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Abstract—Heterogeneity in memory is becoming increasingly
common in high-end computing. Several modern supercomputers,
such as those based on the Intel Knights Landing or NVIDIA
P100 GPU architectures, already showcase multiple memory do-
mains that are directly accessible by user applications, including
on-chip high-bandwidth memory and off-chip traditional DDR
memory. The next generation of supercomputers is expected
to take this architectural trend one step further by including
NVRAM as an additional byte-addressable memory option.
Despite these trends, allocating and managing such memory
are still tedious tasks. In this paper, we present hexe, a
highly flexible and portable memory allocation toolkit. Unlike
other memory allocation tools such as malloc, memkind, and
cudaMallocManaged, hexe presents a rich and portable mem-
ory allocation framework that allows applications to carefully
and precisely manage their memory across the various memory
subsystems available on the system. Together with a detailed
description of the design and capabilities of hexe, we present
several case studies where the flexible memory allocation in hexe
allows applications to achieve superior performance compared
with that of other memory allocation tools.

I. INTRODUCTION

As we continue to build larger and more power-efficient
supercomputing systems, heterogeneity in computational units
and in memory is becoming an important characteristic.
Although processor heterogeneity has received a lot of attention,
the shift in architecture is not isolated to processors alone. The
memory architecture is similarly increasing in complexity, with
the aim of improving the overall bandwidth and reducing
power consumption. As we move to exascale, we will ob-
serve a dramatic change in the memory architecture leading
to multilevel memory hierarchies. Heterogeneous multilevel
memory hierarchies with slow and fast memories suitable for
regular general-purpose cores and accelerator cores, scratchpad
addressable caches, and nonvolatile memories are already
becoming increasingly common and can also be seen on the
future supercomputing system roadmaps of several key vendors.

Systems with heterogeneous memory systems exist today.
Recently Intel released the Knights Landing (KNL) platform
with two types of memory: up to 16 GB of on-chip high-
bandwidth memory and an additional off-package DDR4
memory (up to 384 GB). NVIDIA’s P100 architecture allows
graphics processing units to host directly accessible on-chip
high-bandwidth memory together with traditional host DDR4
memory.

Despite these trends, allocating and managing such memory
are still tedious tasks. Most traditional memory allocation
techniques, such as malloc, calloc, and mmap, ignore
memory heterogeneity and default to only one type of memory.
Recently, memkind [2] was introduced as an alternative
memory allocation framework that is aware of heterogeneity
in memory on Intel KNL platforms; and NVIDIA’s CUDA

model provides a number of memory allocation calls that allow
buffers to be allocated on GPU systems. Although such tools
are indeed a step up from traditional memory allocation tools,
however, they suffer from two primary shortcomings.

1) Portability: Existing tools are either unaware of hetero-
geneous memory (e.g., malloc) or are specific to a
particular architecture (e.g., memkind for Intel Xeon
Phi or cudaMallocManaged for NVIDIA GPUs).
Attempting to use these on other configurations causes
erroneous behavior, making the application responsible for
detecting the appropriate hardware configuration before
using these tools.

2) Flexibility: While tools such as memkind and
cudaMallocManaged allow common memory alloca-
tion patterns, they are inflexible in more complex usage
models that require data to be shared across multiple
classes of memory. This inflexibility can hurt performance
or limit the problem sizes that can be executed for some
applications.

To address these shortcomings, we present hexe, a highly
flexible and portable memory allocation toolkit. Like memkind
and cudaMallocManaged, hexe is aware of the availability
of heterogeneous memory in the system. Unlike memkind and
cudaMallocManaged, however, hexe presents a feature-
rich and portable memory-allocation framework. The higher
degree of flexibility that is offered by hexe allows applications
to precisely manage their memory across the various memory
subsystems available on the system and to allocate their data
objects on the memory that is most appropriate for their access
patterns. This ability results in superior performance for hexe
compared with other memory allocation tools.

Together with a detailed description of the design and the
capabilities of hexe, we present several case studies show-
casing hexe’s flexibility in memory allocation. We evaluate
the performance of hexe with several microbenchmarks and
application kernels and compare it with malloc, memkind,
and cudaMallocManaged.
Terminology: To be consistent, in this paper, we will refer
to on-chip high-bandwidth memory as “HBM” for both Intel
KNL and NVIDIA GPU platforms. We will refer to traditional
DDR memory such as the off-chip memory on KNL and the
host memory on GPU platforms as “DRAM” in this paper.

