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Abstract—Recent advances in storage devices are opening new
opportunities in high-performance computing (HPC). Technolo-
gies such as solid-state drives (SSD) and non-volatile memo-
ries (NVM) are becoming increasingly popular because of the
important gains they can represent for HPC. Indeed, novel
architectures with deeper storage hierarchies populated with
SSDs and/or NVM offer new ways to improve applications’
performance. For instance, fast multilevel checkpointing or in-
situ data analysis are some of the techniques that can be greatly
improved thanks to these new technologies. However, optimiza-
tions made for one system can impose performance costs in
another machine due to topology differences. To take advantage
of increasingly complex systems, we propose extensions to MPI
enabling codes to determine which nodes of a system share
common features. Our approach provides a portable mechanism
for resource discovery. It also lays the foundation for additional
optimizations in checkpointing and in ROMIO. In this paper we
present the design and implementation of such a feature and
test it with multiple benchmarks. Our results demonstrate the
benefits of this portable resource discovery functionality.

Keywords-MPI; communicators; topology; discovery; storage;
portability; SSD; NVM; burst buffers

I. INTRODUCTION

While supercomputers continue to deliver increasingly
greater computational power, the associated storage systems
lag behind in terms of available bandwidth. Supercomputer
architects have designed more complex storage hierarchies
to bridge the storage-CPU performance gap. These storage
hierarchies include solid-state drives (SSDs) and nonvolatile
memory (NVM), either local to a compute node or hosted on
an intermediate proxy node. While these technologies offer
new opportunities for performance improvements, they also
pose a challenge: applications need a way to discover what, if
any, storage hierarchy is in place.

In particular, the storage hierarchy can have an important
impact on performance for large-scale scientific applications,
and any gain in I/O can have large benefits for the application.
Therefore, future exascale applications will need to make
efficient use of all the storage levels in the system. A one-size-
fits-all approach will not be apropriate: the storage architecture
and characterisitcs of one machine might be completely dif-
ferent from other machines. In this context, the portability of
scientific codes will depend on the capabilities of the system
middleware and runtime to discover the different storage levels
available in a portable fashion. Programming libraries, such
as MPI, should offer features and tools that would allow
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scientists to efficiently take advantage of these new devices
in an intuitive way. Thus, the MPI standard must adapt to
this changing landscape and integrate the new architectural
changes.

In this paper, we propose an MPI extension that allows users
to portably discover which MPI processes share particular
storage levels. For instance, if a system is equipped with SSDs
on the compute nodes, this new MPI feature would allow users
to create communicators consisting of all MPI processes that
have access to the same local SSD. Those MPI communicators
would then allow efficient communication and local optimiza-
tion for HPC codes. While this example could be achieved by
other means such as looking for the hostname, those other
options are site-specific: porting to a new platform would
require adjusting the “topology investigation” component. In
addition, more complex architectures might be designed, such
as systems with local storage shared by multiple compute
nodes or local storage that can be reconfigured dynamically.
Our proposed extension offloads the topology investigation to
the MPI implementation and site-specific defaults. We have
implemented this MPI extension and tested it with multiple
benchmarks in different scenarios. Our results show that large
performance improvements can be achieved when such a
portable storage discovery is enabled.

I/O provides a compelling use case, but our approach could
be extended to partition MPI processes into groups that share
network resources, are physically adjacent, or otherwise share
some kind of resource.

The contributions of this paper can be summarized as
follows.

+ We design and implement a portable way to discover the

storage topology of the system.

o We verify the accuracy of the MPI topology-query func-
tionality on a system with local storage on the compute
nodes and global file system.

o« We measure the performance gains obtained by lever-
aging multiple storage levels thanks to the proposed
topology-query functionality.

o We model possible gains that could be achieved using
this functionality in exascale systems for different storage
system configurations.

In Section II we discuss the challenges of topology discov-

ery, particularly with the introduction of an NVRAM layer to
the storage hierarchy. Section III describes how we extended
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Fig. 1. Dramatic improvement in CPU performance (green, 80% per year)
compared with storage bandwidth (purple, improving only 11% per year).

MPI-3 to meet these challenges. It also describes our approach
and how it might be used in a real application. We prototyped
this design in MPICH and modified two codes to make use
of this new feature. As shown in Section IV, bypassing
the parallel file system can greatly improve performance.
Section V discusses related work, and Section VI summarizes
our conclusions.

