCRT (MPICH 3.2)
and AV-Rankmap. AV-Rankmap adds 2–8 additional instruc-
tions compared with VC-VCRT. One aspect to note is that
the lut mode, which uses a lookup table similar to VC-VCRT,
is still four instructions more than VC-VCRT. The reason is
that AV-Rankmap still needs to determine which mode the
communicator is using and then branch using a switch
statement to get to the actual lookup table implementation—
thus adding the extra instruction overhead that we notice in
the table.

Cache Analysis: As discussed in Section III-B, AV-Rankmap
uses multiple techniques to compress the network address
structure. As a result, the AVE in AV-Rankmap is significantly
smaller than the VC in VC-VCRT (12 bytes vs 480 bytes).
While AV-Rankmap costs additional instructions as discussed
above, its smaller memory footprint significantly reduces the
cache misses incurred during communication. In this sec-
tion, we study this cache impact. We performed two sets
of experiments. The first experiment used just two processes
(one process per node) within each communicator, while the
second experiment used 16 processes (eight processes per
node) within each communicator. In our experiments, each
process issued 8 million MPI_Put operations to each of the
other ranks in the communicator in a round-robin fashion. We
measured the cache misses using PAPI on Blues and BGPM on
Mira. The cache was warmed up by using additional iterations
of the same operation before our measurements.

Table IV shows the cache misses on Blues and Mira. We
can see that VC-VCRT experiences significantly more misses

TABLE IV: Per-process cache misses.

Cache VC-VCRT AV-Rankmap
direct offset stride lut mlut

L1D (8 Procs, Blues) 120491 103 168 141 98 192
L2 (8 Procs, Blues) 237 47 43 69 53 60
L3 (8 Procs, Blues) 47 48 47 46 47 45
L1D (8 Procs, Mira) 180491 184 191 189 178 N/A
L2 (8 Procs, Mira) 422 57 53 61 68 N/A
L1D (2 Procs, Blues) 4438 102 157 133 82 168
L2 (2 Procs, Blues) 107 47 45 64 56 58
L3 (2 Procs, Blues) 48 46 43 45 46 47
L1D (2 Procs, Mira) 6540 186 189 190 180 N/A
L2 (2 Procs, Mira) 218 56 54 61 66 N/A

in L1D and L2 caches than does AV-Rankmap. The reason
is the smaller memory footprint of AV-Rankmap. The cache
lines on both Blues and Mira are 64 bytes. Thus, each VC
object in VC-VCRT is spread across eight cache lines. One
AVE object in AV-Rankmap, on the other hand, is only 12
bytes; and thus one cache line can fit multiple AVE objects.

With two processes, VC-VCRT experiences more than a
∼40-fold higher number of L1D cache misses and 2- to 4-fold
higher number of L2 cache misses than does AV-Rankmap.
This is a significant difference that is attributed to the smaller
memory footprint of AV-Rankmap. With eight processes, the
difference in cache misses goes up to nearly three orders of
magnitude for L1D and ∼5-fold for L2. With a larger number
of processes, because the microbenchmark issues MPI_Put
to multiple ranks in a round-robin fashion, the cache impact
is more pronounced.
Message issue rate: Here, we measure the message issue rate
of VC-VCRT and AV-Rankmap for MPI_Put. We performed
two experiments. The first experiment was using real networks
on Blues (InfiniBand network) and Mira (BG/Q network), to
show the performance impact of AV-Rankmap in practice.
The second experiment was a worst-case measurement for a
theoretical infinitely fast network; to emulate such a network,
we went through the entire MPI stack but bypassed the actual
network communication. This experiment was designed to
help us understand how AV-Rankmap would behave on future,
more-efficient, networks. Table V illustrates the message issue
rate for both experiments; the top two lines correspond to
the first experiment, and the bottom two lines correspond to
the second experiment. We used two nodes and performed
experiments with two processes in each communicator (one
process per node) and 16 processes in each communicator
(eight processes per node). All MPI_Put messages were sent
to ranks on the remote node.

In the first experiment (real network), the message issue
rate is bound by the network speed on the machine, and we



TABLE V: Per-process issue rate (million/second) with switch-based
rank-address translation.