II. BACKGROUND

In this section we present a short overview of the Intel Xeon
Phi (focusing on Knights Landing) and NVIDIA GPU (focusing
on P100) architectures. We focus primarily on the memory
subsystems of these architectures rather than the processing
elements because of their higher relevance to our research in
this paper.



A. Intel Xeon Phi: Knights Landing

The Intel Knights Landing [4] is the second generation of
the Intel Xeon Phi many-core architecture. In contrast to the
first generation, Knights Corner, KNL comes in a self-booting
version (i.e., does not need a “host” Xeon processor to drive it)
and is byte-compatible with mainline Intel Xeon processors.

Current KNL versions support up to 16 GB HBM, called
multichannel DRAM (MCDRAM), together with up to 384 GB
of traditional DRAM. Each KNL chip can support eight HBM
devices, each connected through its own embedded DRAM
controller (EDC). Every HBM node has a separate read and
write bus connecting it to its EDC. The DRAM is connected
by using two DDR4 memory controllers on the opposite sides
of each chip.

a) KNL Memory Modes: KNL provides three operation
modes in which the memory can be organized: flat mode, cache
mode, and hybrid mode. Flat mode allows for the HBM to be
directly accessible. Cache mode treats it as an additional level
of cache. Hybrid mode allows a part of the HBM to be treated
in flat mode and the rest to be treated in cache mode.

b) KNL Cluster Modes: KNL also provides three decom-
position or isolation modes for its memory (both HBM and
DRAM), referred to as cluster modes. The goal of these modes
is to keep on-chip communication as low as possible. The
modes are the all-to-all, quadrant/hemisphere, and sub-NUMA
clustering (SNC). The SNC mode is further split into SNC-
2 and SNC-4, depending on whether the decomposition of
memory is into two halves or four quarters. The all-to-all and
quadrant/hemisphere modes expose the available memory as
one large chunk of high-bandwidth memory, while the SNC
modes expose them as multiple NUMA domains.

B. NVIDIA P100 GPUs

In contrast to the Intel KNL, NVIDIA P100 GPUs [8], which
are more commonly referred to as Pascal GPUs, are not self-
booting devices. They need to be connected to a host system
over the PCIe or NVLink interconnect. Two aspects of the
P100 GPUs are important in this paper: data movement, and
the memory subsystem.

a) Data Movement: Traditionally, one of the main bottle-
necks of GPU computing was the limited PCIe bandwidth. All
data to be transferred between the GPU and the host or between
two GPUs on the same host had to be transferred over PCIe. To
overcome this limitation, NVIDIA introduced NVLink, a new
high-speed interconnect especially for GPU computing. The
NVLink implementation in P100 supports configurations with
aggregate maximum bidirectional bandwidth of 160 GB/sec.
NVLink for the P100 focuses mainly on improving the data
transfer between GPUs on the same host. However, some
CPUs, such as the IBM’s Power8 CPU, also support NVLink,
allowing for improved data transfer between the host system
and the GPU as well. We note that on a multi-GPU system, the
GPUs usually have to share links. Thus, the total aggregated
bandwidth can be up to 160 GB/sec, while the bandwidth
between two single GPUs or the CPU and a single GPU may
be lower.

b) Memory Subsystem: The P100 is the first GPU that
comes with a new memory architecture, called High-Bandwidth
Memory 2 (HBM2). HBM2 is stacked on the same chip as
the GPU cores, thus allowing a much denser packing of GPU
servers and a much higher bandwidth than on previous GPUs.
A P100 GPU has four HBM2 stacks for a total of 16 GB of
HBM2 memory.

The new 49-bit addressing of the P100 is large enough to
cover the 48-bit address spaces of modern CPUs, as well as
the GPU’s own memory and the memory of other GPUs. The
page fault capability enables on-demand page migration and
coherency between host an GPU. This aspect is discussed in
more detail in the next section.

III. EXPLICIT USAGE OF MULTIPLE MEMORY CLASSES

A. Heterogeneous Memory Usage on Intel KNL

When the KNL chip is configured in flat or hybrid mode,
the HBM is exposed as one or more NUMA nodes. In the
SNC modes, the HBM and the DRAM are further divided into
more NUMA nodes, but the CPUs are always on the same
NUMA nodes as the DRAM is.

If simple memory allocation tools such as malloc are used,
they treat the KNL architecture as a simple NUMA architecture
and naturally pick the memory that is “local” to the CPUs.
This local memory is DRAM in all of the above cases, which
results in these memory allocation tools ignoring the HBM
unless the amount of memory allocated is large. We note that
this policy is not accidental but by design, since it ensures that
noncritical data (e.g., for the operating system) is not allocated
in HBM and defaults to the DRAM.