II. BACKGROUND

HPC applications have been developed by using mainly two
storage levels: the main memory and a globally visible parallel
file system (PFS). The PFS gathers together thousands of hard
disks for performance and reliability and presents a single
unified namespace. In recent years, however, using the PFS
as the only medium-term storage has been shown to impose a
significant limitation on an application’s performance [1]; and
the performance gap between CPU and storage grows more
dramatic with time. Figure 1 shows that as each new system
comes on line, it provides the well-known doubling of compute
power every 18 months. Storage capacity increases greatly as
well, but storage performance improves only slightly. To close
the performance gap, systems have begun to deploy devices
in a deeper storage hierarchy.

Placing hard disks in the compute nodes as an intermediary
step between the main memory and the PFS has been tried in
the past, but traditional hard disks pose significant reliability
challenges [2]. Because of the nature of hard disks and their
moving components, relying on disk drives has made compute
nodes prone to failures and has introduced instability in the
whole system.

Fortunately, new storage devices are populating the market
that offer new reliability-performance trade-offs. In particular,
SSD and NVRAM are good candidates for bridging the gap
between compute node memory and the PFS, providing a
durable staging area for application data. How such devices
will be placed in the system is still unknown, however.
Envisioned topologies include each node having its own local
storage; nodes in a compute rack sharing rack-local storage; or
an I/O proxy node containing storage available to its proxied
nodes [3]. In any case, a single configuration is unlikely to be

the best fit for all possible applications. Therefore, applications
will require flexibility if they wish to run efficiently across all
future HPC designs.

A. Data Staging in HPC

Several I/O tasks require efficient use of all the available
storage devices. One of the most demanding workloads for
the file system is checkpointing. When a checkpoint is done
in a coordinated fashion, the stress on the I/O storage is
huge because of the large volumes of data that need to be
stored reliably. This requirement can impose a large overhead
on the application if checkpoints have to be taken at high
frequency, which is what is expected at extreme scale because
of the increase in the expected rate of faults. Moreover, as the
failure rate grows with the component count, the I/O overhead
grows with the global memory size. Thus, checkpoints can
take several tens of minutes, and the checkpoint frequency
is expected to be around one hour [4], leading to a scenario
where the system spends more time writing data in the PFS
than computing.

In order to relieve this pressure on the PFS, multilevel
checkpointing has been proposed and implemented [5], [6],
[7]. Multilevel checkpoints use local storage devices at high
frequency and move checkpoint data to the file system at
low frequency. This strategy can be combined in the compute
nodes with data protection techniques such as data replication
or erasure codes. For such techniques to work well, however,
having a clear and accurate knowledge of the storage levels
in the system is essential. Indeed, data replication and erasure
codes will not work if the redundant data is stored in the
same local device as is the original data. This need for data
dispersion can be achieved in a portable fashion only if the
runtime offers portable ways to query the storage topology of
the machine.

In addition to checkpointing, HPC applications have become
more complex as they have incorporated part of the data
analysis in the application. The reason for this recent trend
is the amount of time that is wasted moving data back and
forth to the PFS. Thus, in situ analysis and visualization
are becoming a major optimization strategy for extreme-scale
applications. Clearly, data used for analysis and visualization
has to be staged in some intermediary storage until the
analysis/visualization process can consume it. This process
again can be optimized if one possesses a good knowledge of
the storage topology of the machine—hence the importance
of such portable topology queries.

B. Striving for Portability

HPC users attempting to efficiently use all storage levels
will need to know which processes share the same storage
components. Furthermore, since many scientists run their
applications on multiple machines and in many cases the
same application is used by multiple scientists in different
institutions around the world on different supercomputers, the
discovery of a system’s topology should be portable,



Several portability efforts have been undertaken
in the past. For instance, MPI-3 introduced the
MPI_COMM_SPLIT_TYPE routine to split an MPI

communicator based on colors (to partition the processes) and
keys (to order the processes in a specific partition). One of the
“types” available in MPI-3 is MPI_COMM_TYPE_SHARED,
which offers the possibility of splitting a communicator in
groups of processes that can share a memory region.
Unfortunately, shared memory does not necessarily translate
into groups of processes that share the same storage; other
processes might not share any memory region but might share
the same local storage.
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Fig. 2. Three storage topologies for extreme-scale systems. The first
architecture has local storage in each compute node. The second one has
local storage shared among multiple nodes (burst buffer). The third one has
the same number of storage devices as nodes in a blade, but they are connected
through a dynamic router in which any storage device can be mapped to any
node.
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Figure 2 shows three possible storage topologies. On the
left, each node has its own SSD. All processes running on
that node can access the SSD. Another option is depicted in
the middle of the figure, showing intermediary storage located
in a per drawer basis. All the nodes in a drawer share the
same local storage, but they do not share any memory region.
On the right is a system that puts multiple storage devices
behind a router, which could be reconfigured dynamically after
the failure of a node (but not of its previously designated
storage device). These are just some examples of a much
larger spectrum of storage topologies. Clearly needed are new
MPI features that allow for a portable way to discover storage
topologies in supercomputers.