VC-VCRT AV-Rankmap
direct offset stride lut mlut

Mira (8 procs, real) 0.8999 0.8989 0.8994 0.8963 0.8969 N/A
Blues (8 procs, real) 4.325 4.338 4.334 4.322 4.324 4.318
Mira (8 procs, theoretical) 11.08 16.63 15.48 15.08 16.00 N/A
Blues (8 procs, theoretical) 64.76 98.79 92.13 89.64 96.03 84.51
Mira (2 procs, real) 0.8899 0.8879 0.8884 0.8863 0.8969 N/A
Blues (2 procs, real) 4.302 4.311 4.313 4.303 4.304 4.297
Mira (2 procs, theoretical) 13.08 16.63 15.48 15.08 16.00 N/A
Blues (2 procs, theoretical) 78.20 98.89 93.43 89.91 96.96 85.27

note that AV-Rankmap and VC-VCRT show identical issue
rates for all communicator types. Hence, we conclude that
AV-Rankmap can significantly improve memory usage without
hurting communication performance.

In the second experiment (theoretical infinitely-fast net-
work), the message issue rate is bound only by the CPU
processing speed and the processing cost of MPI. In this case,
AV-Rankmap outperforms VC-VCRT in all scenarios, achiev-
ing up to 50% higher maximum issue rate. The performance
improvement is mainly due to the improved cache locality of
AV-Rankmap. The difference in maximum issue rate between
different mapping models reflects the cost of the extra work
in the rank-address mapping. The measured maximum issue
rates concur with the results on the instruction counts. That
is, the direct model is expected to have the highest issue rate
because it has the least overhead in the rank-address mapping.
The maximum issue rate decreases as the instruction count
increases from the offset model to the mlut model. Note that
the performance difference between Mira and Blues is mainly
because Mira’s CPU has a lower frequency (1.6 GHz vs 2.7
GHz of Blues) and fewer integer units.

C. Applications
We evaluated AV-Rankmap with all the applications sur-

veyed in Section II, but many of them follow similar trends
so we do not show results for all of them in this paper.
Instead, we show the results for the Nek5000 application
and several miniapps including BT, FT, and SP, from the
NAS parallel benchmarks [3]; AMG2013 and Nekbone, from
the CORAL benchmarks [4]; and AMR, from the ExACT
codesign center [6]. We conducted experiments to measure
both performance and memory usage with VC-VCRT and AV-
Rankmap. There was no observable difference in performance
between the two approaches. Hence the performance results
for the applications are not shown in this paper. Instead, we
focus on the memory usage results. All applications were run
on 512K processes of Mira.

We first evaluated Nek5000 with two problem sizes:
medium and large. The medium-sized problem uses the XXT
solver, which creates 24 duplicates of MPI_COMM_WORLD.
The large-sized problem uses the AMG solver, which creates
86 duplicates of MPI_COMM_WORLD. Figure 4 presents the
per-process memory consumption for the network address
management functionality. On 512K processes, VC-VCRT
uses around 250 MB per process, which is nearly 25% of
the memory available on the node. With AV-Rankmap, on
the other hand, the memory usage is negligible. The figure
also shows the breakdown of the memory used by the VCs

0.03

1

32

1024

medium large

M
e

m
o

ry
 U

s
a

g
e

 p
e

r 
e

a
c
h

 M
P

I 
P

ro
c
e

s
s
 (

M
B

)

VC
VCRT

AV

Rankmap
VC-VCRT

AV-Rankmap

Fig. 4: Network address management memory consumption
(Nek5000, 512K processes).

3e-5

0.001

0.03

1

32

1024

FT SP BT AMG2013 nekbone SMC

M
e

m
o

ry
 U

s
a

g
e

 p
e

r 
e

a
c
h

 M
P

I 
P

ro
c
e

s
s
 (

M
B

)

VC
VCRT

AV

Rankmap
VC-VCRT

AV-Rankmap

Fig. 5: Memory usage of miniapps on 512K processes.
and VCRTs. The size of the VC portion of memory usage
is identical for both problem sizes because it depends on the
number of processes, which is the same for both problem sizes,
and not the number of communicators. The size of the VCRT
portion of memory usage, on the other hand, depends on the
number of communicators created, which is higher for the
larger problem.

