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Abstract—As deep learning systems continue to grow in
importance, researchers have been analyzing approaches to
make such systems efficient and scalable on high-performance
computing platforms. As computational parallelism increases,
however, data I/O becomes the major bottleneck limiting the
overall system scalability. In this paper, we continue our efforts
to improve LMDB, the I/O subsystem of the Caffe deep learning
framework. In a previous paper we presented LMDBIO—an
optimized I/O plugin for Caffe that takes into account the
data access pattern of Caffe in order to vastly improve I/O
performance. Nevertheless, LMDBIO’s optimizations, which we
henceforth call LMM (localized mmap), are limited to intranode
performance, and these optimizations do little to minimize the I/O
inefficiencies in distributed-memory environments. In this paper,
we propose LMDBIO-DM, an enhanced version of LMDBIO-
LMM that optimizes the I/O access of Caffe in distributed-
memory environments. We present several sophisticated data
I/O techniques that allow for significant improvement in such
environments. Our experimental results show that LMDBIO-
DM can improve the overall execution time of Caffe by more
than 30-fold compared with LMDB and by 2-fold compared with
LMDBIO-LMM.

I. INTRODUCTION

Deep learning is one of the key technologies used today to
analyze and characterize large volumes of data. Because of
the computational and memory complexity of training a deep
neural network (DNN), several parallel deep learning toolkits
have been proposed. For instance, Caffe [7] is a well-known
deep learning framework that has multiple parallel implemen-
tations [9], [1], [3]. As these frameworks continue to explore
the limits of parallelism and scalability, they have started
utilizing large supercomputing systems and highly efficient
computational units such as NVIDIA GPUs, Intel Xeon Phi,
or Google TPU processors1 to improve their computational
efficiency. Such improvement in the computational framework
has, however, exposed new bottlenecks in their I/O subsystem.

In previous work [12], we showed that even with a small
amount of asynchrony in the network processing, I/O con-
sumes a dominant fraction of the overall execution time, thus
limiting the overall system scalability. In fact, for some of the
datasets that we used [8], [5], I/O can take up to 70–80% of
the overall execution time. We then analyzed this performance
issue in Caffe’s I/O subsystem, Lightning Memory-mapped
Database (LMDB), and proposed a new optimized I/O plugin
for Caffe, called LMDBIO. LMDBIO continues to function
on unmodified LMDB database files, which are predominant
in the deep learning community; but it significantly improves
I/O performance by taking into account the data access pattern
of parallel deep learning frameworks.

1https://en.wikipedia.org/wiki/Tensor processing unit

Despite this improvement, however, LMDBIO’s optimiza-
tions, which we henceforth refer to as LMM (localized mmap),
are limited to intranode performance. The primary goal in its
initial design was to understand the interprocess contention
that occurs when multiple processes on the same node use
LMDB simultaneously. This design, however, does little to
minimize the I/O inefficiencies in distributed-memory envi-
ronments.

In this paper, we present LMDBIO-DM, an enhanced
version of LMDBIO-LMM that optimizes the I/O access of
Caffe in a distributed-memory environment. We first present
a detailed analysis of the I/O issues in Caffe/LMDB that
continue to exist even with Caffe/LMDBIO-LMM. Specifi-
cally, LMDB databases use B+ trees to lay out the databases
in memory in such a way that they can be accessed from
a filesystem efficiently; but this database format inherently
relies on information being accessed sequentially in order
to parse through the overall database. Thus, while efficient
for sequential access, it can be challenging when multiple
processes are trying to read data in parallel; and it results
in a significant amount of redundant data I/O across different
processes.

LMDBIO-DM takes advantage of this analysis and uses
sophisticated data I/O techniques to work around such short-
comings in the LMDB database format. We first present a
technique that memory-maps the database into a symmetric
address space on each process, thus allowing for database
position information to be portably exchanged across different
processes in a distributed-memory environment. This first
technique minimizes the amount of redundant data that is
read from the filesystem, although it does so at the cost of
I/O serialization across processes. We then present a second
technique that allows for speculative parallel I/O to efficiently
fetch data from the database file into memory. That is, it
attempts to estimate the start and end location of the part
of the database that each process needs to access and tries
to speculatively fetch those bytes into memory: each process
does this part in parallel. This second technique allows for
most data access to be performed in parallel while increasing
the amount of redundant data I/O by only a very small amount
compared with that from the fully serialized technique.

We also present and analyze experimental results that
showcase the improvements of LMDBIO-DM compared with
LMDB and LMDBIO-LMM. The results show that LMDBIO-
DM can improve the overall execution time of Caffe by more
than 30-fold compared with LMDB and by 2-fold compared
with LMDBIO-LMM.

The rest of the paper is organized as follows. Section II
presents an overview of Caffe and the LMDB database format



as background for our subsequent discussion. Section III
describes the LMDBIO-LMM framework that we use as
the starting point for the enhancements proposed in this
paper. Section IV provides a detailed analysis of the I/O
shortcomings in Caffe/LMDB that continue to exist even
with Caffe/LMDBIO-LMM. Section V describes LMDBIO-
DM and how it addresses the shortcomings of both LMDB
and LMDBIO-LMM. Experimental results comparing Caf-
fe/LMDB, Caffe/LMDBIO-LMM, and Caffe/LMDBIO-DM
are presented in Section VI. Related work is discussed in
Section VII, and concluding remarks are presented in Sec-
tion VIII.

