
Bloomfish: A Highly Scalable Distributed K-mer
Counting Framework

Tao Gao,a,d Yanfei Guo,b Yanjie Wei,f Bingqiang Wang,e Yutong Lu,d,e,g

Pietro Cicotti,c Pavan Balaji,b and Michela Taufera

aUniversity of Delaware
bArgonne National Laboratory

cSan Diego Supercomputer Center

dNational University of Defense Technology
eNational Supercomputing Center in Guangzhou

fShenzhen Institutes of Advanced Technology, CAS
gSun Yat-sen University

Abstract—K-mer counting is a fundamental operation in DNA
research and genome analytics; its application includes estimating
genome assembly, understanding similarities in genomic samples,
and merging a newly processed genome with a reference genome.
As the genome dataset becomes larger and larger, designing a
highly optimized distributed-memory implementation becomes
more and more important. Current distributed-memory solutions
have two limitations: they have a high memory footprint, and they
do not provide advanced optimizations for loading enormous
genome datasets into memory. Based on these observations,
we present Bloomfish, a distributed, memory-efficient, scalable
solution to the limits of current work. To keep a low memory
footprint, Bloomfish leverages the compact hash array design of
the single-node Jellyfish system and the optimized workflow of the
high-performance MapReduce framework Mimir. We have also
codesigned Mimir’s I/O to efficiently load enormous datasets.
We ran Bloomfish on the Tianhe-2 supercomputer with large
sequence datasets (up to 24 TB). Our results show that Bloomfish
achieves unprecedented scalability in genome analytics.
Keywords: K-mer counting; Genome analysis; MapReduce; Memory
efficiency; I/O optimization; Performance and scalability

I. INTRODUCTION

In traditional linguistics, when dealing with strings, the
term k-mer refers to the set of possible substrings of length
k in the string. In genomics, a string is a DNA sequence
built from adenine, guanine, cytosine, and thymine; and k-mer
refers to the set of possible subsequences built from the four
nucleobases with length k. K-mer counting is a fundamental
operation in genome analytics, with several use cases. It can be
used to analyze and estimate genome assembly, such as the de
novo genome assembler [1]. K-mer counting also is a core tool
for understanding similarities in genomics samples [2] (e.g.,
rate of increase in k-mer counts explains how similar multiple
genomes are). Moreover, k-mer counting is an error validation
tool [3]; for example, when a newly processed genome is
merged with a reference genome, a drastic increase in k-mer
counts indicates the presence of errors in the sequence.

Computationally the total size of intermediate data (i.e.,
the set of k-mers) can be significantly larger than the input
DNA sequences, negatively impacting the memory footprint
of k-mer counting executions. Single-node solutions rely on
the development of compact k-mer storage methods [4], the
reduction in number of stored k-mers by filtering out singleton
k-mers [5], and the development of disk-based algorithms to

store the intermediate data in permanent storage [6], [7], [8],
[9], [10], [11]. State-of-art highly optimized single-node codes
such as Jellyfish [12] combine these techniques, resulting in an
efficient memory footprint for small datasets; but they cannot
efficiently count k-mers for larger and larger datasets. Figure 1
shows the k-mer counting performance of Jellyfish on a single
node of the Tianhe-2 supercomputer. The figure shows that
Jellyfish takes about one day to count k-mers for a modest
3 TB dataset from the 1000 Genomes project [13].

24
G

48
G

96
G

19
2G

38
4G

76
8G

15
36

G

30
72

G

dataset size

0

20000

40000

60000

80000

100000
ex

ec
ut

io
n 

tim
e 

(s
ec

)
Jellyfish

Fig. 1: Performance of a 22-mer counting for a 3 TB dataset with
Jellyfish on a single node of the Tianhe-2 supercomputer.

Distributed-memory solutions overcome the size limit of
single-node codes by using larger aggregated memories on
clusters or supercomputers [14], [15], [16], [17]. Often these
solutions adopt methods traditionally used in single-node
implementations in order to keep a low memory footprint.
For example, the Hipmer package [15], [16] includes a k-
mer counting module that eliminates singleton k-mers by a
Bloom filter, but it does not use compact k-mer store methods
such as the one used in Jellyfish and does not optimize the
workflow to minimize the intermediate data staging. A more
recently released k-mer code, Kmerind [17], relies on multiple
intermediary stages and a high memory footprint, limiting the
data that can be processed per node (e.g., a 3 GB input dataset
on a 128 GB node of the XSEDE cluster Comet). To the best
of our knowledge, none of the existing distributed-memory
solutions adaptively deals with I/O variability associated with
the different response times of different processes to read data
in parallel file systems. As a result, the processing times of
entire datasets are bound to the processing time of the slowest
process.



In this paper we tackle these problems by developing a new
distributed-memory k-mer counting framework called Bloom-
fish. Bloomfish is a memory-efficient, scalable k-mer counting
framework that leverages the highly compact intermediate
data storage solution of Jellyfish and the optimized workflow
of a MapReduce framework Mimir. Moreover, to support
loading terabytes and petabytes of genomic data into memory
efficiently, we redesigned the I/O framework of Mimir. We
note that these I/O optimizations can be applied to MapReduce
applications other than k-mer counter applications. Experi-
mental evaluation proves that Bloomfish significantly scales
to enormous datasets (up to 24 TB) compared with both
single-node and distributed-memory implementations; it also
substantially reduces the memory footprint compared with that
of other distributed-memory implementations.

The contributions of this paper are as follows.
1) We present a highly scalable and memory-efficient k-

mer counting framework, called Bloomfish.
2) We codesign the I/O framework on which Bloomfish

is built to support a stream I/O model, work stealing
for adaptive I/O performance, and I/O overlapping with
communication and computation.

3) We compare Bloomfish with state-of-the-art single-node
and distributed-memory implementations.

4) We present Bloomfish’s weak and strong scalability
on two high-end platforms, the XSEDE supercomputer
Comet and the supercomputer Tianhe-2, for DNA se-
quence datasets up to 24 TBs—larger than any previ-
ously tested.

II. BACKGROUND

In this section, we provide a high-level overview of the
Jellyfish framework, MapReduce programming model, and
Mimir implementation of MapReduce.
A. Jellyfish Overview

Jellyfish [4] [12] is a multithreading k-mer counting frame-
work. It achieves much lower memory usage by designing a
lock-free and compact k-mer counting hash table. In the hash
table, the ith possible storage position for a given mer m is

pos(m, i) = (hash(m) + reprobe(i))modM .
In this equation, M is the length of the hash table, and

reprobe function is used to solve hash collision. For each hash
entry, Jellyfish uses a bit-packeted data structure to reduce the
memory usage. In addition, because most k-mers appear a few
times, Jellyfish uses a small count field and allows one mer
to have more than one entry in the hash table. For example,
if one mer has two entries, 〈mer, c1〉 and 〈mer, c2〉, then the
count for this mer is c1c2.