In Figure 5 we present the memory usage of the miniapps
discussed above. Overall, most of the miniapps create between
two and seven user communicators, a small number. Thus,
the amount of memory used by the VCRTs, which depends
on the number of communicators, is small. The amount of
memory used by the VCs, on the other hand, depends on the
number of processes and is the dominating factor in the overall
memory usage. The memory usage of these miniapps on 512K
processes is 244 MB (∼25% of the system memory) with VC-
VCRT. In contrast, AV-Rankmap uses only 4 MB memory on
512K processes.

V. RELATED WORK
Several other works focus on reducing the memory us-

age of MPI communicators and groups [14], [15], [16]. In
order to support the various possible group patterns, these
approaches use complex models for storing the ranks in
groups. While these approaches demonstrate good reduction
in memory usage, they do so at the cost of high overhead
in rank-address translation: this is a fundamental downside in
these approaches. As mentioned earlier, in the performance-
critical path, the overhead needs to be virtually invisible for
the proposed approach to be viable. For example, Träff et
al. use binary decision diagram for to compress the rank-
address mapping [15]. It needs O(log p) time, where p is the
number of processes, to translate a rank into its corresponding
network address. Another example is the sparse group pro-
posed in [14] which has been adopted as an optional feature
in Open MPI. In this approach, the rank-address translation
is from a child communicator to a parent communicator,
rather than directly from a child communicator to the actual
network address. Hence, as more communicators are created,



TABLE VI: Message Issue Rate (million messages/sec).
Communicator Sparse Group AV-Rankmap
MPI_COMM_WORLD 13 98.78
Gen 1 10.27 89.65
Gen 2 9.26 89.63
Gen 3 8.41 89.65
Gen 4 7.57 89.64

the library needs more time to iteratively traverse the tree of
the ancestor communicators for network address lookup, thus
significantly degrading performance. For a more quantitative
comparison, we performed a case study on the performance
of the sparse groups approach. In this comparison, we first
performed an odd/even split on MPI_COMM_WORLD to create
a first-generation split communicator. Then we derived the
next-generation split communicator by splitting the previous-
generation communicator in the same odd/even manner. There-
fore, all split communicators have a stride mapping model.
Table VI shows the maximum message issue rate on different
generations of split communicators using Open MPI with
sparse groups and AV-Rankmap. Because of the iterative
traversal of the tree of the ancestor communicators, Open MPI
with the sparse group implementation has around 10% perfor-
mance loss for each additional generation of communicators—
with as few as four generations of communicators, this adds
up to nearly 40% performance overhead compared with that
of the MPI_COMM_WORLD. On the other hand, AV-Rankmap
achieved consistent on all four generations of split com-
municators. A more recent study proposed to exploit the
topology of Cartesian communicators for compressing the
rank-address mapping [16]. In order to use this technique on
non-Cartesian communicators, the MPI library has to maintain
virtual topologies which forces the rank-address translation
being done by expensive topological conversion even for the
simplest direct communicator.

Other researchers have proposed approaches to distribute
the table of ranks among multiple processes [17], [18], [19].
Sack and Gropp [19] proposed a distributed algorithm for
ordered communicator construction that uses O(n/p) memory
by using distributed tables for storing the ranks. However, such
a design also leads to nonconstant time for translating a rank,
and is thus unfit for a high-performance MPI implementation.
Recent work by Moody et al. [20] mentions a generalized
MPI_Comm_split. They propose creating and storing pro-
cess groups as chains in O(1) memory and O(log n) construc-
tion time. They perform collectives by exchanging appropriate
process ids during the operation. Because of the distributed
nature of the lookup table, however, some rank-process trans-
lations need additional communication, which adds significant
performance overhead. Moreover, as we demonstrated in our
case study, the lookup table is not always necessary.