II. BACKGROUND

In this section, we present an overview of the Caffe deep
learning tool and the LMDB database format.

A. Caffe Overview

The Caffe framework was developed by the Berkeley Vision
and Learning Center as a GPU-based implementation of con-
volutional neural network training. It was written in C++ with
CUDA for highly optimized GPU computation. Subsequent
variants of Caffe, however, have included support for generic
CPU architectures as well.

The Caffe framework generally works as follows. By default
it starts with a randomized “guess” about the parameters of the
network that it intends to train. Once the network is initialized
with the guessed parameters, data samples from the training
dataset are read and processed by the network. This processing
allows Caffe to measure the deviation error in the initial guess
with respect to what classification the network predicted and
what the actual classification is. Caffe then uses this deviation
error to improve its guess about the network parameters.

Given enough high-quality training data samples, Caffe
will eventually converge to the desired accuracy. The final
set of network parameters can then be used to generate a
mathematical equation that can be utilized for highly accurate
classification of new data samples. The key to generating a
highly accurate classification equation is the use of a very
large set of (high-quality) training data samples. Thus, large
organizations commonly train their DNN systems with several
hundreds of terabytes or even petabytes of data. Consequently,
both accessing such data and processing it must be fast if DNN
training is to be practical.

Sequential processing of each data sample in the training
dataset is the most conservative approach for training the
network. This model, however, is overly serial and generally
not useful in practice. Most modern deep learning frameworks
allow for some asynchrony in network training either by
partitioning the data samples across processes/threads (e.g.,
Caffe [9], [1], [3]) or by partitioning the network across
processes/threads (e.g., TensorFlow [2]). This technique is
called batch training and is, generally speaking, a method
for simultaneously processing multiple data samples before
updating the network. Processing one batch of data samples
is referred to as one training iteration. Such processing is

repeated for a very large number of iterations, making the
training process largely bulk synchronous, where parallelism
is utilized within each iteration but all processes need to
synchronize at the end of each iteration in order to update
their network parameters.

An important aspect that is also being carefully studied in
the community is the impact of the batch size on the con-
vergence rate. Loosely speaking, the larger the batch size, the
fewer the parameter updates, but also the higher the number of
iterations needed for convergence. With better preconditioned
network parameters and other similar techniques, however,
researchers have been increasing the optimal batch size in this
performance-accuracy tradeoff.

In each training iteration, each worker reads a subset of a
batch from a database. Caffe provides a variety of data reading
options via several types of databases. The default and the
most widely used option is the LMDB format.

B. LMDB Database Format

LMDB refers to both the format of the database and the
corresponding software library. In this section, we discuss the
database format. The intent of the LMDB database format is
to provide a fast access method for databases with support for
multiversion concurrency control, fast disk I/O, and various
other such features. To this end, LMDB adopts a flattened B+
tree data structure to store its data.

B+ trees are balanced n-way search trees. LMDB uses this
tree format to organize the database indices in a way that data
records can be accessed efficiently when stored on a local or
external filesystem. Generally speaking, a B+ tree consists of
two types of nodes: branch nodes and leaf nodes (see Figure 1
for a 3-way B+ tree structure). A branch node contains pointers
that point to n children nodes (which can be branch nodes or
leaf nodes). Indices contained in a branch node govern the
range of indices of its successors. For example, in Figure 1,
the pointer from index 3 in the branch node points to a leaf
node that contains data with indices less than or equal to 3.
B+ trees are designed to be efficient for filesystem access. In
B+ trees, nodes are stored in a block-aware manner, where
each node is a filesystem page.
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Fig. 1. B+ tree data structure

The database layout in LMDB is made up of four types of
pages: metadata pages, branch pages, leaf pages, and overflow
pages. Metadata pages store information about the overall
database (e.g., version of the database, size of the database).
The branch and leaf pages represent the core branch and leaf
nodes in the graph, respectively. These match the generic B+
tree structure described above. Each branch and leaf page
keeps aside some part of the page to store a page header and



uses the rest of the page to store the actual database record. To
accommodate cases where the record is larger than what can fit
into the leaf page, LMDB uses overflow pages. Overflow pages
store the part of the record that could not fit into the leaf page.
Each leaf page can be associated with zero or more overflow
pages. In LMDB, only the first overflow page associated with
the leaf page has a header that contains information indicating
the type of each page, the size of the node, and pointers to its
children and/or a neighboring node.