III. MOTIVATION AND DESIGN

A portable resource discovery feature can be implemented in
multiple ways, each having different overhead-accuracy trade-
offs. In this section we discuss several design options and
possible extensions.

A. Extending MPI

The MPI-3 standard introduced a routine
MPI_COMM_SPLIT_TYPE that provides additional ways
to partition a given communicator. The older routine

MPI_COMM_SPLIT also partitions a communicator but relies
on the caller to provide the “color” (to facilitate grouping
of processes) and “key” (to facilitate ordering within newly
constructed groups) parameters. COMM_SPLIT works well
for application-driven communicator creation. When using
that routine to establish communicators based on some
hardware feature, however, callers may not have a sufficiently
detailed understanding of a machine’s topology to correctly
select the “color” parameter. COMM_SPLIT_TYPE provides
a more machine-oriented way to create communicators.

MPI_Info_create(&info);

MPI_Info_set (info, "nbhd_common_dirname",
"/path/to/NVRAM") ;

MPI_Comm_split_type (MPI_COMM_WORLD,
MPIX_COMM_TYPE_NEIGHBORHOOD, 0, info, &comm);

Fig. 3. Example of the new flag for split_type. The info key
“nbhd_common_dirname” holds as its value the location of a directory that
may be available to one, some, or all processes.

The MPI standard already provides a parameter
“split_type”: MPI_COMM_TYPE_SHARED splits a com-
municator such that all processes in the new communicators
have access to shared memory. We have introduced a new
type, MPIX_COMM_TYPE_NEIGHBORHOOD, that splits a
communicator based on certain hardware characteristics.
These characteristics could be accessing a common file
system, which we implemented, or sharing a common
network topology feature. We use the “info” parameter,
already part of the standard routine, to provide additional
information for the library to make its neighborhood-splitting
decisions. Figure 3 demonstrates the way one might call this
routine in C.

In this work we have implemented and evaluated the info
key “nbhd_common_dirname.” An MPI implementation will
determine whether the directory associated with this key is
common to one or more MPI processes. The implementation
will then set up one or more MPI communicators consisting of
processes that share the given directory. Implementations could
define behavior for other info keys. We propose that an MPI
implementation or platform that does not support a specific
info key will return an error and set up new communicators
as MPI_COMM_NULL. An alternative approach for handling
unknown info keys or not providing any info key, which we
imagine would be evaluated as part of the standardization
process, could have the routine ignore any unknown info key
and set up single processes communicators for all callers.

Using the info key to pass in additional parameters has
several benefits. An MPI info object associates string-based
keys with string-based values. The implementation is free to
ignore any key it does not understand. An MPI implementation
can introduce new keys without requiring any header file
changes or introducing any binary incompatibility. The info
key also provides an opportunity for a deployment to provide
site-specific tuning. In ROMIO, a config file can provide a
set of default hints suitable for a given environment. One
can imagine using such a mechanism to further simplify the



if (rank ==
construct unique file name
MPI_Bcast (testdirname, PATH_MAX, MPI_BYTE, 0, comm);
ret = mkdir (testdirname, S_IRWXU);
if (ret == -1 && errno != EEXIST) goto fn_fail;
open (filename, O_CREAT, S_IRUSR|S_IWUSR) ;

MPI_Barrier (comm) ;

/* each process has created a file in a M-way shared
* directory (where M in the range [l-nprocs] ).
* now see else can see this directory x/

if ((dir = opendir (testdirname)) == NULL)
goto fn_fail;

while ( (entry = readdir(dir)) != NULL) {
if (strcmp(entry->d_name, ".") == 0) continue;
if (strcmp(entry->d_name, "..") == 0) continue;
ranks[Jj++] = atoi (entry->d_name);

}

MPI_Comm_group (comm, &comm_group);
MPI_Group_incl (comm_group, Jj, ranks, &newgroup);
MPI_Comm_create (comm, newgroup, nhewcomm);
MPI_Group_free (&newgroup) ;

MPI_Group_free (&§comm_group) ;

Fig. 4. Code for the exhaustive storage topology algorithm (omitting, e.g.,
error checking and string manipulation).

resource-locating step.