Jellyfish also uses a space-efficient method to encode the
mers. In Jellyfish, the length of the hash array is always a
power of 2. Suppose M = 2l. Each k-mer is encoded as an
integer in this set, Uk = [0, 4k − 1]. Jellyfish chooses a hash
function, hash(m) = f(m)modM , in which f is a bijection
function (i.e., f : Uk ⇒ Uk). Since f(m) is a bijection, the
mer m can be computed by f(m). Hence, given the value
reprobe(i), the position of a 〈mer, count〉 pair in the hash

array encodes the lower l bits of f(m). Jellyfish stores only
the 2k−l higher bits of f(m) and the reprobe count i+1 (0 is
reserved to indicate empty) for the mer. The mer is recovered
by computation when necessary. With this design, Jellyfish can
considerably reduce the amount of memory required to store
the mers.

B. MapReduce and Mimir Overview

MapReduce is a programming model intended for data-
intensive applications [18]. It has proven suitable for a wide
variety of applications because of its simplicity, scalability,
and fault tolerance. A MapReduce job usually involves three
phases: map, shuffle, and reduce. The map phase processes
the input data using a user-defined map callback function and
generates intermediate 〈key, value〉 pairs. The shuffle phase
performs an all-to-all communication that distributes the inter-
mediate 〈key, value〉 pairs across all processes. In this phase,
〈key, value〉 pairs with the same key are also merged and
stored in 〈key, list〈value〉〉 lists. The reduce phase processes
the lists with a user-defined reduce callback function and
generates the final output. The user needs to implement the
map and reduce callback functions, while the MapReduce
runtime handles the parallel job execution, communication,
and data movement.

Successful implementations of the MapReduce model in-
clude Hadoop [19] and Spark [20]. However, these frameworks
are designed for cloud computing systems. Different from
these implementations, Mimir [21] is a MapReduce implemen-
tation targeted for supercomputing systems. It is built on top
of MPI [22], which utilizes core high-performance computing
(HPC) principles to optimize data movement. Moreover, it is
developed in the C++ language, which makes interoperability
with existing HPC applications, such as Jellyfish, easier.

In Mimir, MapReduce jobs are divided into two phases:
map and reduce. The shuffle communication is included
in the map phase, while the conversion of 〈key, value〉 pairs
to 〈key, list〈value〉〉 lists is included in the reduce phase.
The workflow of Mimir is shown in Figure 2. In the map
phase, Mimir uses a pipeline design to interleave the shuffle
communication with computation in the map callback. The
intermediate 〈key, value〉 pairs are stored in an intermediate
database. In the reduce phase, the intermediate 〈key, value〉
pairs are converted to 〈key, list〈value〉〉 lists first. Then the
reduce callback is applied to each such list. Mimir provides
two optional optimizations: combiner optimization (called
compression and partial reduction in [21]) and KV-hint op-
timization. The combiner optimization merges intermediate
〈key, value〉 pairs with the same key before and after the
shuffle communication. The KV-hint optimization uses the
type information of key and value to reduce the storage and
communication size of the intermediate data.

Our previous work on Mimir focused on optimizing the
memory usage of the framework. In that implementation, we
adopted the discrete I/O model, in which different files are par-
titioned to different processes statically. This I/O model is suit-
able for datasets with many equal-sized files. At the same time,



<key,value>map

map
<key,value>

shuffle	  
communication	  
(MPI	  all-‐to-‐all)

<key,value>

reduce

reduce

<key,list<value>>

<key,list<value>><key,value>

combiner

interleave  communication  
with  computation

map  phase reduce  phase

Fig. 2: MapReduce workflow in Mimir.

we use collective communication (i.e., MPI Alltoallv) to per-
form the shuffle communication of intermediate 〈key, value〉
pairs.

III. DESIGN OF BLOOMFISH

As discussed in Section I, two major challenges arise in
designing efficient k-mer counting frameworks for distributed-
memory systems. The first challenge is to use memory ef-
ficiently. To solve this challenge, Bloomfish leverages two
optimizations of existing tools. Specifically, Bloomfish reuses
the highly compact intermediate data storage in Jellyfish [4]
and builds on top of the memory-efficient MapReduce im-
plementation Mimir [21]. The intermediate data storage in
Jellyfish can significantly reduce the memory requirement
to store the k-mers, and the highly pipelined workflow in
Mimir can significantly reduce the intermediate data staging.
With this design, Bloomfish can use memory much more
efficiently than existing distributed-memory k-mer counting
tools can. Another challenge is to load enormous datasets from
disk to memory efficiently. We design the stream I/O model,
work stealing, and I/O overlapping with communication and
computation to solve this problem. The optimizations are
implemented in the MapReduce framework Mimir. Note that
other applications built on top of Mimir also can use these
optimizations.
A. Bloomfish Overview

Bloomfish is a port of Jellyfish over the Mimir MapReduce
framework. It inherits most of the local k-mer management
and statistical analysis framework from Jellyfish and uses
Mimir for performing I/O and data movement between pro-
cesses. It achieves a low memory footprint by reusing the
k-mer storage method designed by Jellyfish and using the
pipeline design in Mimir.

k-mers
map

map
k-mers

k-mers

k-mers

hash	array	of	
Jellyfish

hash	array	of	
Jellyfish

input file output file

shuffle communication

input buffer

input buffer

Pipelined Workflow

P0

P1

Fig. 3: Workflow of Bloomfish.

The workflow of Bloomfish is shown in Figure 3. In the
workflow, the input files are read and passed to the map
function. The intermediate mers are generated in the map
callback. These mers are shuffled over the network, and the

same mers are sent to the same processes. Once received,
these mers are inserted into the compact hash array, and the
counting is implemented. After the counting is finished, the
results are stored in permanent storage. Note that the k-mer
counting is implemented in a pipelined way. Bloomfish can
read partial data and perform the disk I/O, communication,
and computation in a pipelined way. Thus, all the other buffers
except the intermediate data hash array are independent of
the intermediate data size. In this way, Bloomfish minimizes
the intermediate data staging compared with the existing
distributed-memory work.

Because most k-mers usually appear a few times (e.g., the
average appearance time of each 22-mer is just 16 for the 3
TB 1000 Genomes dataset), the combiner optimization (which
performs local counting before communication) cannot reduce
the shuffle communication size. As a result, the combiner
optimization is not applied to the workflow. To allow the
integration of the Jellyfish hash array into Mimir, we extend
Mimir to support customized intermediate data containers.
Specifically, applications can provide a customized object with
read and write interfaces as intermediate storage.