Since LMDB’s data format is not a simple contiguous set
of raw data samples, but rather a nontrivial tree structure, the
location index pointing to a specific record within the tree
is more complex than a generic pointer in C++. That is, one
cannot simply store the record virtual memory address but also
needs information about the parent branch nodes and other
related information in order to fully navigate through the tree
structure. For this purpose, LMDB provides a pointer structure
called a “cursor.” A cursor contains information about the
record index, virtual address location, parent branch nodes, and
offset to the page address holding the record (for cases where a
page holds multiple records) and can be considered to be the
complete signature of a particular record inside the LMDB
database. The user can move the cursor inside the database
by using LMDB-provided cursor operations. None of the
existing operations, however, allow for random access within
the database. In other words, LMDB allows only sequential
database access where the cursor can be moved to an adjacent
data record. To access a random data record (i.e., a leaf node)
in the database, LMDB needs to sequentially scan the header
of every branch node ahead of the target leaf page in order
to determine a location to shift the cursor to. To move from
a branch node to its successor or from a leaf node to another
leaf node, LMDB acquires the pointer of the target node from
the header. Before moving to the target node, LMDB stores
the entire header of the current page in a stack that is a part of
the cursor’s data structure, in order to allow for a convenient
traceback.

III. OVERVIEW OF LMDBIO-LMM

In this section we present a brief overview of LMDBIO-
LMM. A more detailed description can be found in our
previous work [12]. In Section III-A we briefly analyze the in-
tranode I/O issue with Caffe/LMDB, followed in Section III-B
by the overall design and implementation of LMDBIO-LMM.

A. LMDB, Mmap, and completely fair scheduler

Caffe uses the LMDB database format as its default dataset
storage mechanism. It maps the database file into memory in
order to enable efficient and rapid data batch retrieval by using
the LMDB library. Prior to training, the database file is mapped
from the filesystem to the virtual address space of a process,
thus providing access to the file as if it were a memory buffer.
Internally, a system call, mmap, is used. With mmap, data is
fetched to physical memory and mapped to the corresponding
virtual address space of the process dynamically only when a
required part of the file is accessed.

The way mmap handles I/O requests is inefficient, however,
since it relies on the Completely Fair Scheduler (CFS) and
an I/O interrupt handler. When a process accesses an mmap
buffer and the associated page is not present in memory, the
data will be fetched from the filesystem to memory by a fault
handler. The I/O request is issued by the hardware controller
(e.g., SCSI for local storage or a network adapter for network-
based filesystems). Since an I/O request can take a long time
to complete, the user process goes to sleep while waiting for
the I/O. The hardware controller raises an interrupt informing
the filesystem once the I/O operation completes. One important
aspect to note here is that this interrupt handler is a bottom-half
handler in Linux. That is, the interrupt is not associated with
any particular user process in the system. In other words, it is a
generic event that informs the filesystem that an I/O operation
that was issued by one or more processes has completed.
Therefore, all processes that were sleeping while waiting for
an I/O event will be marked as runnable each time the interrupt
occurs.

At this point, the runnable processes can be scheduled by the
Linux default process scheduler (i.e., CFS). Once the scheduler
is triggered, each runnable process in the CFS red-black tree
will be woken up to continue its execution. In the CFS red-
black tree, processes are ordered based on their CPU usage. A
process with the least-used CPU time will be the leftmost leaf
node of the tree, where it will be chosen to run first. Suppose
that one I/O operation has completed and that more than one
process is waiting for I/O operations; then, only one process
is able to continue its processing while others are woken
up, realize that their I/O operations have not yet completed,
and go to sleep again. This model significantly increases the
number of context switches that get triggered, with most of
the switches resulting in no real work. It also increases the
amount of “sleep time” associated with each process.

B. Design and Implementation of LMDBIO-LMM

In our previous work, the primary design goal of LMDBIO-
LMM was to minimize interprocess contention within a node.
We called our approach “localized mmap.” In this approach,
LMDBIO-LMM chooses a single process on each node as the
root to perform data reading from the filesystem. Once the root
process finishes the reading, it shares the data among other
processes on the same node by using MPI-3 shared memory.
Since only one process is performing I/O on each node, the
I/O bottom-half handler knows exactly which process in the
red-black tree is to be marked as runnable. Our approach
can significantly reduce the number of context switches and
improve the data reading performance in Caffe when using
mmap.

LMDBIO-LMM consists of two phases: an initialization
phase and a data-reading phase. LMDBIO-LMM automatically
assigns one reader per node in the initialization phase by using
MPI-3 to split a global MPI communicator into multiple local
“shared-memory” communicators where all processes in the
same node are presumably grouped to the same communicator.
After the reader assignment is done, each reader opens the
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Fig. 2. LMDBIO-LMM overview

LMDB database, which internally maps the database file to its
virtual address space using mmap. In this step, all processes
on the node also preallocate a shared-memory buffer that they
can all directly access.

In the data-reading phase (shown in Figure 2), each reader in
LMDBIO-LMM (one process per node) reads the data samples
from the filesystem to page cache. The data is then mapped to
the address of the mmap buffer of each reader. Once the data
in the buffer becomes available, the reader process copies the
data to the shared-memory buffer that every process allocated
during the initialization phase. LMDBIO-LMM synchronizes
the processes within the local communicator to ensure that the
reader has finished writing to the shared-memory buffer before
other processes can access it.