1) Aggressive storage probing: For most applications, split-
ting communicators happens outside the critical path: an appli-
cation will set up a communicator and then commence com-
munication. We can therefore probe the underlying hardware
topology fairly aggressively in order to discover how processes
are placed on the machine, without too much concern for
how such probing will disturb the calling application. We
suggest two approaches: one slow and thorough, the other a
fast approach that might misreport some configurations but
stresses the underlying storage far less.

We provide in Figure 4 a stripped-down C code showing the
essence of the slow algorithm to determine which processes
share a particular file system. The algorithm starts with every
MPI process creating a file corresponding to its MPI rank in
an agreed-upon (e.g., via info key) test directory. Next, each
process gets a listing of files in the output directory. If, for
example, the directory contains the files ”1,” ”10,” 71024,”
and 752345,” those ranks are the ones to which this directory
in question is common. We can then create new MPI groups
consisting of ranks sharing access to the directory and can
immediately promote those groups to communicators.

Arguably, this approach poses significant challenges with
large numbers of MPI processes. Should the target directory
reside on the globally visible parallel file system, creating
one file per process could pose a metadata strain on the PFS.
It would be able, however, to accurately report the topology
of hierarchical storage systems where the common storage is
shared at the rack or service-node level. Another drawback
to this approach is the lack of metadata operations in the
MPI standard. Our current implementation relies on POSIX
creation and directory reading routines. While many storage
devices today do provide a POSIX API, some architectures
are likely to provide non-POSIX interfaces to storage devices
(e.g., keyval or object-based).

MPIR_Get_node_id(comm, rank, &id);

/#* — Create file on one processor
* — pick a processor outside the "on this node" group
* — 1f that processor can see the file, then assume the
* file is visible to all groups.
*/

if (rank == 0) {
/* omitted: select ’challenge_rank’ of process
* not on this node =/
}
mpi_errno = MPI_Bcast (&challenge_rank, 1, MPI_INT, 0, comm);

/# now start poking file system:x/

/+ Use a single short message to force check after
* create: ordering is a little odd in case we are
* creating and checking on the same rank =/

if (rank == challenge_rank)
MPI_TIrecv (NULL, 0, MPI_BYTE, 0, 0, comm, &check_req);

if (rank == 0) {
mpi_errno = MPI_File_open (MPI_COMM_SELF, filename,
MPI_MODE_CREATE | MPI_MODE_EXCL |
MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);
MPI_File_close(&fh);
/# the check for file has to happen after file
* created. only need one process, though, not a
* full barrier */
MPI_Send(NULL, 0, MPI_BYTE, challenge_rank, 0, comm);
}

if (rank == challenge_rank) {
MPI_Wait (&check_req, MPI_STATUS_IGNORE) ;

/# too bad there’s no ADIO equivalent of access: we’ll
* have to open/close the file instead */

mpi_errno = MPI_File_open (MPI_COMM_SELF, filename,
MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);
if (mpi_errno == MPI_SUCCESS) {
globally_visible = 1;
MPI_File_close (&fh);
} else {
/* do not report error up to caller.
* merely testing the presence of the file =*/
mpi_errno = MPI_SUCCESS;
globally_visible = 0;
}
}
MPI_Bcast (&globally_visible, 1, MPI_INT,
challenge_rank, comm);

if (globally_visible) {
MPI_Comm_dup (comm, newcomm) ;
}
else {
MPI_Comm_split (comm, id, key, newcomm) ;

}

Fig. 5. Heuristic for detecting common topologies quickly.



2) A more scalable heuristic: We provide a lower-overhead
heuristic in Figure 5. After grouping MPI processes by node,
one process on one group creates the test file. We then select a
different group. If a “challenge rank™ process from that group
can see the file created by the first group, we assume that all
processes from all groups can see that file (e.g., the common
directory is a parallel file system available to all processes).
If not, we assume that the file is only node-visible (e.g., an
NVRAM block device mounted somewhere on that node). We
have the “checking” process wait on a zero-byte send from the
“create” process to prevent the “checking” process from racing
ahead of the “create” process. We have omitted error handling
in this code fragment, but the implementation in MPICH does
report errors back to the caller.