Like Jellyfish, Bloomfish supports two DNA file formats:
fasta and fastq [23]. Each sequence in the fasta file contains
a header line and one or multiple sequence lines. The header
line always starts with a “>” character. In the fastq format,
each sequence contains four lines: a header line, which starts
with an “@” character; a sequence line; a separator line, which
starts with a “+” character; and a quality score line.

B. I/O Performance Improvement

In the preceding section, we discussed how Mimir uses
memory efficiently by reusing Jellyfish and Mimir. In this
section, we discuss how to solve the I/O bottleneck problem.
We note that the optimizations are done in Mimir. Thus, the
approach is general to other applications based on Mimir as
well.

Some problems with performance loss are due to disk I/O
in HPC platforms with parallel file systems. One problem
is associated with the file size of sequence datasets, which
can vary greatly. For example, the maximum file size in the
HG00097 sequence dataset from the 1000 Genomes project is
about 80 GB, whereas the minimum file size is about 100 MB.
Thus, the discrete I/O model (which partitions the different
files to different processes) may result in some processes
partitioning much more data than do other processes. To solve
this problem, we propose the stream I/O model (which views
files as if they are segments of a continuous stream of data).

Another problem is the performance variability of I/O
operations in the parallel file system. Figure 4 illustrates this
by using 768 processes to read 6 TB input data (each process
reads about 8 GB) at the same time. As shown in the figure,
the read time varies greatly even if the input data size for each
process is the same. Performance variability is a common issue
of the parallel file system [24] and results in some processes
slowing the execution of the whole program. We design a
work-stealing method to solve this problem. If one process



finishes the work, it will try to steal work from other pro-
cesses. Our work-stealing method is based on the stream I/O
model and implemented with MPI-3 one-sided communication
interfaces. The performance variability of I/O operations also
results in high global synchronization overhead. We use a
nonblocking communication mechanism to overlap I/O with
communication. The nonblocking communication is imple-
mented with the MPI nonblocking collective communication
interfaces MPI_Ialltoall and MPI_Ialltoallv.

0

200

400

600

800

1000

1 49 97 14
5

19
3

24
1

28
9

33
7

38
5

43
3

48
1

52
9

57
7

62
5

67
3

72
1

re
ad
	  ti
m
e	  
(s
ec
)

process	  rank

Fig. 4: Time to read 6 TB input data with 768 processes (8 GB per
process) on the Tianhe-2 supercomputer.

1) Stream I/O Model Support: Instead of partitioning dif-
ferent files to different processes, as is done in the discrete I/O
model, in the stream I/O model we partition various chunks
to different processes, with each process getting the same
amount of data. One issue of the stream I/O model is that
one input record (e.g., a line in the text files) may be split
into two chunks. We propose a repartition method to handle
this situation. Applications just need to set a repartition
callback to decide the number of bytes sent to the previous
chunk. Then, Mimir implements repartition automatically. The
implementation of repartition is determined by the scheduling
methods. In Section III-B2, we describe the repartition imple-
mentation in the work-stealing algorithm.

The repartition callback is designed for two sequence
file formats: fasta and fastq. In the fasta file format, if the first
character of next line is “>,” meaning that the cutting point is
in the last line of one sequence, the repartition method sends
bytes until the end of the current line; otherwise, it sends out
the current line plus k − 1 bytes in the next line. In the fastq
format, each sequence contains only four lines. The repartition
function sends bytes until the start of the next sequence. Since
the quality score line may start with “@,” deciding the start
point of the next sequence is tricky. However, we can use the
features of the fastq file format: the first character of the line
following the header line is not “@,” but the first character of
the line following the quality score line is “@.” Thus, when
we get a line started with “@” in the fastq format, we check
the first character of the following line to decide whether the
current line is a quality score line or a header line.

The stream I/O model allows us to implement different
scheduling methods. One of the simplest scheduling methods
is to partition the same number of continuous chunks to each
process statically. In this scheduling method, the repartition
bytes are always sent to the previous process p− 1, in which
p is the rank of the current process.

2) Work-Stealing Support: To address processing time skew
caused by the I/O performance variability, we design a work-
stealing algorithm based on the stream I/O model. The file
chunks are partitioned to different processes statically, and
each process gets the same number of continuous chunks. The
process that owns the chunks is called the owner process of
the chunks. The chunks statically partitioned to a process are
called local chunks of that process. We identify the chunks
partitioned to other processes as remote chunks of that process.
Each chunk is represented by a two-dimensional structure
(owner rank, chunk id). The chunk id is a local
index of the chunk in the owner process. All processes have
the metainformation of the chunks. Given the owner rank
and the chunk id, the process can get the file name and
offset of that chunk easily. Each process works on its local
chunks first. If one process finishes processing all the chunks
statically partitioned to it, then it will steal remote chunks from
other processes.

Each process has three data structures in the work-
stealing algorithm: steal offset, chunk id, and
chunk workers. The steal offset symbolizes the
rank offset of the victim process relative to the current process.
The chunk id represents the local index of next chunk in
this process. The chunk workers are an array in which the
ith item stores the process rank to get the ith chunk (either
the owner process or a stealer process). A process that gets a
chunk is called the worker process of that chunk. We reserve
−1 to represent the worker process that is still unknown.

The work-stealing algorithm is shown in Figure 5. In this
figure, two files (represented by different colors) with six
chunks are taken as an example. These six chunks are par-
titioned to two processes, and each process gets three chunks.
Figure 5a shows process 0 acquiring a local chunk. Figure 5b
shows process 0 stealing a remote chunk from process 1.

As shown in Figure 5a, when acquiring a local chunk, the
process uses FOP (i.e., fetch_and_op) to add and fetch
the chunk id atomically. If the fetched chunk id is less
than the number of chunks partitioned to the process, then
this process gets this chunk successfully. Once acquiring the
chunk, the process atomically PUTs the process rank into the
corresponding item of chunk workers.

Otherwise, if the acquiring of the chunk fails, then the
process tries to steal chunks from other processes, as shown
in Figure 5b. The stealer process s will start from a steal
offset of 1 to n-1 (in which n is the number of processes).
The stealer process chooses the process (steal offset +
s) mod n as the victim process v. For example, in Fig-
ure 5b, when the steal offset is 1, process 0 chooses
(1 + 0)mod 2 = 1 as the victim process. During the stealing,
the stealer process s atomically GETs the steal offset
of the victim process first. This is used to check whether
there are unprocessed chunks on that process. If the steal
offset of the victim process is zero, the victim process has
not begun stealing. In other words, some unprocessed chunks
probably are in the victim process. Thus, the stealer process
will use FOP to fetch and add the chunk id of the victim



P0 P1

0

-‐1
-‐1
-‐1

-‐1
-‐1
-‐1

0

0 0steal    offset

chunk  id

chunk  workers

1

1.  FOP

2.Atomic  PUT

0

file  0 file  1

(a) Acquire a local chunk.