C. LMDBIO-LMM Performance

We showcase here key performance results demonstrating
the performance capabilities of LMDBIO-LMM. Information
about the experimental testbed is provided in Section VI-A.

Figure 3 compares the performance of Caffe/LMDB with
that of Caffe/LMDBIO-LMM. We notice that Caffe/LMDBIO-
LMM performs better than Caffe/LMDB by up to a factor
of 20-fold in some cases. The primary reason is the re-
duced number of context switches in Caffe/LMDBIO-LMM
compared with Caffe/LMDB, where we observed close to a
700-fold improvement. Since LMDBIO-LMM has a single
process performing mmap, it ensures that no contention occurs
between mmap calls performed by multiple processes. This
serialization reduces the number of unnecessary wakeups
created by the interrupt handler, thus reducing the number of
context switches.
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Fig. 3. Comparison between Caffe/LMDB and Caffe/LMDBIO-LMM by
using the ImageNet dataset

IV. ANALYSIS OF I/O IN CAFFE

In this section, we analyze the I/O characteristics of
Caffe/LMDBIO-LMM. In Section IV-A, we analyze the over-
all performance of Caffe/LMDBIO-LMM and showcase its
quantitative I/O performance issues. In Section IV-B, we
discuss aspects of the internal data format of LMDB databases
that cause Caffe/LMDB to perform additional unnecessary I/O.

A. Caffe/LMDBIO-LMM: Performance Analysis

To analyze Caffe/LMDBIO-LMM’s scalability, we train
the CIFAR10-Large dataset using the AlexNet DNN model.
Dataset and testbed details are provided in Section VI-A.

We first consider the overall execution time scalability
(strong scaling) of Caffe/LMDBIO-LMM compared with ideal
scaling. Figure 4(a) shows that the actual training time starts
to differ from the ideal scaling time after just four pro-
cesses and that the difference increases with the number of
processes. In fact, with just 512 processes, the performance
of Caffe/LMDBIO-LMM is nearly 17-fold worse than the
ideal scaling performance. To understand this result better,
we analyzed the time taken by the various components of
Caffe/LMDBIO-LMM. Figure 4(b) shows that the data I/O
time (represented as “Read time”) becomes highly significant
when training a network on a large number of processes. It
takes approximately 40% of the overall training time when
using 512 processes and tends to increase when using a larger
number of processes. Further, the skew between different
processes (represented as “Waiting time before param sync”
in the figure) continues to grow with increasing numbers of
processes and takes nearly 60% of the overall training time
when using 512 processes.

These two portions of time are interrelated. Since the
computation is similar for all the processes, both the large read
time and the large skew time are contributed by issues in the
I/O subsystem, thus making data I/O the primary bottleneck
in the overall execution.

B. Caffe/LMDBIO-LMM: Redundant Data Movement

As mentioned in Section II-B, random accesses are not
allowed in LMDB. To access a data record, LMDB needs
to start from the root node of the B+ tree and parse through
every branch node in the path to the target data record. We
refer to this operation as the “LMDB seek” operation, although
unlike a traditional UNIX seek operation, it is not possible to
directly jump to an arbitrary page without a risk of accidentally
reaching an overflow page that contains no information of how
to go to the next or leaf node.

While traversing through the tree nodes, the header on
each node is read to obtain a pointer to the next record
location. To do so, the page containing the header needs to be
loaded into memory. Since the header itself is much smaller
than the physical page size, the header page usually contains
additional information that needs to be loaded into memory
even when it does not need to be accessed. This data-reading
model is troublesome for parallel I/O because processes have
to access different parts of the database file, resulting in a
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semirandom data access pattern. That is, each process needs to
start at a position in the database that cannot be precomputed
and requires information from the previous data records to
compute.

D0 D1 D2 D3Database

P0	reads

Concurrent P1	seeks P1	reads
P2	reads

P3	reads

P2	seeks

P3	seeks

Fig. 5. LMDB redundant data movement

The data access pattern in LMDBIO-LMM is illustrated in
Figure 5. Suppose four readers (P0 - P3) need to read a
different portion of the database (D0 - D3) from the filesystem
to memory. When P0 reads D0, it reads both the headers and
the actual content. In this case, P0 does not read any extra
data. In order to read D1, however, P1 has to seek through all
of the branch nodes in the D0 portion of the database before
it gets to the D1 portion. From the figure, we notice that the
amount of extra data read increases with the process count,
where in this case P3 reads the most extra data. With this
data access model, in the worst case a process could end up
reading a total of R×B bytes, where R is a total number of
readers and B is a size of an individual data portion.

Besides fetching redundant data from the filesystem, this
model causes skew in data I/O because different processes
do different amounts of work. Such a load imbalance can
cause processes to stay idle at a process synchronization point
(e.g., parameter synchronization in Caffe) waiting for the last
process to finish its task. This can severely degrade the overall
progress of a parallel application.