This heuristic will detect common “node-local” storage
topologies but will not generate an ideal collection of commu-
nicators over topologies where storage is local to a subset of
nodes. For example, if a burst buffer resides at an intermediate
node shared with a specific rack of the machine, this heuristic
would flag the topology as “not globally visible”: the resulting
communicators would span one node, not all processes in the
rack.

While not foolproof, this heuristic matches the common use
cases and requires only two file system operations (creation
and access), both of which we implement with MPI-1O rou-
tines. Avoiding direct calls to POSIX helps with portability:
in the case of non-POSIX storage interfaces, the MPI-IO im-
plementation might have specialized routines as in ROMIO’s
ADIO layer [8].

B. Use Cases

The linear growth of file systems cannot always cope with
the exponential growth of supercomputers and sometimes
becomes a bottleneck. This situation has led to a series of
strategies specifically designed to avoid data transfers to the
file system. All these techniques rely on local storage to
alleviate the stress on the file system and reduce overhead.
The arrival of new storage technologies, such as NVRAM and
3DRAM, offers a promising landscape for the development
and enhancement of those techniques that leverage local
storage efficiently,

A clear example of such techniques is multilevel check-
pointing, which consists of checkpointing in local storage
at high frequency and performing file system checkpoints
at much lower frequency. Local checkpointing is useful for
tolerating soft errors, but it cannot recover from node crashes.
Therefore, local checkpointing is usually accompanied by
either erasure codes or checkpoint replication. These tasks can
be offloaded to dedicated service processes that have access
to the checkpoint files written by the application processes.
Here is where a portable way to find shared storages is of
great benefit because it allows users to construct groups where
some (or most) processes produce data and write it in a local
storage, and the other processes consume it. With multilevel
checkpointing, the fault-tolerant dedicated processes read the

local checkpoint data to encode it or replicate it, in order to
tolerate node crashes.

Another use case that is gaining popularity as we approach
exascale is the implementation of workflows. Scientific sim-
ulations executed in supercomputers produce a vast amount
of data that needs to be processed for analysis and/or vi-
sualization. Traditionally such a task was done on one or
just a few nodes, but doing so has become increasingly
difficult as the size of the postprocessing data keeps growing.
Therefore, in situ postprocessing has become the rule rather
than the exception. Several workflow frameworks have been
proposed recently [9], [10] to take advantage of local storage
and extra computing resources. Several workflow frameworks
split the global MPI communicator so that some processes
participate in the simulation and others in the postprocess-
ing. The postprocessing processes should have access to the
local storage where the simulation data has been stored.
MPIX_COMM_TYPE_NEIGHBORHOQOD offers a portable
way of implementing such partitioning.

We note that in some architectures, local storage is not
equivalent to intranode storage. In fact, multiple nodes (e.g.,
all nodes in a blade) could share some common local storage.
In such a case even if some node in the blade goes down,
other nodes could potentially access the local checkpoint files
written by the failed node. Storage shared among nodes opens
new possibilities such as taking local checkpoints that can
tolerate node crashes without the need for erasure codes or
checkpoint replication. A third use case involves generalizing
the checkpointing problem to all I/O. Earlier work has looked
at log-oriented approaches for write-intensive workloads [11],
[12]. One could extend these approaches to use any topol-
ogy information provided by the MPI implementation. These
logging approaches have the problem of generating one file
per MPI process. Grouping processes into subsets sharing a
common storage device presents a natural way to reduce the
number of logs generated.

IV. EXPERIMENTAL EVALUATION

We demonstrate the benefit of these topology query exten-
sions with a microbenchmark and two general cases. In one,
we use topology information to produce node-local check-
points. In another, we use topology information to select an
efficient resource for inter-process data exchange.

A. Basic Performance

We first performed a simple evaluation to quantify the cost
and scalability of our topology discovery. This benchmark
measures the time to call MPI_COMM_SPLIT_TYPE in three
cases: provide no hint information, interrogate the provided
directory exhaustively, and interrogate the provided directory
with our heuristic. If a name is not given, the routine returns
a NULL communicator. The difference in times between
the two configurations represents the overhead of topology
discovery. In common use, communicator creation is a one-
time setup cost and is unlikely to be critical to performance,
but quantifying the cost of our approach is still important.
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We used the Blues machine, hosted at Argonnne’s Labo-
ratory Computing Resource Center. Blues is a Linux cluster
whose “batch” queue contains nodes with 16 Sandy Bridge
Xeon E5-2670 2.6 GHz processors. The compute nodes access
a GPFS file system and have no local storage aside from
a ramdisk. In these experiments we treat the ramdisk on
/scratch as a stand-in for NVRAM or SSD storage.