The simplest approach to using HBM is through the
numactl [6] tool, which allows one to bind all memory to
the appropriate HBM node(s). This ensures that all variables,
static and dynamic, are allocated in HBM. While this approach
is simple and convenient, it is restrictive for applications that
require more fine-grained management of where to allocate
specific data objects.

For more fine-grained control, libnuma can be used. In this
case, the application first has to detect the current configuration
of the KNL, including which NUMA nodes correspond to the
HBM. Since the enumeration of the HBM and DRAM nodes
changes for the different modes, the application has to be
specially optimized each configuration.

Another possibility is to use memkind [2], which was
developed by Intel to allow explicit allocation of HBM. The
benefit of memkind is that it has been designed and optimized
for fine-grained memory allocations and multithreading support.
Unfortunately, neither of these is typically as relevant for
HPC applications that tend to allocate large memory segments
at initialization time using a single thread. Furthermore,
memkind does not offer the user enough portability and
flexibility to navigate the complex configuration space of the
KNL and future Intel Xeon Phi architectures. Moreover, it is
not portable to other heterogeneous memory architectures such
as NVIDIA’s GPUs.



B. Heterogeneous Memory Usage on NVIDIA P100

The preferred memory allocation model on NVIDIA P100
GPUs is based on the cudaMallocManaged call. This call
was introduced with unified memory in CUDA 6, but P100
GPUs are the first generation with hardware support for this
feature.

Unified memory was introduced mainly to simplify program-
ming, as it allows both the CPU and GPU to use a single pointer,
while the CUDA system software automatically migrates data
between the GPU and the CPU. On GPUs prior to P100, all
managed memory touched by the CPU had to be synchronized
with the GPU before any kernel launch. This approach is no
longer necessary as a result of the new page fault capability.
Specifically, if a kernel running on the GPU accesses a page that
is not resident in its memory, it triggers a page fault, allowing
the page to be automatically migrated to the GPU memory on-
demand. Pages that are swapped out of the GPU memory are
managed on the host memory. Note that accessing host-memory
from the GPU was possible before (if cudaMallocHost was
used), but now the GPU can dynamically decide whether a
page needs to be migrated to the GPU or stays on the host. In
this mechanism global data coherency is guaranteed if unified
memory is used. Thus, with P100, the CPUs and GPUs can
access unified memory allocations without any programmer
synchronization.

To optimize the performance of unified memory, the pro-
grammer can give hints to the CUDA runtime to optimize data
location and use prefetching instructions to move data between
the GPU and the CPU.

IV. HEXE : DESIGN AND IMPLEMENTATION

In this section, we discuss the overall design and implemen-
tation details of the hexe framework.

A. Topology Detection and Initialization

The initialization of the hexe runtime system and the
topology detection happens in three steps.

1) The top-level identification of the overall architecture, such
as the Intel Xeon Phi vs. NVIDIA GPUs, is provided by
the core operating system, which hexe utilizes.

2) For the next level of topology detection we use the hwloc
library to detect the available compute and memory
resources. This gives us information about the location,
size, and other properties of the available HBM.

3) The third level of topology detection is architecture
specific. For Intel Xeon Phi architectures, we detect what
memory and cluster modes the system is configured as.
For NVIDIA GPUs, we detect aspects such as whether
peer-to-peer access is possible within multiple GPUs (and
if yes, among which GPUs).

We note that hexe performs a more comprehensive topology
and architectural feature detection than what is presented above.
For brevity, an exhaustive list of all detected features is not
described here. But we wish to convey two important ideas.
First, detecting various architectural features is complex; while
applications can implement this ability themselves, doing so

portably is challenging and error-prone. Second, initialization
and detection are a one-time process that allows hexe to gather
information about the system and later intelligently use it for
managing the memory allocations on the system.

B. Memory Allocation Attributes

Memory allocation in hexe is divided into three parts:
virtual address allocation, mapping the virtual address to a
class of physical memory, and mapping the virtual address
to an exact physical memory page to be used. The first part
is always immediate and done as soon as the allocation call
is issued. The second part can be done immediately or lazily
(we will discuss both models in this paper). The third part is
handled by the OS and is not hexe’s responsibility.

A clear definition of responsibilities is in order here. Hexe
divides the available memory into classes (e.g., on-chip high-
bandwidth memory, off-chip persistent memory). During the
memory allocation routines, hexe only gives hints to the
operating system as to which memory class to use; it does
not enforce the actual mapping. That responsibility sits with
the operating system, which can, in rare circumstances, ignore
the hints and choose its own policy. Such a case is possible,
for example, when multiple applications are competing for the
available memory resources. Having said that, in most high-
performance computing environments, application processes
that share a node are often symmetrical, making this less of a
concern.