A more successful communicator memory compression
technique used by MPICH, MVAPICH, Intel MPI, and many
other MPI implementations was proposed by Goodell et
al. [21]. This approach allows duplicate communicators to
share the same VCRT as their parent, thus removing multiple
copies of the same VCRT. While this approach eliminates the
need for VCRTs in some limited cases, however, it is not
applicable to most cases. Even for simple duplicate communi-
cators, internal communicators used inside MPI are not direct

duplicates and thus cannot use this approach. Nevertheless,
this approach is widely used in many MPI implementations
and is, in fact, the baseline case that we compare against in
this paper.

Compared with previous studies, AV-Rankmap has four
advantages: (1) it eliminates the need for a lookup table
for the majority of use cases; (2) it uses a simple process
mapping model that avoids the overhead of complex mapping
techniques and maintains a constant time complexity for rank-
address translation; (3) it tackles compression in both the
network address and rank-address mapping structures; and
(4) it performs such memory compression with no practically
observable performance degradation.

VI. CONCLUDING REMARKS
In this paper we proposed a new mechanism, called AV-

Rankmap, for network address management in MPI. AV-
Rankmap detects patterns in rank-address mapping that ap-
plications naturally tend to have, as well as the fact that
some parts of the network address structures are naturally
more performance critical than others. It uses this informa-
tion to compress the network address management structures.
We demonstrated that AV-Rankmap significantly reduces the
memory usage of communicators on large-scale systems with
no practically observable degradation in performance.

REFERENCES

[1] P. Balaji, et al. MPI on a Million Processors. Parallel Processing Letters,
21:45–60, 2011.

[2] Y. Guo, et al. Memory Compression Techniques for Network
Address Management in MPI (Extended Preprint Version). In
Preprint, ANL/MCS-P6051-0916, http://www.mcs.anl.gov/∼yguo/pubs/
ANL-MCS-P6078-1016.pdf , 2016.

[3] NAS Parallel Benchmarks. http://www.nas.nasa.gov/publications/npb.
html.

[4] CORAL Benchmarks. https://asc.llnl.gov/CORAL-benchmarks.
[5] Center for Exascale Simulation of Advanced Reactors. https://cesar.mcs.

anl.gov.
[6] Center for Exascale Simulation of Combustion in Turbulence. https:

//cesar.mcs.anl.gov.
[7] M. Valiev, et al. NWChem: A Comprehensive and Scalable Open-Source

Solution for Large Scale Molecular Simulations. Computer Physics
Communications, 181(9):1477–1489, 2010.

[8] Nek5000. https://nek5000.mcs.anl.gov.
[9] QBOX. http://computation.llnl.gov/projects/

qbox-computing-structures-quantum-level.
[10] M. Si, et al. Casper: An Asynchronous Progress Model for MPI RMA

on Many-Core Architectures. In IPDPS, pages 665–676, 2015.
[11] OpenFabrics Interfaces (OFI). https://ofiwg.github.io/libfabric/.
[12] P. Shamis, et al. UCX: An Open Source Framework for HPC Network

APIs and Beyond. In HotI, 2015.
[13] Intel Software Development Emulator. https://software.intel.com/en-us/

articles/intel-software-development-emulator.
[14] M. Chaarawi et al. Evaluating sparse data storage techniques for MPI

groups and communicators. In ICCS, 2008.
[15] J. Träff. Compact and Efficient Implementation of the MPI Group

Operations. In EuroMPI, 2010.
[16] Space Performance Tradeoffs in Compressing MPI Group Data Struc-

tures. In EuroMPI, 2016.
[17] H. Kamal, et al. Scalability of Communicators and Groups in MPI. In

HPDC, 2010.
[18] H. Kamal et al. An Integrated Fine-Grain Runtime System for MPI.

Computing, 96(4):293–309, 2014.
[19] P. Sack et al. A Scalable MPI Comm Split Algorithm for Exascale

Computing. In EuroMPI, 2010.
[20] A. Moody, et al. Exascale Algorithms for Generalized

MPI Comm Split. In EuroMPI, 2011.
[21] D. Goodell, et al. Scalable Memory Use in MPI: A Case Study with

MPICH2. In EuroMPI, 2011.

Disclaimer: Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3
instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Notice Revision #20110804