In the microbenchmark we ran each configuration 100 times
and report the median with 95% confidence intervals. Fig-
ure 6 shows the performance difference between the heuristic
and exhaustive approaches. In this experiment only 16 MPI
processes per node are interrogating a node-local file system,
limiting the overhead.

The evaluation looks much different when we apply these
algorithms to a shared parallel file system. To answer just
how high the overhead of the exhaustive algorithm can be, we
applied our evaluation to the GPFS parallel file system shared
across all of the Blues cluster. GPFES is tuned for large parallel
data transfers, but like virtually all parallel file systems it is not
well suited to a storm of metadata operations. The results in
Figure 7 show that even at modest scale the heuristic approach,

with its small number of storage operations, performs far better
than the exhaustive approach.

B. IOR Benchmark

Our next experiment aims to demonstrate that using this
MPI extension, one can tap the full potential of multiple
storage levels even in unconventional architectures. This test
was done on a cluster with over 900 system-on-chip nodes.
Each node has two cores based on ARM technology running
at 1.7 GHz and 4 GB of ECC-less low-power DRAM. The
nodes are connected together by an InfiniBand network and
to a Lustre file system. The nodes also have a local mi-
croSD storage that can be used as a scratch directory.
While microSD storage is not common in high-end HPC
platforms, the proposed topology discovery feature discovers
which processes have access to the same storage resources,
regardless of the underlying technology. In this cluster one
has no direct way of knowing which MPI processes share the
same microSD storage; thus one would need to implement
a storage discovery scheme manually that is unlikely to be
portable to other systems.
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We evaluated the write performance of both storage levels,
local and global. We used IOR [13], a benchmark specially
designed to accurately measure the speed of parallel file
systems and other storage devices in HPC systems. We focus
on the write speed because this is what will dominate the
time to completion of applications that use the PFS at high
frequency. In particular, long executions writing checkpoint
files in the PFS.

Figure 8 shows the write speed on both storage levels for
different file sizes, going from 1 MB to 128 MB. We observe
that for all file sizes writing in the local flash storage is about
one order of magnitude faster than writing in the file system.
This result is expected because it is well known that sharing
resources such as the PFS leads to congestion while moving
large volumes of data.

Next, we set up an I/O benchmark that performs a series of
write operations and some partial computation. The execution
time is largely dominated by the I/O time. We set up two
scenarios. In the first scenario, I/O operations were performed
on the Lustre PFS. In the second scenario, we split the
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communicator based on processes with access to the same
/scratch directory, and we performed the writes in the
shared storage. We compare the performance of our synthetic
benchmark with the performance of the IOR benchmark to
demonstrate the relevance of the IOR results and how they
relate to more complex benchmarks.

Figure 9 shows that both the synthetic benchmark and IOR
behave similarly. The execution time changes by over an order
of magnitude from the first scenario to the second one that
leverages the local storage while leveraging the intermediary
storage levels through COMM_SPLIT_TYPE. As expected,
the times are not identical since the I/O benchmark performs
slightly more computing work. Nonetheless, they show the
same behavior because they are both limited by the I/O band-
width of the corresponding storage space. While the benefits of
local vs global storage are known, what is important to note
is that the code using COMM_SPLIT_TYPE is completely
portable and could be executed in a system without any
intermediary storage. This feature opens the possibility for
users to have one single master code that can be executed
in different architectures and leverage intermediary storages
when available.

C. I/O Kernel Benchmarks

Checkpointing is one of the most I/O-intensive operations
for HPC applications. Thus it is a good example to show how
the proposed MPI extension can help us leverage multiple
storage levels efficiently and portably. To demonstrate this
benefit of topology awareness, we consider an application
running on a Linux cluster where each compute node has
local storage and also has access to a fast parallel file system.
Instead of checkpointing to a shared canonical file on the
globally accessible parallel file system, we instead checkpoint
locally. Creating one local file per node avoids the parallel
file system’s locking and coordination overhead and generates
fewer files than does a model with one file per MPI process.

The HACC-IO kernel! mimics the I/O behavior of the
HACC cosmology simulation code [14]. The benchmark does
no simulation itself but merely writes and reads 9 variables
associated with N particles.