Memory allocation in hexe is based on five attributes:
memory class, data splitting, flexibility in memory binding,
severity of mismatches, and memory allocation priority. All
memory allocation routines in hexe return a virtual address.
The attributes described above determine what physical memory
class this virtual address corresponds to, how and when the
mapping is done, and what happens when the requested
mapping is not possible.

a) Memory class: This refers to the different kinds of
heterogeneous memory available in the system (e.g., HBM
or DRAM). Each memory class has an additional locality
attribute called “index,” which refers to the specific instance of
the memory object when multiple instances exist. For example,
if four HBM nodes are available, the index refers to specific
node to be used. Hexe allows multiple memory classes and
memory class indices to be provided within a single allocation
call. This feature allows the memory allocation to be bound to
multiple memory regions simultaneously, which is important
for data splitting (discussed below). Hexe also supports some
generic indices such as “ALL” and “LOCAL”.

b) Data splitting: This refers to how the virtual ad-
dress space is split between multiple different physical
memory classes. Four data splittings are currently defined:
OS, SPILL_OVER, EQUAL, and user-defined chunk
size. The user-defined chunk size splits the mem-
ory in chunks of the size U (that needs to be a multiple
of the page size) and distributes them across the classes.
EQUAL splitting is a special case of the user-defined
chunk size where the buffer is split into equal contiguous



chunks across the different memory classes. The SPILL_OVER
splitting allocates as much data as possible on the preferred
class of physical memory and then spills over to the next class.
The OS splitting leaves the actual splitting to the operating
system, instead of being managed explicitly by the user.

We note that the SPILL_OVER mode is based on what
hexe detects as the available memory on the node. If multiple
processes compete for the same memory, then hexe’s view of
the available memory might not be accurate. We are considering
parallel allocation strategies that would allow hexe to share
such information across multiple processes; but the current
version of hexe does not provide such capability.

c) Flexibility in memory mapping: This refers to how
soon the virtual address space should be mapped to a
class of physical memory. Two modes are currently defined:
IMMEDIATE and ON_COMMIT. In the IMMEDIATE mode,
the virtual address is mapped and bound to a class of physical
memory as soon as the memory allocation is done. In the
ON_COMMIT mode, a separate commit call is needed before
the virtual address is mapped to the appropriate class of physical
memory. This mode gives hexe the ability to look at multiple
memory allocation calls and make a global decision as to
which allocations should be mapped to which class of physical
memory.

d) Severity of mismatch: This refers to how the hexe
runtime should deal with cases where it is unable to meet
the user memory allocation requests. Two modes are defined:
ERROR and FALLBACK. In the ERROR mode, if a user-
provided requirement for one of the above attributes cannot
be met, then the memory allocation fails immediately. In the
FALLBACK mode, the memory allocation silently falls back to
a different class of memory as long as any memory is available
in the system.

e) Memory allocation priority: This refers to the priority
to be given to this memory allocation call when multiple
memory allocation requests are pending. Allocation priority
is useful only when multiple allocations are outstanding, for
example, in the ON_COMMIT mode described above. In the
IMMEDIATE mode, however, the priority attribute is ignored.

Internally, on KNL platforms, hexe uses mmap to allocate
memory and mbind to bind the memory to specific classes of
physical memory. For allocations of more than 2 MB, we use
madvise to enable huge pages for better performance (similar
to what malloc does on newer Linux distributions). On GPU
platforms, it uses cudaMallocManaged to allocate memory
and cudaMemAdvise to give hints for the location of the
memory.

A few words of caution are warranted.
1) While the hexe interface allows memory allocations

to be generally usable on different architectures, users
are expected to use them in a way that is in line
with their programming interface. For example, splitting
data between multiple HBM nodes works well with a
program written in traditional C/C++ when used on KNL
architectures. While one can do so even with a CUDA

program, such an action is not quite in line with general
CUDA programming.

2) The locality subattribute in hexe makes sense only when
the process itself is bound to a subset of cores where
a certain class of memory is closer than the rest. We
recommend that users use hwloc or other tools to perform
such process binding before requesting “local” memory
binding.

C. Lazy Memory Allocation

As described in Section IV-B, hexe allows the mapping of
the virtual address to the class of physical memory to be done
either immediately or lazily. In this section, we discuss the
lazy allocation model. The general idea of this model is that
all memory allocation requests are tracked inside hexe until
the application calls a hexe_commit call. During a commit
call, hexe library analyzes all allocation requests and maps
them to the appropriate class of physical memory so as to
maximize allocations that match the user’s requested attributes.