P0 P1

3

1
-‐1
-‐1

0
0
0

1

0 0steal    offset

chunk  id

chunk  workers

1.Atomic  GET

2

2.FOP

0

3.Atomic  PUT

1

file  0 file  1

(b) Steal a remote chunk.

Fig. 5: Design of work stealing.

process. If the returned value is less than the total number of
chunks partitioned to the victim process, the stealing succeeds.
Then, the stealer process atomically PUTs the rank into the
corresponding item of the chunk workers in the victim
process. If the steal offset of the victim process is not
zero, processes in this range [v, (v + steal offset) mod n)
have finished processing their local chunks. As a result, the
stealer process will move to process (v+stealoffset)modn)
by adding the steal offset of the victim process to its
steal offset. This method is used to avoid duplicate
steals from the processes without unprocessed chunks.

The repartition implementation in the work-stealing algo-
rithm is based on the chunk workers structure. First, the
chunk is loaded into memory. If the process is not the first
chunk of a file and the previous chunk is not processed by
the same process, then the process uses atomic GET to get the
previous chunk’s worker process from the chunk workers.
Next, the process sends the repartition bytes to that worker
process. Note that the previous chunk’s worker process may
still not be known. In this situation, Mimir will store the
repartition bytes and try to send the repartition bytes the
following time when a chunk is required. If a chunk is not the
last chunk of a file, the process will receive repartition bytes
before finishing the processing of the chunk. Two situations
are possible. In the first situation the next chunk belongs to the
same process and has still not been processed yet. Then the
process will use CAS (i.e., compare_and_swap) to acquire
the next chunk atomically. If this succeeds, then it will merge
the remaining bytes in the current chunk with the next chunk
directly, and no repartition is needed. In the second situation
the next chunk will be processed by other processes. In this
situation, the process uses atomic GET to get the worker rank
of the next chunk from the chunk workers and waits to
receive the repartition bytes from that process. Note that the
process will need to wait only a short time because the worker
process will send out the repartition bytes once the chunk is
loaded into memory.

We implement the work-stealing algorithm with MPI
3 one-sided communication interfaces. The FOP and
CAS are implemented with MPI_Fetch_and_op and
MPI_Compare_and_swap. The MPI_Accumulate and
MPI_Get_accumulate are used as atomic PUT and GET.

3) I/O and Communication Overlap: In the previous design
of Mimir, we used blocking collective communication (i.e.,
MPI_Alltoallv ) to exchange intermediate 〈key, value〉
data. However, the global synchronization of blocking collec-
tive communication introduces high overhead due to the I/O
performance variability. For example, if a process is blocked
by one I/O operation and other processes are performing the
shuffle communication, then all the other processes need to
wait for the completion of the blocking I/O operation before
they can continue.

To address this performance issue, we designed a non-
blocking collective shuffle communication mechanism. In the
blocking collective implementation, each shuffle communica-
tion is composed of two MPI functions: MPI_Alltoall and
MPI_Alltoallv. MPI_Alltoall is used to communicate
send and receive counts used by the MPI_Alltoallv;
MPI_Alltoallv is used to exchange the intermediate
〈key, value〉 data. In the nonblocking implementation, we
use the nonblocking version of these two functions (i.e.,
MPI_Ialltoall and MPI_Ialltoallv) to perform the
shuffle communication.

A variable N buffer method is used to overlap I/O with
communication. Each process starts with two communication
buffers. When the first buffer is full, the process starts a shuffle
communication and starts working on the second buffer. When
the second buffer is full, the process checks whether the
first shuffle communication is complete. If it is complete,
then the process reuses the first buffer. If the first shuffle
communication is not complete, the process allocates a new
(third) buffer and starts working on it. In this way, each time
the current buffer is full, the process allocates a new commu-
nication buffer if none of the previous shuffle communications
has been completed. To avoid some processes allocating too
many communication buffers, Mimir sets a maximum number
of buffers each process is allowed to allocate. This design
means that all processes might not have the same number of
communication buffers, and it also prevents very symmetric
applications from allocating too many buffers.

After issuing the MPI_Ialltoall function, Mimir tests
its status periodically. If MPI_Ialltoall finishes and
all the MPI_Ialltoallv functions of the earlier shuffle
communications have been issued, Mimir invokes the corre-



sponding MPI_Ialltoallv of this shuffle communication.
Note that MPI_Ialltoallv must be invoked in the same
order as the corresponding MPI_Ialltoall. After invoking
MPI_Ialltoallv, Mimir checks its status periodically. If
MPI_Ialltoallv of a shuffle communication has finished,
then the corresponding communication buffers can be reused.
Note that different processes may invoke MPI_Ialltoall
and MPI_Ialltoallv in different order. As a result,
MPI_Ialltoall and MPI_Ialltoallv are operated on
two different duplicate communicators to address the order
restriction of collective communication on the same commu-
nicator in the MPI standard.

By using the nonblocking collective communication meth-
ods, we overlap the I/O with shuffle communication.

IV. COMPARISON

In this section, we compare Bloomfish with the single-node
implementation Jellyfish [4] and the distributed implementa-
tion Kmerind [17]. Jellyfish is chosen as the state-of-art single-
node implementation because of its low memory footprint and
high performance. Kmerind [17] is chosen because it is a
general k-mer count framework and has been proven better
than other works, such as Kmernator [14]. We use the real
sequence dataset from the 1000 Genomes project [13] for our
tests.

A. Platforms, Datasets, and Settings

Our experiments were performed on the XSEDE cluster
Comet [25] and on the supercomputer Tianhe-2. Comet is an
NSF Track2 system located at the San Diego Supercomputer
Center. Each compute node has two Intel Xeon E5-2680v3
CPUs (12 cores each, 24 cores total) running at 2.5 GHz. Each
node has 128 GB of memory and 320 GB of flash SSDs. The
nodes are connected with Mellanox FDR InfiniBand, and the
parallel file system is Lustre. Tianhe-2 is a high-performance
supercomputer located at the National Supercomputer Center
in Guangzhou. Each compute node has two Intel Xeon E2-
2692v2 CPUs (12 cores each, 24 cores total) running at
2.2 GHz. Each node has 64 GB of memory. The nodes are
connected with Tianhe express-2 [26], and the parallel file
system is H2FS [27]. We use MPICH 3.2 [28] for the tests on
Comet and MPICH 3.1.3 with a customized GLEX channel
on the Tianhe-2 [29].

For the Bloomfish configuration, the chunk size and com-
munication buffer size are set to 64 MB for all tests, and the
maximum number of communication buffers is set to 5. The k
is set to 22, the same as in the Jellyfish paper [4]. For all tests,
we run one thread on one core for Jellyfish and one process
on one core for Kmerind [17] and Bloomfish. We set the hash
array size of Bloomfish to 512 million for all these tests.