Uhttp://git.mcs.anl.gov/HACC-IO.git/

HACC-10 benchmark
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Fig. 10. After the benchmark acquires a local-storage communicator, it uses
this communicator to collectively write checkpoints locally. By avoiding the
overhead of the parallel file system, these local checkpoints complete quickly.

As with the microbenchmark earlier, we ran this experiment
on the Blues cluster. We configured MPICH to use the
libfabric driver and used the PSM provider for libfabric.

In this test we compared two approaches for saving and
restoring a checkpoint. The traditional way performs collective
I/O to a shared file on the GPFS file system. In this approach
every process opens the checkpoint file with COMM_WORLD
for a communicator. The “topology-aware” way splits the
WORLD communicator based on which processes have access
to the /scratch ramdisk. These sub communicators then
each collectively write a checkpoint to the common-to-them
/scratch file system.

As shown in Figure 10, checkpointing locally provides
performance benefits. GPFS provides several consistency and
coordination features that MPI-IO does not require. In this
weak-scaling benchmark in which each process writes out
4,023,224 particles, processes must obtain file system write
locks. Even with MPI-IO optimizations, HACC-IO incurs
several overheads when writing to the parallel file system.
By grouping processes into those that can write to the local
ramdisk, we can greatly improve performance. While this
approach has been known for a long time, most current
solutions to leverage local storage must use architecture-
specific hooks to discover the storage topology. Solutions such
as gethostbyname are not portable, and not all machines have
the same storage topology.

The parallel file system does provide several advantages.
The checkpoint file ends up in a canonical form suitable,
for example, for visualization or other workflow components.
Additionally, the parallel file system provides some measure
of durability. We have not investigated whether approaches to
stage out and stage in these fragmented checkpoints are slower
than the time gained by checkpointing locally.

Next, we fixed the number of MPI processes and increased
the amount of data for each process. The data checkpointed
is then analyzed by another process to detect trends and
anomalies. This is a classic example of scientific workflows
including data analytics and data visualization. Note that
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reading the checkpoint data during runtime for data analysis
increases the topology awareness requirements since the MPI
process reading the data needs to have access to the same
storage as do the processes producing the data. In other words,
writing to local storage regardless of who else has access to
it is not enough because there could be analytic processes
without access to any checkpoint file, or checkpoint files that
are not analyzed by any analytics process. Again, we set up
two scenarios: one in which the data is written on the PFS and
a second scenario in which the data is written in a shared local
storage using the topology-aware MPI extension proposed. We
measured the writing time for each rank in an execution with
256 MPI ranks. We performed this measurement for four data
sizes, from 64 MB per rank to 512 MB per rank.

TABLE I
MEAN WRITING TIME ACROSS ALL RANKS

Ckpt. Size per Rank (MB) | PFS (s) | Topology-Aware (s)

64 0.094 0.048
128 0.262 0.096
256 1.474 0.193
512 5.053 0.385

The results are depicted in Figure 11. As we can see,
writing in a global storage is several orders of magnitude
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more expensive than leveraging the intermediate storage levels
through the topology-aware construct. Note that the y axis
changes substantially as the size of the checkpoints increases.
In fact, while writing 512 MB in the PFS, some processes take
more than 25 seconds; in contrast, using the topology-aware
feature of MPI, they can write two orders of magnitude faster.
The reason is that the PFS is receiving a total of 128 GB of
data whereas the local storage needs to handle only 8 GB of
data. Table I shows the mean writing time across all MPI ranks
for PFS-based checkpointing compared with using topology-
aware storage. As we move toward exascale, with thousands of
processes writing data for different purposes (e.g., checkpoint-
ing, analytics), these topology-aware techniques will become
more critical to efficiently using those machines.

D. Dynamic Data Exchange 1/0O Benchmark

To further stress our experiments, we evaluated another
I/O benchmark to simulate a much more dynamic scenario.
Instead of writing always in local or global storage, we tested
a synthetic benchmark in which all MPI processes exchange
large volumes of data between them in a completely dynamic
fashion. This case is more complex than simply reading data
from the same processes during the entire execution. In the
new setup, processes must decide whether they write the data
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Fig. 12. Using a file system to exchange data might make sense in coupled
codes or workflow situations. Exchanging data through a shared local file
system is dramatically faster than doing so through the global parallel file
system.

locally or globally depending on which process must consume
the produced data. If the process consuming the data has
access to the same storage as the process producing the data,
then the data is written locally; otherwise it is written in the
global PFS. The second scenario assumes that no topology-
aware option exists; thus all processes have to perform all the
writes in the global PFS. All writes correspond to chunks of
data of the same size during the entire execution. We increase
the block size for multiple executions. This workload is a much
more dynamic behaviour that cannot be handled simply by
the classic approach of globally writing in local SSD (as for
multilevel checkpointing); instead, some blocks of data can be
written locally while other have to be written globally, so that
the consumer task can access those blocks.