V. LMDBIO-DM: DESIGN AND IMPLEMENTATION

In this section, we present details of the design and im-
plementation of LMDBIO-DM. The LMDBIO-DM software
itself is an extension of the original LMDBIO-LMM software
and has been developed on top of the same code base.
LMDBIO-LMM is a C++ parallel I/O library that utilizes
MPI and LMDB as core engines. LMDBIO-LMM requires

MPI-32 in order to automatically determine process colocation,
perform reader assignment, and share data efficiently via a
shared-memory buffer. Since LMDB is highly optimized for
efficient in-memory database access, LMDBIO-LMM adopts
the same API to map the database from the filesystem to
memory and access data from there.

As discussed in Section IV, one of the primary reasons
for the performance loss in data I/O with Caffe/LMDB and
Caffe/LMDBIO-LMM is the redundant data I/O by the dif-
ferent processes. To solve this issue, we propose a two-step
approach. In the first step, described in Section V-A, we
present an approach where each process reads exactly the data
that it needs to process, although it does so by serializing I/O
across the different processes. In the second step, described
in Section V-B, we present an approach for estimating what
data pages each process will eventually need and speculatively
performing parallel I/O to regain most of the performance lost
because of the I/O serialization described in the first step.

A. Serializing I/O Using a Portable Cursor Representation
Here, our goal is to ensure that each process reads only the

data that it needs to process. In other words, no additional
data is read at seek time. To do so, each process must first
read the data that it needs to process and then pass to the next
process the information about the location where it stopped.
The general model we want to follow is illustrated in Figure 6.
In the figure, P1 cannot start reading data D1 until P0 finishes
reading D0 and sends the starting point of D1 (i.e., the
cursor) to it. Executing this in practice, however, has a few
complications that we discuss in this section.
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Fig. 6. LMDBIO-DM design: sequential I/O and cursor handoff

As described in Section II-B, since LMDB uses a B+ tree
to represent its data elements, the position indicator for a

2Most supercomputers already support MPI-3. The notable exception to this
claim is the IBM Blue Gene series of supercomputers that do not yet support
MPI-3. However, these supercomputers are nearing their end of life; and the
next generation of supercomputers from IBM do plan to support MPI-3 and
later MPI standards.



record within the B+ tree is not a simple offset from the
start of the file, but rather a more complex data structure
which LMDB refers to as a cursor. The cursor obviously
includes information about the record it points to. But it also
includes other information such as the path of the record’s
parent branch nodes, a pointer to the page header containing
the record, and information about the access flags of the
particular record being pointed to. Unfortunately, the cursor
data structure itself is not portable across different processes
since it contains information represented as pointers within the
B+ tree that is relevant only within the virtual address space
of the original process that created the cursor. Luckily, all
the pointers contained within this structure point to locations
within the B+ tree.

In order to serialize the cursor into a format that is portable
across different processes, the simplest model that we envision
is that of a symmetric address space. That is, if we can
ensure that all processes can memory-map the database into
exactly the same virtual address location on all processes, any
pointers that point to locations within the B+ tree would be
portable across the different processes, thus making it possible
to serialize the cursor to a portable format. To achieve this, we
use the following algorithm. The first reader process randomly
picks a virtual address location from its 64-bit address space
and tries to memory-map the database to this memory location.
If it is successful, it broadcasts this address to the remaining
reader processes. Each of the remaining reader processes tries
to memory-map the database file at the exact same memory
location. Each process indicates whether it was successful or
not within an MPI allreduce operation where all processes
try to come to a consensus. If everyone was successful, the
database is now mapped to the same virtual address location
on all processes. If at least one of the processes was not
successful, all processes unmap their database and try again.
This process is repeated for a few iterations.

In theory, it is possible to find no virtual address location
that can be symmetrically used across all processes. However,
given that most of the 64-bit address space is typically unused
on any given process, in practice we can find a symmetrical
address space in 1–2 attempts with the algorithm described
above. In the worst case, if we are not able to find a
symmetrical address space after a few attempts, we abandon
this optimization and fall back to the approach used by the
original LMDBIO-LMM.

Once the database is mapped to the symmetrical address
space, the actual serialization of the cursor itself is mostly
trivial. The internal content of the cursor data structure is
copied into a memory buffer that can be sent to the other
processes by using MPI send/recv.

B. Speculative Parallel I/O

The first step of our algorithm, discussed in Section V-A,
provides a portable solution to pass the location information
within the database to other processes. However, the approach
described there comes at the cost of serialization in data I/O.
That is, only one process is actively reading data at any given

point of time. This is inefficient on most parallel filesystems
where multiple processes need to be performing I/O in order
to achieve the best performance.

Here, we discuss the second step of our algorithm that tries
to estimate what data needs to be processed by a given process
and speculatively performs parallel I/O on that data (illustrated
in Figure 7). To do this, we must first estimate what part of the
database we need to fetch to memory. This is a complex task
since the structure of the B+ tree is not always straightforward.
Depending on how many branch nodes are used and how many
records each branch node points to, estimating which physical
pages each process would need to access is nontrivial.