In this mode the function hexe_malloc is only a request
for memory. It allocates a virtual address space corresponding
to the buffer allocation but does not map this virtual address
space to any class of physical memory at this time. Later,
during the hexe_commit call, the buffers are mapped to the
actual classes of physical memory. The runtime uses a knapsack
algorithm to decide, based on the priority and the size, which
objects are bound to what class of physical memory.

Within hexe, we optimized the knapsack algorithm to work
well with large allocations. If the total amount of the requested
memory significantly exceeds the available memory, only the
small objects are allocated in their preferred class of memory,
while everything else is allocated in a split manner. If two
allocations for a particular class of physical memory have
almost the same size and the same priority, our algorithm splits
both allocations between their preferred class and another
fallback class.

An important consideration here is whether the data has
been touched before the hexe_commit call. This approach
works best if the data are not touched before hexe_commit
is called. The reason is simple. Before the memory is touched,
no mapping exists between the virtual and physical pages. In
this case, binding the memory to a specific class of physical
memory causes almost no extra overhead. As soon as the data
is touched, however, the operating system performs a virtual
to physical mapping. At this point, rebinding pages to a new
memory region is expensive since the pages now have to be
moved. While hexe does not restrict usage one way or another,
users should be careful about this issue from a performance
standpoint.

Both immediate and lazy memory allocations can be used si-
multaneously inside the application. As one would expect, only
the lazy memory allocations are remapped to the appropriate
class of physical memory during a hexe_commit call.

The application also can use multiple “epochs” of mem-
ory allocations, each epoch ending with a hexe_commit
call. In such cases, hexe allows the user to remap virtual



address to physical memory class bindings either for only
the allocation calls within that epoch or for all allocation
calls including those in the previous epochs. This process
can be done by using either the HEXE_COMMIT__EPOCH or
the HEXE_COMMIT__ALL parameter to the hexe_commit
call. Using the HEXE_COMMIT__EPOCH is typically cheaper,
depending on the number of memory allocations requested
within that epoch.

V. EXPERIMENTAL EVALUATION

In this section we showcase some experimental results for
memory management using hexe compared with malloc,
memkind, and CUDA. Because of the large configuration space
of KNL, we cannot present here results for all configurations.
Therefore, we limit our presentation to the cache and flat
memory modes and to the quadrant and SNC-4 cluster modes.
For the experiments with GPUs, we use two configurations: (1)
host memory and memory on one GPU and (2) host memory
and memory on two GPUs (with peer access enabled).

A. Experimental Testbed Platforms

We used two testbed platforms for our experiments. The first
platform is the KNL cluster in the Joint Laboratory for System
Evaluation at Argonne National Laboratory. This system is
based on the Intel Knights Landing 7120. The KNL 7120
comes with 64 cores that clock at 1.3 GHz base frequency.
Each node has 16 GB of HBM and 192 GB of DRAM. The
memory modes and cluster modes can be changed at boot time.

The second platform that we used is a single node of the
JURON pilot system at the Jülich Supercomputing Center. The
node consists of a POWER8 processor (with 2 × 10 cores
clocked at 4.023 GHz) and four NVIDIA Tesla P100 GPUs.
Each GPU has 16 GB high-bandwidth memory and every node
has 256 GB off-chip DDR4 memory. The GPUs and the host
system are all connected to each other with NVLINK.

B. Stream Benchmark

Our first set of experiments is based on the STREAM
benchmark [7]. The benchmark measures the memory
bandwidth for continuous, long-vector memory accesses and is
generally considered to be the ideal benchmark to showcase the
benefits of high-bandwidth memory and optimized allocation
strategies. It requires three arrays (a, b, and c) of the same
size and executes four compute kernels on these arrays.

• COPY: a(i) = b(i)
• SCALE: a(i) = q ∗ b(i)
• ADD: a(i) = b(i) + c(i)
• TRIAD: a(i) = b(i) + q ∗ c(i)
For our experiments, we ran the benchmark with three

different array sizes each of which has a different optimal
placement for the arrays on heterogeneous memory systems.
Our implementation of the benchmark that used hexe enabled
the lazy memory allocation feature, so we did not have to
change the code for the different array sizes. The hexe
runtime system automatically adapts the physical memory
usage depending on the allocation sizes. Furthermore, this
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Fig. 1: STREAM benchmark on KNL in SNC-4 mode
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Fig. 2: STREAM performance on KNL in quadrant mode

allowed us to use the same binary for all four tested modes
using hexe, which was not possible with memkind.