Figure 12 shows the results of this evaluation for different
block sizes. For each point, we plot the minimum, maximum,
and mean of an execution with 256 processes producing data
at the same rate. For the largest files size (i.e., 128 MB) the
aggregate of all processes data reaches about 32 GB.

As we can observe, COMM_TYPE_NEIGHBORHOOD
allows us to leverage all the hardware resources available,
leading to orders of magnitude better performance. This differ-
ence in performance becomes critical for large file sizes, where
leveraging the common local resources takes less than half a
minute, whereas writing to the parallel file system takes over
5 minutes. This difference is due to the fact that hardware
resources are used differently by the two cases, and this is
directly related to the fact that such hardware is available when
a portable way to discover it exists.

V. RELATED WORK

Several attempts have been made to introduce topology
discovery inside the MPI standard. For instance, an MPI tool
for discovering switch-level topologies in Ethernet clusters
was proposed several years ago [15]; the work relied on
the Simple Network Management Protocol to obtain topology

information. Another attempt to discover network topology
in HPC systems was the netloc project [16]. This project
proposed a modular approach in order to support multiple
network types and discovery methodologies; it also proposed
representing the topology as a graph in order to support
any network topology configuration. However, none of these
works investigated the discovery of the storage topology—
an important limitation since the storage hierarchy is getting
deeper.

The OpenMPI team have also extended SPLIT_TYPE but
taken a different approach. They extended the split_type
parameter to allow other hardware options [17]. While such
an approach is valid, we feel that it limits portability. MPI
info objects have the helpful property that an implementation
is free to ignore unknown or unrecognized keys. Extending
SPLIT_TYPE via Info objects will maintain binary com-
patibility when an implementation provides a new topology
discovery option. Furthermore, the topology detection routines
provided by OpenMPI cover only CPU and network topology
and do not address storage hierarchy.

Given the current popularity of new storage technologies,
a large number of groups have been studying the most ef-
ficient ways of utilizing those. Some studies focus on how
to take advantage of such technologies, in particular given
that DRAM main memory accounts for about 40% of the
nodes’ power consumption [18]. Other research [19] has fo-
cused on improving I/O performance by using topology-aware
data placement, even under congestion scenarios. While these
works explore the most efficient ways of leveraging additional
storage levels in HPC systems, they do not address the issue of
topology discovery and portability. Other approaches, such as
TreeMatch [20], have proposed techniques to map processes
according to different constraints such as communication
density in NUMA nodes, but they do not provide a portable
way to discover storage topologies.

Large HPC laboratories across the world have expressed
interest in integrating burst buffers in the compute nodes of
their next-generation machines. Indeed, many researchers have
analyzed the impact of such buffers in future supercomputers.
The motivation is always closely related to the ideas discussed
in Section II. Studies about the best scheduling approach based
on I/O contention in burst-buffer-enabled machines [21] and
the role of burst buffers in extreme-scale storage systems [1]
are just a few examples of the work being done in this
domain. Such work has focused on the benefits of new storage
levels but has not addressed application-centric concerns such
as portable topology discovery and the respective scalability
challenges.

VI. CONCLUDING REMARKS

We have presented an extension to MPI-3 providing a
portable approach for investigating the topology of a compute
system. In a storage context this extension allows a program
to determine which nodes share faster local devices. We have
implemented this extension in MPICH, and we encourage



readers to experiment with our proposed extension and report
good or bad results.

We expect this extension to serve as the foundation for
more sophisticated data management libraries. Several projects
have addressed underwhelming parallel I/O performance by
creating one file per MPI process. Splitting the global com-
municator into groups sharing a common local file system
provides a natural way to reduce the number of files produced
and can provide higher performance.

With topology discovery in place, we can consider a mul-
tilevel synchronization strategy. The standard FILE_SYNC
routine pushes data from the client to permanent storage. With
a portable way to explore topology, a third layer between local
memory and permanent global storage becomes an option. A
FILE_SYNC_LOCAL routine would take local memory and
move it to persistent local storage. Later, either at program
exit or with an explicit FILE_SYNC call, the library would
take the local storage and transfer it to global storage.
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