In our approach, we assume that the sizes of all records are
roughly the same, which is a fairly safe assumption to make
for most deep learning frameworks because of the way the
input data samples are handled. Each reader process reads the
first data record in the database file to retrieve the record’s
size. The readers use the obtained size information along with
the number of records that they will read (i.e., a fraction of
the batch) to estimate the number of pages to be fetched.
For instance, the size of each sample in the CIFAR10-Large
dataset is approximately 3 KB. For I/O efficiency reasons,
LMDB pads the data to ensure that each record occupies
one page (4 KB). Therefore, the number of speculative pages
for n data records is n × 1 pages. The read offset of each
reader is calculated in the same fashion. Specifically, each
reader process maintains a minimum and maximum count
of the number of pages that each reader process needs to
access. If the reader process ends up speculatively reading too
far ahead, it corrects its estimate of the maximum number
of pages that the previous readers need. Similarly, if the
reader process ends up speculatively reading too far behind, it
corrects its estimate of the minimum number of pages that the
previous readers need. The actual pages that the reader process
speculatively reads includes all pages between the minimum
and the maximum estimate boundaries. We expect that over a
few iterations, we get a fairly accurate picture of the branch
structure of the database file that will allow us to estimate
more precisely.
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Fig. 7. LMDBIO-DM design: parallel I/O and in-memory sequential seek

Once we guess what pages we need to process, each process
touches the appropriate pages in the memory-mapped database
file, thus forcing the filesystem to fetch those pages to memory.
This step is done in parallel on all processes. Once the data
has been fetched to memory, we perform the sequential seek
process described in Section V-A to find the starting point of
the data batch for the next reader. We expect, however, that



this sequential seek process accesses only or mostly pages
that are already in memory and thus will be quick compared
with the data I/O itself. Once the seek is done and the reader
successfully sends the starting location to the corresponding
process, the reader can perform the actual data processing.

VI. EXPERIMENTAL EVALUATION AND ANALYSIS

In this section we analyze several experimental results
to showcase the capability of Caffe/LMDBIO-DM compared
with that of Caffe/LMDB and Caffe/LMDBIO-LMM.

A. Experimental Platform

The experimental evaluation for this paper was performed
on Argonne’s “Blues” cluster.3 Blues consists of 310 com-
puting nodes connected via InfiniBand Qlogic QDR. Each
node has 64 GB of memory and two Sandy Bridge 2.6 GHz
Pentium Xeon processors (16 cores, hyperthreading disabled).
The storage is 110 TB of clusterwide space provided by
GPFS and 15 GB of on-node ramdisk. We built all three
versions of Caffe—Caffe/LMDB, Caffe/LMDBIO-LMM, and
Caffe/LMDBIO-DM—by using the Intel ICC compiler (ver-
sion 13.1.3). We used MVAPICH-2.2 over PSM (Performance
Scaled Messaging) [15] for all experiments. All experiments
were run three times, and the average performance is shown.

We used two datasets for our experiments. The first dataset
was the CIFAR10-Large dataset that was trained by using the
AlexNet DNN model. The CIFAR10-Large dataset consists
of 50 million sample images, each approximately 3 KB. The
total dataset size, including the raw images and some metadata
corresponding to the images, is approximately 190 GB. The
second dataset was the ImageNet dataset that was trained
by using the CaffeNet DNN model. The ImageNet dataset
consists of 1.2 million sample images, each approximately
192 KB. The total dataset is 240 GB. Although both datasets
can be I/O intensive, the ImageNet dataset is particularly so,
given the size of the images that need to be processed. In the
experiments, our datasets were stored on GPFS.

For our experiments we used a batch size of 4,096 for
both datasets. We trained the network for the CIFAR10-
Large dataset over 1,024 iterations (4 million images) and the
ImageNet dataset over 32 iterations (128K images) on up to
512 processes (i.e., 32 nodes).

B. Overall Performance

Figure 8(a) compares the performance of Caffe/LMDBIO-
DM with that of Caffe/LMDBIO-LMM and Caffe/LMDB
for the CIFAR10-Large dataset. Caffe/LMDBIO-DM performs
better than Caffe/LMDBIO-LMM by around 1.87-fold and
better than Caffe/LMDB by around 2.65-fold. The primary
improvement in performance for LMDBIO-DM is attributed to
the reduced data movement compared with that of LMDBIO-
LMM and LMDB. Even though LMDBIO-DM introduces
additional serialization in the data I/O path compared with
LMDBIO-LMM and LMDB, the impact of this serialization

3http://www.lcrc.anl.gov/about/blues

is minimal because of the speculative parallel I/O that it
performs.

Figure 8(b) shows the performance breakdown for
Caffe/LMDBIO-DM. We note two interesting aspects in this
performance. First, the percentage of time taken by data I/O
(represented as “Read time”) has increased, not decreased,
despite our optimizations. Second, the skew time between
different processes (represented as “Waiting time before param
sync”) has decreased significantly. While at first these results
might seem counterintuitive, they do follow the general opti-
mization principle used in this paper. Specifically, as described
in Section IV, one of the primary shortcomings of the current
Caffe/LMDB framework, which Caffe/LMDBIO-LMM inher-
its, is that different processes perform a different amount of
data I/O in order to seek through the LMDB database. This
approach results in a significant amount of skew between the
processes. Since the computational model of Caffe is bulk
synchronous, it eventually results in large wait times for the
different processes to coordinate and synchronize with each
other.