Different sizes of the arrays require a different memory
distribution, as shown in Table I. The top row in the table
shows the array name and in parentheses the priority associated
with them when hexe is used. All four compute kernels (COPY,
SCALE, ADD, and TRIAD) write to array a. Since the write
bandwidth on most memory subsystems is worse than that of
the read bandwidth, we give a higher priority to a than to b
and c. 1

TABLE I: Memory distribution priorities used in hexe

Size a(2) b(1) c(1)

6 GB HBM (interleave) HBM (interleave) HBM (interleave)
24 GB HBM interleave interleave
48 GB (interleave) interleave interleave

We note that the hexe, memkind, and malloc versions
of the STREAM benchmark are similar except for how the
memory is allocated. Thus, the performance comparison is
isolated to only the flexibility offered by each framework in
how memory can be allocated. All benchmarks were run with
64 threads.

Since memkind is not portable to the cache mode, we could
not evaluate the memkind version of the benchmark in that
mode. Therefore we cannot present those results here. All
graphs in this section show the average bandwidth of the four
kernels including the cost of each kernel.

1) KNL STREAM performance (SNC-4 mode): In this set
of experiments, we compare the performance of hexe with

1The actual difference in performance, however, depends on the actual
memory architecture. On KNL, we noticed that the write bandwidth was up to
two times worse than that of the read bandwidth, for both HBM and DRAM.
On GPUs, the difference was less.



that of malloc and memkind on the KNL platform booted
in SNC-4 mode. The results are shown in Figure 1.

6 GB Dataset: In the first case, each array requires 2 GB of
data, which leads to a total memory requirement of 6 GB for
all the data to fit into HBM.

The benchmark using malloc was started with numactl
to guarantee that all allocations are placed in HBM. With
memkind, the memory allocation capability is not rich enough
to place the data in the correct quadrant of KNL HBM. There
are only two options: (1) using memkind_hbw where all data
is placed on the first quadrant irrespective of where it is being
accessed from or (2) using memkind_hbw_interleave
where all data is interleaved between all the quadrants.
When multiple threads from different cores are running the
STREAM benchmark, neither of the two modes provided
by memkind is ideal since neither mode honors the locality
of the cores and their proximity to the memory. We picked
memkind_hbw_interleave for our experiments since our
benchmark required more memory than what a single HBM
node could provide. In our implementation of the STREAM
benchmark with hexe, we used memory interleaving across
all the HBM nodes with an equal chunk size, thus ensuring
that each core accesses memory that is closest to itself.

We note that, in flat mode, the memkind version of the
benchmark performs worse than the malloc version. This
result is surprising since both malloc and memkind bind the
buffer to all of the HBM and then let the operating system pick
the buffer locality using its internal policy (such as first-touch).
On further analysis we found that this is because memkind
uses regular-size pages (4 KB) while malloc and hexe use
large pages (2 MB) in this case, thus resulting in more TLB
misses in memkind causing some performance loss.

In cache-mode hexe has a better performance, since it
distributes the memory equally across the DRAM nodes, while
malloc places the data with a first-touch strategy. Since, in
cache-mode, MCDRAM is used as a direct mapped cache the
distribution done by hexe leads to a better utilization of this
cache.

24 GB Dataset: For a total dataset size of 24 GB, each array
is 8 GB. At this size, two arrays completely fit into HBM
while at least one has to be allocated in DRAM.

As noted earlier, array a has a higher priority compared
with b and c in the hexe version of the benchmark. In the flat
mode, hexe’s lazy allocation places a completely in HBM,
while b and c (which have the same priority) are interleaved
between HBM and DRAM.

Since memkind does not allow for any prioritization, we
manually adopt the same policy as hexe as described in
Table I. While it is not as convenient to the user, this does allow
memkind to achieve some of the performance gains of hexe.
Nevertheless, despite these performance gains, memkind still
does not achieve the same performance as hexe because of
its lack of locality in the HBM. We also tried other memory
allocation options with memkind, but this allocation model
showed the best performance.

On the other hand, malloc shows worse performance than
both hexe and memkind. The reason is that the problem size
exceeds the size of the HBM, so numactl cannot be used,
and everything is allocated in DRAM with malloc.
48 GB Dataset: The largest dataset size that we tried was
48 GB, where each array is 16 GB. In this case, none of the
arrays completely fits into the HBM, so hexe and memkind
interleave data from all arrays between HBM and DRAM.
While hexe and memkind still perform better than malloc,
the difference is smaller since the DRAM bandwidth becomes
the limiting factor.