B. Single-Node Comparison with Jellyfish

In this section, we compare the execution time when running
Jellyfish with 24 threads and Bloomfish with 24 processes.
The single-node execution times of the two codes are shown
in Figure 6 for Comet and Tianhe-2. Note that the y-axis is in
logarithm scale. As shown in the figure, both Jellyfish and

Bloomfish achieve linear scalability. On Comet, Bloomfish
achieves better performance than Jellyfish does for datasets
less than 96 GB (4 GB/proc) and shows similar performance
for larger datasets up to 384 GB (16 GB/proc). The reason is
that the file sizes in the 1000 Genomes dataset vary greatly.
Jellyfish assigns different files to different threads. As a
result, some threads process much more data than do other
threads. However, Bloomfish adopts a better I/O framework
than Jellyfish does. Bloomfish not only partitions data evenly
when the file sizes vary greatly but also supports work stealing
to reduce the impact of processing time skew caused by I/O
performance variability.

On Tianhe-2, Bloomfish outperforms Jellyfish for all
datasets from 1 GB/proc to 8 GB/proc. Note that Tianhe-2
nodes have up to 64 GB memory and thus we tested only up
to 8 G/proc.

1G
/pr

oc

2G
/pr

oc

4G
/pr

oc

8G
/pr

oc

16
G/pr

oc

dataset size

103

104

ex
ec

ut
io

n 
tim

e 
(s

ec
)

Jellyfish
Bloomfish

(a) Comet

1G
/pr

oc

2G
/pr

oc

4G
/pr

oc

8G
/pr

oc

dataset size

103

104
ex

ec
ut

io
n 

tim
e 

(s
ec

)

Jellyfish
Bloomfish

(b) Tianhe-2

Fig. 6: Single-node results on Comet and Tianhe-2 (24 threads for
Jellyfish and 24 processes for Bloomfish) using the 1000 Genomes
dataset.

These tests prove that Bloomfish can achieve performance
that is better than or comparable to that of the highly optimized
single-node implementation for datasets up to 384 GB. Results
presented in Figure 1 (in the introduction of this paper),
on the other hand, show how Jellyfish performance quickly
deteriorates on single nodes for large datasets. Specifically, the
figure points out how the k-mer counting of up to 3 TB on
Tianhe-2 can take up to one day when using Jellyfish, making
the need for a faster, distributed implementation vital for the
increasingly large DNA sequences. A similar pattern can be
observed for Comet.
C. Single-Node and Distributed-Memory Comparisons with
Kmerind

In this section, we compare Bloomfish with Kmerind [17]
on a single node and on multiple nodes of Comet. Note that we
can use at most 64 nodes (1,536 processes) on Comet. We use



only Comet for this comparison because Kmerind currently
cannot compile successfully on Tianhe-2. The MPI I/O method
of Kmerind gains the best performance based on our tests. As
a result, we set Kmerind to use MPI I/O for the following
tests.

Figure 7 shows the single-node execution time and peak
memory usage for the two codes. As shown in the figure,

8 M
B/pr

oc

16
 M

B/pr
oc

32
 M

B/pr
oc

64
 M

B/pr
oc

12
8 M

B/pr
oc

25
6 M

B/pr
oc

51
2 M

B/pr
oc

1 G
B/pr

oc

2 G
B/pr

oc

4 G
B/pr

oc

8 G
B/pr

oc

16
 G

B/pr
oc

dataset size

ex
ec

ut
io

n 
tim

e 
(s

ec
) execution time

Kmerind
Bloomfish

(a) Execution Time

8 M
B/pr

oc

16
 M

B/pr
oc

32
 M

B/pr
oc

64
 M

B/pr
oc

12
8 M

B/pr
oc

25
6 M

B/pr
oc

51
2 M

B/pr
oc

1 G
B/pr

oc

2 G
B/pr

oc

4 G
B/pr

oc

8 G
B/pr

oc

16
 G

B/pr
oc

dataset size

0

1

2

3

4

5

pe
ak

 m
em

or
y 

us
ag

e 
(G

B
)

peak memory usage
Kmerind
Bloomfish

(b) Peak Memory Usage per Process

Fig. 7: Single-node results on Comet (24 processes for Kmerind and
Bloomfish).

for datasets up to 3 GB the execution time of Bloomfish
is comparable to or slightly slower than that of Kmerind.
The reason is that the I/O performance is not a problem for
small datasets. Bloomfish can process up to 384 GB datasets
(16 GB/process) on a single node, but Kmerind can process
only up to 3 GB datasets (128 MB/process). The reason
Bloomfish can process datasets 128X times larger than those
of Kmerind is illustrated in Figure 7b, which plots the peak
memory usage of both codes. As shown in the figure, the
memory usage of Bloomfish is kept constant. The reason is
that we set the hash array size large enough to hold the largest
dataset (i.e., 384 GB) and the other memory usage (e.g., input
and communication buffers) is independent of intermediate
data sizes. However, Kmerind’s peak memory usage increases
rapidly. This increase is because Kmerind does not use highly
compact k-mer storage method and has extra intermediate
data stating in the workflow. In other words, Bloomfish uses
the highly optimized intermediate data storage solution and
optimizes the workflow to minimize the intermediate data
staging.

Since Kmerind can process only much smaller (i.e. 128X
times) datasets per node compared with Bloomfish, we use its
distributed-memory implementation and the maximum dataset
Kmerind can handle with 1,536 processes (i.e., 192 GB) to
perform its distributed-memory comparison with Bloomfish.
To measure the resource efficiency of the two codes, we use

as the metric of success the aggregated CPU-hours, namely,
(number of cores) * (execution time). The results are shown
in Figure 8. As we can see, Kmerind can process the 192
GB input only with 1,536 processes. However, Bloomfish can
process the same dataset with from 1,536 to only 24 processes.
The aggregated CPU-hours of Bloomfish for all settings are
better than those for Kmerind. Specifically, Kmerind need
about 32.0 CPU-hours to finish the k-mer counting of 192
GB with 1,536 processes, whereas Bloomfish needs only 17.6
CPU-hours with 1,536 processes and 8.0 CPU-hours with 24
processes. This improvement is results because Bloomfish uses
memory much more efficiently and designs highly optimized
I/O methods.

15
36 76

8
38

4
19

2 96 48 24

number of processes

0

5

10

15

20

25

30

35

40

ag
gr

eg
at

ed
 C

PU
 h

ou
rs Kmerind

Bloomfish

Fig. 8: Aggregated CPU-hours for the k-mer counting of 192 GB
DNA sequences with Kmerind and Bloomfish.