With LMDBIO-DM, most of the data I/O is parallelized
across processes, and each process reads mostly distinct parts
of the database. Some serialization still exists in the cursor
propagation across the different processes; but since that prop-
agation is done almost entirely in memory without requiring
data I/O, the impact of such serialization is minimal. This
helps reduce the skew significantly. The data I/O time itself
seems to increase in the figure because of the overall reduction
in the execution time.

We performed a similar analysis on the ImageNet dataset, as
shown in Figure 9. The general trend for ImageNet is similar to
that of CIFAR10-Large, although two differences are evident.
First, the percentage of time taken by data I/O decreases. This
decrease is expected because of the reduction in the amount of
data I/O. Second, a higher percentage of the time is now taken
by the network parameter communication between processes
(represented as “Param sync time” in the figure). The reason
is that the processing of the ImageNet dataset is based on the
CaffeNet network, which is larger than the AlexNet network
used for processing the CIFAR10-Large dataset. Consequently,
as we reduce the data I/O overhead, communication time starts
to become a dominant factor in the overall execution time.

C. Analysis: Amount of Data Fetched

In this section, we dig a bit deeper into the performance data
in order to understand the amount of data that is fetched to
each node with Caffe/LMDBIO-LMM and Caffe/LMDBIO-
DM. To perform our measurements, we modified Caffe to
initially memory-protect all of the memory-mapped database.
When a page in the database gets accessed, it triggers a page
fault handler, which we catch to measure the amount of data
that would be fetched by the filesystem. Once the page is
touched, it is unprotected, so any future accesses to the page
do not raise additional page faults.

Figure 10 shows the number of “extra” bytes read by
Caffe/LMDBIO-LMM for the CIFAR10-Large and ImageNet
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Fig. 10. Caffe/LMDBIO-LMM: Extra bytes read

datasets—that is, how many additional bytes were read by the
different processes apart from the actual data that they would
need for their processing. We make two observations based
on this figure. First, the number of additional bytes increases
with the number of processes for both datasets, reaching 4 GB
in some cases. In fact, the increase is almost linear with
the number of processes. This increase is due primarily to
the redundancy in the data read as we increase the number
of processes, as explained in Section IV. Specifically, each
process needs to seek through the data read by all of the
previous processes.

Our second observation is that the increase for the Ima-
geNet dataset is much smaller than that of the CIFAR10-
Large dataset. This is also expected, although the reason is
more subtle. As a process seeks through the dataset to reach
its relevant portion of the database, it needs to read the
appropriate headers of the database pages. As discussed in
Section II-B, these pages are branch pages. In the CIFAR10-
Large dataset, each data sample is approximately 3 KB. Thus,

the header and the data sample reside on the same physical
page. Consequently, reading the header would load the entire
data sample into memory, causing a large amount of additional
data to be fetched into memory. In the ImageNet dataset, on
the other hand, each data sample is approximately 192 KB and
thus takes around 48 pages to store. Therefore, the header page
is encountered fewer times in ImageNet if the total dataset size
of both datasets is approximately the same; that is, there is one
header for every physical page in the CIFAR10-Large dataset,
whereas there is one header for every 48 physical pages in the
ImageNet dataset. This results in fewer additional bytes read
for the ImageNet dataset.

D. Analysis: Accuracy of Estimation
As mentioned in Section V, the performance capability

of LMDBIO-DM depends heavily on the accuracy of its
estimation on what data will likely be needed for the com-
putation in that iteration. In this section, we present a series
of experiments to analyze this behavior. In our experiments,
we study the accuracy of our estimation in terms of the number
of pages that are needed but are not fetched during the parallel
I/O phase (i.e., “missed pages”) and the number of pages that
are not needed but are fetched during the parallel I/O phase
(i.e., “redundant pages”).

In the first experiment, we measured the number of missed
pages as the computation progressed through its iterations, for
the CIFAR10-Large and ImageNet datasets. The experiment
used 512 processes in all cases. The first two iterations resulted
in nonzero missed pages, although for iterations after that
we did not notice any missed pages for both datasets. The
reason is that LMDBIO-DM automatically tunes the page



range that it fetches based on the history of the accessed data
in the previous iterations, as described in Section V. That
is, it corrects its estimate based on history from the prior
iterations, thus allowing it to estimate the best- and worst-case
bounds of access more effectively. We note that since training
computations typically run for several thousands or millions
of iterations, the additional missed pages during the first few
iterations are mostly inconsequential for overall performance.

In our second experiment we studied the number of redun-
dant pages read through the required iterations. Experimental
results are shown in Figure 11. Once again, the experiment
used 512 processes in all cases. We notice that the number
of redundant pages increases until a certain iteration and
then stabilizes. This behavior is expected because of how
LMDBIO-DM works. That is, since LMDBIO-DM starts with
an initial estimate and then corrects this estimate based on
the prior iterations, the range of pages fetched expands with
iterations to cover more pages for the parallel I/O; however,
once the number of redundant pages read is large enough to
not miss any page, the number of redundant pages stabilizes
to a constant value.