2) KNL STREAM performance (quadrant mode): Figure 2
shows the results for KNL in the quadrant mode: Figure 2a
in the quadrant-cache mode and Figure 2b in the quadrant-flat
mode.

The experiment with a 6 GB dataset is similar to the
equivalent experiment in SNC-4 mode. The primary difference
is that the memkind and hexe versions of the benchmark both
allocate the arrays in HBM using appropriate allocation API
calls; hence, their performance is similar. The malloc version
is slightly worse than the memkind and hexe versions. To
understand this issue, we analyzed the performance further and
noticed that all three frameworks internally use mmap but, in
contrast to hexe and memkind, malloc does not return a
page-aligned address, thus causing some performance loss. We
modified the malloc version of the benchmark to manually
page align the address returned by malloc, after which we
achieved the same performance as memkind and hexe.

The experiments with the 24 GB and 48 GB datasets show
trends similar to those in SNC-4 mode with the notable
exception that now memkind performs similarly to hexe.
The reason is again that both toolkits use similar allocation
techniques and the additional flexibility offered by hexe is
not beneficial in these case.

3) GPU-STREAM results: Figure 3 shows the results for
the stream benchmark with NVIDIA GPUs. Here, the compute
kernels are executed on a single GPU, although the high-
bandwidth memory of that GPU, the DDR memory of the host,
and the high-bandwidth memory of the other GPUs on the
same node are all accessible to that GPU through peer access
For better readability, we split up the results for the different
dataset sizes. For the CUDA version of memory allocation, we
allocated the memory with cudaMallocManaged. For the
hexe version, we used the SPILL_OVER mode for memory
allocation.
6 GB Dataset: For the 6 GB dataset, the entire data fits
on a single GPU, so using cudaMallocManaged or hexe
does not make any difference in performance. We note that
hexe internally uses cudaMallocManaged as well but
gives additional hints to the operating system. These memory
hints may help for the first touch; but after that, all data resides
in GPU memory, so they make little difference in this test.
16 GB Dataset: The results for the 16 GB dataset are
more interesting. Here, hexe shows better performance than
cudaMallocManaged. The reason is that hexe forces
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Fig. 3: Results for the STREAM benchmark on GPUs

arrays a and b to reside on the local GPU memory and array
c to reside on either the CPU memory (in the GPU+CPU
mode) or on the other GPU’s memory (in the 2 GPUs+CPU
mode). cudaMallocManaged dynamically binds memory
to the available memory based on page faults. Thus, part of
each of the three arrays is on the local GPU, while the rest is
on CPU memory (which is used as swap space).

An interesting observation here is the difference in perfor-
mance for the individual benchmarks. While the Scale kernel
achieves high bandwidth, the remaining three kernels achieve
very low bandwidths. The reason is the order of execution
of the kernels. The Scale and Copy kernels both operate
on the same two arrays, a and b, while the Add and Triad
kernels require all three arrays. The Scale kernel executes
immediately after the Copy kernel. Thus, the Copy kernel
notices all the page faults required to fetch the data into its
physical memory (thus facing performance penalty), but the
Scale kernel already has both arrays in memory when it
executes and thus does not face similar performance penalties.
26 GB Dataset: For the 26 GB dataset, only one array fits
in the local GPU memory. In this case, hexe places a in the
local GPU memory, while b and c are placed in host memory
(1 GPU/CPU) or b on remote GPU memory and c in host
memory (2 GPUs/CPU). For CUDA, this memory requirement
causes a lot of page faults for all three kernels. This limits the
total bandwidth to 5 GBit/sec for all three kernels. With hexe,
these page faults are avoided by forcing the placement of the
arrays statically based on their priorities, leading to improved
performance.

C. MiniFE

We also evaluated the different memory allocation models
using the MiniFE miniapp. MiniFE is a bandwidth-limited
application in the Mantevo suite [3]. It is a finite-element
application that implements a couple of kernels that are
representative of implicit finite-element applications. We used
the OpenMP-optimized version 2.0.1 of this code [1]. Since
the code is written in C++, we developed our own hexe
allocator class that can be used with C++ STL containers. For
comparison, we also implemented an allocator using memkind.