In summary, our tests with the 1000 Genomes dataset prove
that Bloomfish’s execution times are comparable to those of
Kmerind for the single-node tests when using small datasets.
Unlike Kmerind, Bloomfish can process larger datasets on a
single node. The Bloomfish’s distributed-memory implemen-
tation uses resources (i.e., memory and CPU) much more
efficiently than Kmerind does.

V. SCALABILITY

To evaluate Bloomfish’s strong scalability and weak scal-
ability, we ran tests using unprecedentedly large DNA se-
quences.

A. Platforms, Datasets, and Settings

Our scalability tests were performed on Comet and Tianhe-
2 (see Section IV). Because we wanted to study the scalability
of increasingly large datasets, we used two datasets: the
real sequence dataset from the 1000 Genomes project [13]
described in Section IV and a new synthetic dataset generated
by the ART simulator [30], [31] that can scale up to terabytes.
For the synthetic data, we simulated sequence data generated
by Illumina machines [32] and used a human genome data
set [33] as the reference genome. The Mimir configuration
was the same as in Section IV.

B. Strong Scalability and Speedup

In this section, we present the strong-scalability results on
Comet and Tianhe-2. A DNA sequence dataset of one individ-
ual (i.e., HG00096) was chosen for the strong-scalability tests.
This data set contains 15 files and has a total size of about 64
GB. The execution times from 24 processes to 768 processes
are presented. The speedup of one setting was calculated by



dividing the execution time with 24 processes by the execution
time with that setting.

Strong-scalability results on Comet are shown in Figure 9a.
We can see that Bloomfish’s speedup increases up to 192
processes and then slows from 384 processes. The reason is
that the I/O variability has a larger impact as the execution
time becomes shorter and shorter. The execution time with
768 processes is about 90 seconds. The same strong-scalability
tests were performed on Tianhe-2; the results are shown in
Figure 9b. Here we see that Bloomfish achieves much better
speedup on Tianhe-2. The speedup is close to ideal up to
384 processes: the speedup with 384 processes compared with
24 processes is 12.6x. With 768 processes, however, the I/O
variability has a larger impact on the execution time, and
the speedup slows. The execution time with 768 processes
is approximately 43 seconds. During the tests, we observed
worse I/O performance on Comet than on Tianhe-2, which
explains the worse speedup on Comet.

In summary, Bloomfish achieves almost ideal speedup up
to 384 processes on Tianhe-2. The I/O performance, however,
limits the strong scalability when the execution time becomes
short.

C. Weak Scalability and Efficiency

We next describe weak-scalability test results on Tianhe-2.
We used two settings (i.e., 1 GB/process and 8 GB/process)
for the two kinds of datasets. For the 8 GB/process tests of the
1000 Genomes dataset, we duplicated the 3 TB real dataset 10
times to get a 30 TB dataset. The efficiency of one setting was
calculated by dividing the execution time with 24 processes
by the execution time with that setting.

The results of the 1 GB/process setting are shown in
Figure 10. We can see that Bloomfish scales to 3,072 processes
for both the 1000 Genomes dataset and the synthetic dataset.
As shown in Figure 10a, the efficiency of the 1000 Genomes
dataset up to 384 processes is close to 100%, and the efficiency
for some settings is even larger. The reason is that the mer
distribution in the 1000 Genomes dataset is not uniform.
Thus, when the dataset size doubles, the computation and
communication do not double in some situations. For example,
we observe the least shuffle communication times with the 192
processes setting. The efficiency drops from 768 processes
because the I/O performance becomes worse; however, the
efficiency still is about 41% for 3,072 processes. For the 3 TB
dataset, Bloomfish counts 22-mers in about 14 minutes with
3,072 cores. In contrast, Jellyfish needs about 1 day with 24
cores.

We performed similar tests with the synthetic dataset; the
results are shown in Figure 10b. We observe a pattern similar
to that for the 1000 Genomes dataset: the efficiency is about
43% with 3,072 processes.

We also perform weak-scalability tests by increasing the
number of datasets per process. The results with 8 GB/pro-
cess are shown in Figure 11. The 1000 Genomes dataset is
generated by duplicating the real dataset 10 times. The results
are shown in Figure 11a. The efficiency is close to 100% until

384 processes, and some settings have an efficiency larger
than 100%. The reason is that the mer distribution in the
dataset is not uniform, as explained before. The efficiency
begins dropping with 768 processes, due mainly to the I/O
performance; but the efficiency is still about 49% with 3,072
processes.

We performed similar tests with the synthetic dataset; the
results are shown in Figure 11b. The pattern is similar, and
the efficiency is 56% with 3,072 processes. We note that
Bloomfish counts 22-mers of the 24 TB dataset with 3,072
processes in just one hour.

In summary, Bloomfish enables scientists to study unprece-
dentedly large DNA datasets with HPC systems. Specifically,
we prove that Bloomfish can scale to at least 24 TB datasets
and 3,072 processes.

VI. RELATED WORK

Numerous efforts have focused on k-mer counting on
single-node systems. These efforts can be divided into three
categories: (1) optimizing the intermediate k-mer storage by
designing compact data structure [4]; (2) using some prob-
abilistic method to filter out part of k-mers and reduce the
number of k-mers that need be stored [5], [34]; and (3) using
disk as intermediate data storage [6], [7], [8], [9], [10], [11].
Different from these single-node works, we aim to design
efficient k-mer counting for high-performance distributed-
memory systems. We reuse the compact hash array design of a
highly optimized single-node implementation (i.e., Jellyfish).
We have proven that we can scale to distributed-memory
systems without performance loss for single-node processing.

Other efforts aim to perform k-mer counting on distributed-
memory systems. FASTdoop [35] extends Hadoop to process
fast and fastq files with the MapReduce programming model.
BioPig [36] and SeqPig [37] process sequencing data as the
Pig queries on top of Hadoop. SparkSW [38] implements
the Smith-Waterman (SW) algorithm on Spark for parallel
processing of sequencing data. However, these approaches
all rely on MapReduce-derived frameworks, which are not
generally available on supercomputers. Kmernator [14] is a
MPI toolkit for large-scale genomic analysis that uses MPI
to perform k-mer counting on distributed-memory systems.
Hipmer [15], [16] is a de novo genome assembler that
supports k-mer counting as a substage of the workflow. It
also introduces some optimizations to the distributed-memory
implementation, such as eliminating erroneous k-mers with
the Bloom filter, parallel reading input files with MPI I/O,
and processing high-frequency k-mers separately. However,
some of the optimizations are specific to the genome assem-
bly problem. For example, error validation does not support
eliminating singleton k-mers. Kmerind [17] is a distributed-
memory k-mer indexing tool, and the method it uses to build
a count index can be viewed as k-mer counting. Kmerind
optimizes the problem with a distributed hash table and various
I/O methods. While these implementations provide baseline
performance for distributed-memory k-mer counting, they are
not highly optimized for keeping a low memory footprint and