In our third experiment we studied the missed pages with
changing numbers of processes. We ran the experiments for
the full iteration count discussed in Section VI-A. We make
the following observations based on Figure 12:
1. The number of missed pages increases with the number of
processes, but the count is very small. In fact, the total number
of missed pages at 512 processes is less than 700 for the
CIFAR10-Large dataset (< 1.4 missed pages per process) and
less than 200 for the ImageNet dataset (< 0.5 missed pages
per process). Moreover, most of these missed pages are in the
first few iterations while LMDBIO-DM is trying to converge
on the range of pages to fetch.
2. The number of missed pages in the ImageNet dataset is
much smaller than that in the CIFAR10-Large dataset. The
reason is that the data samples are much larger in the ImageNet
dataset than they are in the CIFAR10-Large dataset and, for the
same amount of data processed, the ImageNet dataset covers
fewer iterations than does the CIFAR10-Large dataset, thus
resulting in fewer missed pages.

VII. RELATED WORK

Researchers have proposed a number of parallel deriva-
tives of Caffe. MPI-Caffe [9] and Caffe-MPI [1] are perhaps
the most well known. Both implementations target only the
compute portions of the framework and do little to optimize
I/O. S-Caffe [3] is another parallel derivative of Caffe that
performs parallel data read but does not analyze the issues
with Caffe/LMDB. It thus inherits many of Caffe/LMDB’s
shortcomings. Our work aims at fixing the underlying cause
of the performance degradation in Caffe/LMDB, thus making
it applicable to all parallel derivatives of Caffe.

Perhaps the closest related work is our previous work
on LMDBIO-LMM [12]. While LMDBIO-LMM targets the
same problem as our current work, it is limited to intranode
I/O optimizations. Our current work, LMDBIO-DM, on the

other hand, targets I/O optimizations for distributed-memory
platforms.

Although our work is based on Caffe, other deep learn-
ing frameworks, such as Theano [16] and Google’s Tensor-
Flow [2], have highly efficient parallel versions [11], [17].
These frameworks differ in how they parallelize their com-
putation. Their core I/O infrastructure, however, is similar.
The I/O infrastructure depends mainly on the format of the
dataset, and using LMDB databases for storing data samples
is a common practice in the community. Thus, for datasets that
are stored in this format, the overheads presented in this paper
are unavoidable. Consequently, the ideas presented here are
applicable to other deep learning frameworks as well, although
the software itself will need additional modifications to plug
into these frameworks.

Our work focused on optimizing the mmap usage in the
LMDB library. In HPC systems, however, more efficient ap-
proaches exist for performing I/O. MPI-IO [13], [14] provides
a low-level interface to carry out parallel I/O for generic
unstructured data. HDF54 and NetCDF [4] are high-level I/O
libraries that abstract various structured scientific application
data into portable file formats and provide feature-rich pro-
gramming interfaces. Parallel HDF5 [6] and PnetCDF [10]
provide parallel access and storage for files with those formats
based on MPI-IO.

These I/O frameworks are almost certainly more efficient
than mmap, but they are all based on explicit I/O. That is,
they require the user to provide the exact bytes in the file
that would be accessed before actually accessing them. On
the other hand, mmap performs implicit I/O. It maps the entire
file to the virtual address space of the process and dynamically
fetches parts of the file to memory as they are being accessed.
Since the operating system has limited or no prior knowledge
of the data accesses that would be performed, such implicit
I/O is fundamentally less performant than is explicit I/O.
Nevertheless, implicit I/O is more convenient for complex
datasets that require I/O access that is not simple sequential
reading (e.g., LMDB uses a B+ tree format to store its data). In
the long term, we believe that it would be valuable to migrate
the I/O model of Caffe and other deep learning systems to use
explicit I/O. Until such action is taken, however, our approach
provides a viable solution to improve I/O performance without
requiring all existing datasets to be migrated away from the
LMDB format.

VIII. CONCLUDING REMARKS

Parallel deep learning systems are becoming increasingly
common. As computational parallelism increases, however,
data I/O becomes the major bottleneck limiting the overall
system scalability. In our previous paper, we had presented
LMDBIO-LMM—an optimized I/O plugin for Caffe that takes
into account the data access pattern of Caffe in order to
vastly improve I/O performance. In this paper, we presented
LMDBIO-DM, an enhanced version of LMDBIO-LMM that

4https://support.hdfgroup.org/HDF5
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optimizes the I/O access of Caffe in distributed-memory
environments by minimizing redundant data I/O. Together with
a detailed analysis of the I/O issues in Caffe’s original I/O
framework that continue to exist with LMDBIO-LMM, we
presented the overall design and implementation of LMDBIO-
DM. We also presented experimental results that show that
Caffe/LMDBIO-DM can improve the overall execution time
by more than 30-fold compared with the original Caffe/LMDB
framework and by 2-fold compared with Caffe/LMDBIO-
LMM.
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