The memkind allocator uses the preferred option to allocate
as much memory as possible on the HBM. For hexe, all
allocations use a priority of one, so the placement was decided
mainly based on the size. We believe that a better profiling of
the access patterns can further improve performance, but we
have not done so here. As with the stream benchmark we ran
the MiniFE application with different problem sizes. For the

0

100

200

300

400

500

600

m
allo

c

h
exe

m
allo

c

h
exe

m
allo

c

h
exe

512x256x256 512x512x256 512x512x512

R
u

n
ti

m
e 

(s
)

 Mat-struc-gen

FE assembly

Total CG

Other

(a) Quadrant cache mode

0

100

200

300

400

500

600

m
al

lo
c

m
en

ki
n

d

h
ex

e

m
al

lo
c

m
em

ki
n

d

h
ex

e

m
al

lo
c

m
em

ki
n

d

h
ex

e

512x256x256 512x512x256 512x512x512

R
u

n
ti

m
e 

(s
)

 Mat-struc-gen
FE assembly
Total CG
Other

(b) Quadrant flat mode

0

100

200

300

400

500

600
m

allo
c

h
exe

m
allo

c

h
exe

m
allo

c

h
exe

512x256x256 512x512x256 512x512x512

R
u

n
ti

m
e 

(s
)

 Mat-struc-gen

FE assembly

Total CG

Other

(c) SNC cache mode

0

100

200

300

400

500

600

m
al

lo
c

m
en

ki
n

d

h
ex

e

m
al

lo
c

m
em

ki
n

d

h
ex

e

m
al

lo
c

m
em

ki
n

d

h
ex

e

512x256x256 512x512x256 512x512x512

R
u

n
ti

m
e 

(s
)

 Mat-struc-gen
FE assembly
Total CG
Other

(d) SNC flat mode

Fig. 4: Results for the miniFE miniapp on KNL

smallest size of 512× 256× 256 all data fits into the HBM.
For the largest problem size more than 48 GB of memory is
required, and only small structures can be allocated completely
in the HBM.

The results for the different memory modes of KNL are
shown in Figure 4. The graphs show the total runtime of the
application split into different phases. Hexe shows the lowest
runtime for most cases, but the total difference is smaller
compared with the STREAM benchmark.
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Fig. 5: Runtime of the compute kernels (CG-Solve) for the
miniFE benchmark

To further understand these results, we split the total runtime
of the application into different phases. Most of the time is
spent in the matrix generation phase. Here, the runtimes for
malloc and hexe do not differ. This part of the application
is not bandwidth limited. Therefore, it does not make any



difference whether the field is allocated in HBM or DRAM.
However, the compute-kernels of the MiniFE benchmarks
are bandwidth limited. Figure 5 shows the runtime of only
the miniFE compute kernels, normalized to the benchmark
size. Here, we can clearly see the benefits of hexe and high
bandwidth memory compared with other allocation types.

VI. RELATED WORK

In [14] and [12], different page-allocation and migration
strategies for heterogeneous memory architectures are discussed.
The authors propose operating system support for automatic
page migration. In [13] this approach is used and compared
with transparent usage of HBM as cache in terms of energy and
performance. These results are based on hardware simulation
and show that no model is the best for all use cases. All
these approaches use the operating system to manage the data
location, whereas hexe distributes the data in user space. This
approach also gives hexe the advantage of allowing user
control of specific memory allocation and placement policies.

In [11], different migration strategies for heterogeneous
memory systems are evaluated. The authors use a NUMA
system for evaluation. They focus on data migration, a feature
that is currently not in hexe. However, the results shown in
this paper are promising, and such capabilities can certainly
help improve hexe in the future.

In [5] the authors use the LLVM compiler suite to analyze
applications and decide when it is beneficial to allocate data
in high bandwidth memory. Internally, they use memkind to
allocate HBM memory. An approach like this can work well
in conjunction with hexe because it can be used to analyze
applications and set priorities automatically.

Another approach to find the best possible memory layout
is tracing. Tools like hexe can be used only when the user
knows which objects are best to place in HBM. For this purpose,
object-based tracing can be used. In [10] and [9] the author
introduces an extension to Valgrind and Callgrind that can help
find the best static memory layout for applications. It allows a
per-object tracking of accesses to memory.

VII. CONCLUDING REMARKS

We presented hexe, a highly flexible and portable memory
allocation toolkit for heterogeneous memory. Compared with
other memory allocation tools such as malloc and memkind,
hexe improves both the flexibility and portability of memory
allocation and management, thus allowing for more sophis-
ticated usage models. Experimental results demonstrate the
sophisticated memory allocation model and the corresponding
performance benefits it can achieve.

ACKNOWLEDGMENT

This material is, in part, based upon work supported by the
U.S. Department of Energy, Office of Science, under contract
DE-AC02-06CH11357 and, in part, based upon work supported
by the Human Brain Project PCP Pilot Systems at the Jülich
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