24 48 96 19
2

38
4

76
8

number of processes

102

103

ex
ec

ut
io

n 
tim

e 
(s

ec
)

548.5 sec

367.5 sec

199.9 sec

135.5 sec

97.4 sec 90.3 sec

Bloomfish

100

101

sp
ee

du
p

1.0
1.5

2.7
4.0

5.6 6.1

ideal speedup
speedup

(a) Comet

24 48 96 19
2

38
4

76
8

number of processes

102

103

ex
ec

ut
io

n 
tim

e 
(s

ec
)

727.1 sec

355.2 sec

171.3 sec

94.1 sec

57.6 sec
42.6 sec

Bloomfish

100

101

sp
ee

du
p

1.0

2.0

4.2

7.7

12.6
17.1

ideal speedup
speedup

(b) Tianhe-2

Fig. 9: Strong scalability on Comet and Tianhe-2.

24
 (2

4 G
B)

48
 (4

8 G
B)

96
 (9

6 G
B)

19
2 (

19
2 G

B)

38
4 (

38
4 G

B)

76
8 (

76
8 G

B)

15
36

 (1
.5 

TB)

30
72

 (3
TB)

number of processes (total dataset size)

0

200

400

600

800

1000

ex
ec

ut
io

n 
tim

e 
(s

ec
)

100.0%
118.3% 127.5% 140.2%

111.1%
86.6%

73.7%

41.4%Bloomfish

(a) 1000 Genomes dataset

24
 (2

4 G
B)

48
 (4

8 G
B)

96
 (9

6 G
B)

19
2 (

19
2 G

B)

38
4 (

38
4 G

B)

76
8 (

76
8 G

B)

15
36

 (1
.5 

TB)

30
72

 (3
 T

B)

number of processes (total dataset size)

0

200

400

600

800

1000

ex
ec

ut
io

n 
tim

e 
(s

ec
)

100.0%
87.2%

74.6% 81.3%

64.1%

51.6% 48.6%
42.9%

Bloomfish

(b) Synthetic dataset

Fig. 10: Weak scalability (1 GB/process).

24
 (1

92
 G

B)

48
 (3

84
 G

B)

96
 (7

68
 G

B)

19
2 (

1.5
 T

B)

38
4 (

3 T
B)

76
8 (

6 T
B)

15
36

 (1
2 T

B)

30
72

 (2
4 T

B)

number of processes (total dataset size)

0
500

1000
1500
2000
2500
3000
3500
4000

ex
ec

ut
io

n 
tim

e 
(s

ec
)

100.0% 105.1% 109.3% 103.6% 98.9%

76.4% 77.4%

49.3%

Bloomfish

(a) 1000 Genomes dataset (duplicate 3 TB dataset)

24
 (1

92
 G

B)

48
 (3

84
 G

B)

96
 (7

68
 G

B)

19
2 (

1.5
 T

B)

38
4 (

3 T
B)

76
8 (

6 T
B)

15
36

 (1
2 T

B)

30
72

 (2
4 T

B)

number of processes (total dataset size)

0
500

1000
1500
2000
2500
3000
3500
4000

ex
ec

ut
io

n 
tim

e 
(s

ec
)

100.0% 95.2%
82.3% 76.6%

69.5%
65.3% 69.3%

55.8%Bloomfish

(b) Synthetic dataset

Fig. 11: Weak scalability (8 GB/process).

loading enormous data into memory. Some optimizations used
to reduce memory usage are specific to typical problems, such
as filtering out singleton k-mers. Instead, Bloomfish keeps a
low memory footprint by leveraging the optimized hash array
design to reduce the intermediate data size and by using a
pipelined workflow to reduce intermediate data staging.

Other works [16], [17] use parallel I/O to load large input
data into memory. However, the method they use cannot adapt
to I/O performance variability. Instead, we redesign the I/O
framework in Mimir to gain high I/O performance even when
the I/O performance variability is severe. Moreover, the I/O
optimization is general to other applications built on top of
Mimir. With these optimizations, Bloomfish can process up to
24 TB input data in about one hour.

VII. CONCLUSION

We design a highly memory-efficient and scalable k-mer
counting framework, Bloomfish, on top of a high-performance
MapReduce framework, Mimir. Bloomfish leverages the com-
pact k-mer storage solution of a highly optimized single-node
implementation Jellyfish and the optimized workflow of Mimir
to keep a low memory footprint. We also codesign Mimir’s
I/O to load enormous datasets from parallel file systems to
memory more efficiently. Our results show that Bloomfish
achieves unprecedented scalability: it can count 22-mers of a
24 TB dataset with 3,072 processes in about one hour. To the
best of our knowledge, this is the largest dataset ever reported
for k-mer counting problems. Since k-mer counting is the
primary substage of various genome analysis applications, this



work has the potential to contribute to genomic analysis at the
terabyte and petabyte scale.

ACKNOWLEDGMENT

Yanfei Guo and Pavan Balaji were supported by the U.S.
Department of Energy, Office of Science, under contract
number DE-AC02-06CH11357. Pietro Cicotti, Tao Gao, and
Michela Taufer were supported by NSF grants #1318445
and #1318417. Tao Gao was also supported by China Schol-
arship Council. Yutong Lu was supported by National Key
R&D Project in China 2016YFB1000302. Yanjie Wei was
supported by Science Technology and Innovation Committee
of Shenzhen under grant No. JCYJ20160331190123578 and
2016B090918122. Part of the research in this paper used re-
sources of the National Supercomputer Center in Guangzhou,
China. XSEDE resources, supported by NSF grant ACI-
1053575, were used to obtain some other performance data.
We thank Zhiguang Chen, Peihao Liu, and Peijun Yang from
the National Supercomputer Center in Guangzhou for their
help in the tests on the Tianhe-2 supercomputer; Jintao Meng
from Shenzhen Advanced Technology Research Institute for
guiding the selection of the simulator; Rob Latham from
Argonne National Laboratory for sharing his optimization
experience in improving I/O performance; and Gail Pieper
from Argonne National Laboratory for her editorial feedback.

REFERENCES

[1] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan,
K. Kristiansen et al., “De novo assembly of human genomes with
massively parallel short read sequencing,” Genome Research, vol. 20,
no. 2, pp. 265–272, 2010.

[2] H.-J. Yu, “Segmented k-mer and its application on similarity analysis of
mitochondrial genome sequences,” Gene, vol. 518, no. 2, pp. 419–424,
2013.

[3] Y. Liu, J. Schröder, and B. Schmidt, “Musket: A multistage k-mer
spectrum-based error corrector for Illumina sequence data,” Bioinfor-
matics, vol. 29, no. 3, pp. 308–315, 2013.

[4] G. Marçais and C. Kingsford, “A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers,” Bioinformatics, vol. 27,
no. 6, pp. 764–770, 2011.

[5] P. Melsted and J. K. Pritchard, “Efficient counting of k-mers in DNA
sequences using a bloom filter,” BMC Bioinformatics, vol. 12, no. 1, p.
333, 2011.

[6] S. Kurtz, A. Narechania, J. C. Stein, and D. Ware, “A new method
to compute k-mer frequencies and its application to annotate large
repetitive plant genomes,” BMC Genomics, vol. 9, no. 1, p. 517, 2008.

[7] G. Rizk, D. Lavenier, and R. Chikhi, “DSK: K-mer counting with very
low memory usage,” Bioinformatics, vol. 29, no. 5, p. 652, 2013.

[8] S. Deorowicz, A. Debudaj-Grabysz, and S. Grabowski, “Disk-based k-
mer counting on a PC,” BMC Bioinformatics, vol. 14, no. 1, p. 160,
2013.

[9] Y. Li and X. Yan, “MSPKmercounter: a fast and memory efficient
approach for k-mer counting,” arXiv preprint arXiv:1505.06550, 2015.

[10] P. Audano and F. Vannberg, “KAnalyze: A fast versatile pipelined k-mer
toolkit,” Bioinformatics, vol. 30, no. 14, pp. 2070–2072, 2014.

[11] S. Deorowicz, M. Kokot, S. Grabowski, and A. Debudaj-Grabysz, “KMC
2: Fast and resource-frugal k-mer counting,” Bioinformatics, vol. 31,
no. 10, pp. 1569–1576, 2015.

[12] “Jellyfish Website,” http://www.cbcb.umd.edu/software/jellyfish/.
[13] “1000 Genomes project,” http://www.internationalgenome.org.
[14] “Kmernator,” https://github.com/JGI-Bioinformatics/Kmernator.
[15] E. Georganas, A. Buluç, J. Chapman, L. Oliker, D. Rokhsar, and

K. Yelick, “Parallel de Bruijn graph construction and traversal for de
novo genome assembly,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE Press, 2014, pp. 437–448.

[16] E. Georganas, A. Buluç, J. Chapman, S. Hofmeyr, C. Aluru, R. Egan,
L. Oliker, D. Rokhsar, and K. Yelick, “Hipmer: An extreme-scale
de novo genome assembler,” in International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’15).
IEEE, 2015, pp. 1–11.

[17] T. Pan, P. Flick, C. Jain, Y. Liu, and S. Aluru, “Kmerind: A flexible
parallel library for k-mer indexing of biological sequences on distributed
memory systems,” in Proceedings of the 7th ACM International Confer-
ence on Bioinformatics, Computational Biology, and Health Informatics.
ACM, 2016, pp. 422–433.

[18] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[19] “Apache Hadoop,” http://hadoop.apache.org/.
[20] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: Cluster computing with working sets,” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[21] T. Gao, Y. Guo, B. Zhang, P. Cicotti, Y. Lu, P. Balaji, and M. Taufer,
“Mimir: Memory-efficient and scalable MapReduce for large supercom-
puting systems,” in Proceedings of the 31th IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2017.

[22] “MPI: A message-passing interface standard,” http://www.mpi-forum.
org/docs/mpi-3.1/mpi31-report.pdf.

[23] “DNA sequence format,” https://www.genomatix.de/online help/help/
sequence formats.html.

[24] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim, “CALCioM:
Mitigating I/O interference in HPC systems through cross-application
coordination,” in IEEE 28th International on Parallel and Distributed
Processing Symposium. IEEE, 2014, pp. 155–164.

[25] “Comet Cluster,” http://www.sdsc.edu/support/user guides/comet.html.
[26] X.-K. Liao, Z.-B. Pang, K.-F. Wang, Y.-T. Lu, M. Xie, J. Xia, D.-Z.

Dong, and G. Suo, “High performance interconnect network for Tianhe
system,” Journal of Computer Science and Technology, vol. 30, no. 2,
p. 259, 2015.

[27] W. Xu, Y. Lu, Q. Li, E. Zhou, Z. Song, Y. Dong, W. Zhang, D. Wei,
X. Zhang, H. Chen, J. Xing, and Y. Yuan, “Hybrid hierarchy storage
system in milkyway-2 supercomputer,” Frontiers of Computer Science,
vol. 8, no. 3, pp. 367–377, 2014.

[28] “MPICH Library,” http://www.mpich.org.
[29] M. Xie, Y. Lu, K. Wang, L. Liu, H. Cao, and X. Yang, “Tianhe-1a

interconnect and message-passing services,” IEEE Micro, vol. 32, no. 1,
pp. 8–20, 2012.

[30] W. Huang, L. Li, J. R. Myers, and G. T. Marth, “ART: A next-generation
sequencing read simulator,” Bioinformatics, vol. 28, no. 4, pp. 593–594,
2012.

[31] “ART simulator,” https://www.niehs.nih.gov/research/resources/
software/biostatistics/art/.

[32] “Illumina,” https://www.illumina.com.
[33] “Reference genome dataset,” ftp://ftp-trace.ncbi.nih.gov/1000genomes/

ftp/technical/reference//human g1k v37.fasta.gz.
[34] Q. Zhang, J. Pell, R. Canino-Koning, A. C. Howe, and C. T. Brown,

“These are not the k-mers you are looking for: Efficient online k-mer
counting using a probabilistic data structure,” PloS One, vol. 9, no. 7,
p. e101271, 2014.

[35] U. Ferraro Petrillo, G. Roscigno, G. Cattaneo, and R. Giancarlo,
“FASTdoop: A versatile and efficient library for the input of FASTA
and FASTQ files for MapReduce Hadoop bioinformatics applications,”
Bioinformatics, vol. 33, no. 10, pp. 1575–1577, 2017.

[36] H. Nordberg, K. Bhatia, K. Wang, and Z. Wang, “Biopig: a hadoop-
based analytic toolkit for large-scale sequence data,” Bioinformatics,
vol. 29, no. 23, pp. 3014–3019, 2013.

[37] A. Schumacher, L. Pireddu, M. Niemenmaa, A. Kallio, E. Korpelainen,
G. Zanetti, and K. Heljanko, “SeqPig: Simple and scalable scripting for
large sequencing data sets in Hadoop,” Bioinformatics, vol. 30, no. 1,
pp. 119–120, 2014.

[38] G. Zhao, C. Ling, and D. Sun, “SparkSW: Scalable distributed com-
puting system for large-scale biological sequence qlignment,” in ACM
International Symposium on Cluster, Cloud and Grid Computing.
IEEE/ACM, May 2015, pp. 845–852.


