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Abstract—The MPI two-sided communication model has been
widely used in scientific applications for decades. The nonblock-
ing version of the two-sided routines allows the application to
potentially improve performance on many systems by overlap-
ping communication and computation. In practice, unfortunately,
the overlap is hard to achieve because of the limitations of the
MPI internal progress engine and the underlying network. The
traditional approach to resolving this issue is to implement an
asynchronous progress engine based on either additional threads
or hardware interrupts; however, such approaches may result in
reduced computing power or expensive overheads.

In this paper, we present a portable process-based asyn-
chronous progress approach for two-sided communication in the
PMPI-based Casper framework. It allows the user to specify
an arbitrary number of cores on a multicore or many-core
architecture and offload the point-to-point communication to
these cores, thus ensuring asynchronous progress with low
overhead. Unlike our previous work that supports asynchronous
progress for the MPI one-sided model, a completely new design
is needed for the message-matching-based two-sided model in
order to ensure comprehensive semantics correctness as defined
in the MPI standard. We present a detailed design of this two-
sided model and compare it with the traditional thread-based
approach on both a multicore Intel Xeon cluster and a many-
core Knights Landing cluster.

Keywords-Asynchronous progress; MPI point-to-point; two-
sided communications; multi-core; many-core;

I. INTRODUCTION

MPI two-sided communication, also known as point-to-
point communication, was introduced in MPI-1 [1]. It defines a
message-passing model in which one process sends messages,
and the other process receives messages. This model is used
extensively in scientific applications to parallelize computation
on distributed-memory systems, and it dominates the commu-
nication cost [2–7].

The overlap of communication and computation is a nontriv-
ial task in two-sided communication and is especially impor-
tant for balancing computation loads in irregular applications
on large-scale systems [7]. The nonblocking routines of the
two-sided model allow the user application to perform message
posting and completion in separate MPI calls, thus potentially
allowing the MPI runtime to overlap the data transferring taken
by network hardware with the user computation performed by
CPU cores. In practice, however, most MPI implementations
do not immediately transfer medium or large messages at the
first posting call (i.e., MPI_ISEND), but delay such transfer
to a later MPI call or even until the completion call (e.g.,
MPI_WAIT) is triggered. The reason is that the posting call

issues only a handshake header to the remote process to ensure
both sender and receiver buffers are ready; and hence the data
can be directly carried from the send buffer to the receive
buffer without an expensive temporary copy. This procedure is
known as the rendezvous protocol. In such case, unfortunately,
the heavy data movement and the computation become hard
to overlap.

The concept of MPI asynchronous progress is introduced
to specifically address the communication overlap issue. Two
traditional approaches are well known in the community. The
first is a thread-based approach, where a background thread
is created by each MPI process and continuously polls the
MPI stack of the bound process; thus it can handle the data
movement asynchronously while the master thread of the
process is concentrating on the computation. This approach is
usually implemented as part of an MPI implementation [8–
11]. However, this model is limited in that we have to
create as many threads as the number of processes on a
node, thus resulting in significantly reduced computing power
or heavy core oversubscription. In the hybrid MPI+threads
programming model, the reduced number of MPI processes on
a node can reduce the need for CPU cores dedicated to asyn-
chronous progress threads. However, the expensive overhead
of MPI multithreading safety still cannot be avoided [12]. The
second asynchronous progress approach, based on hardware
interrupts [13–15], has been used in IBM Blue Gene and Cray
systems. In this approach, the network hardware issues an
interrupt to the user process to trigger a software operation
at the time of the message arrival. The concept of this ap-
proach is straightforward, but it relies on a special lightweight
interrupt mechanism supported by hardware; otherwise, the
performance may degrade because of expensive overhead from
frequent system interrupts.

In this paper, we propose a process-based asynchronous
progress model for MPI two-sided communication, called
CasperII, to address the critical communication overlapping
issue. It allows the application user to specify an arbitrary
number of cores as background “ghost processes” dedicated
to asynchronous progress for communication on the other pro-
cesses on the node. The process-based approach offers more
flexible core deployment than does the thread-based approach,
and it does not involve any overhead from multithreading or
system interrupts. In previous work, we studied the process-
based concept for MPI one-sided communication [16], [17].
In this paper, we exploit a lightweight offloading mechanism



following this concept to address the asynchronous progress
problem in MPI two-sided communication. With this mech-
anism, we can transparently offload heavy communication
requests from the user process to the ghost process at the
message posting time. Thus the data movement cost can be
fully overlapped with application computation.

Although the offloading concept is not new, several critical
challenges have to be addressed in the design and implementa-
tion of our framework in order to maintain the transparency to
both the applications and the various MPI implementations, as
well as to ensure high performance. In particular, the address
space isolation of system processes significantly increases
the complexity of communication offloading because the
performance-sensitive data movement has to been additionally
synchronized between different processes.

To address these challenges, we have designed an offloading
mechanism that moves message information between user and
ghost processes through a lightweight, lock-free, queue-based
framework allocated over the shared-memory region by using
the portable MPI-3 function MPI_WIN_ALLOCATED_SHARED.
We carefully consider various MPI semantics such as strict
message matching and wildcard message support, and we
maintain the correctness transparently within the framework.
We also evaluate the framework through a set of microbench-
marks on the NERSC Cori supercomputers, including both the
multicore CPU cluster and the many-core Knights Landing
(KNL) environment.

II. BACKGROUND

In this section, we briefly introduce the semantics of the
MPI two-sided communication model, and we discuss the
Casper framework for one-sided communication proposed in
our previous work [16].

A. MPI Two-Sided Communication

MPI is the dominant parallel programming model on
distributed-memory systems. The two-sided communication
model was introduced in MPI-1 standard. In this model, two
processes communicate with each other by explicitly posting
MPI send and receive calls to match and move data.

Matching: The matching of a send and a receive call relies on
the message envelope consisting of the communicator, source,
or destination rank in the communicator and the tag. To be
specific, the message sent from a source process src with
envelope {comm, dest, i} matches only a receive call on the
process dest with {comm, src, i} or a wildcard receive. The
comm is a specific communicator, and i is an integer value
of the tag.

Ordering: The messages sent from the same source process
through the same communicator are guaranteed to arrive at the
same destination process in the posting order. However, MPI
does not maintain the ordering between messages sent from
different source processes or received by different destination
processes. The user program must ensure that the ordering

of message delivery does not conflict with the tag-matching
policy.

Wildcard: The wildcard receive functionality is a useful tool
for many user scenarios. The receiver process can post the
receive call with MPI_ANY_SOURCE as the source rank. Thus it
can match the message from an arbitrary source process in the
communicator. Similarly, the user can specify MPI_ANY_TAG

as the matching tag value in the receive call. The actual
matched source rank or tag value can be queried through
a status object upon receiving a completion call. The user
can pass MPI_STATUS_IGNORE to the completion call if such
information is unneeded.

We note that the two-sided send/receives mentioned
in this paper are all nonblocking routines, namely,
MPI_ISEND or MPI_IRECV. The user program can complete
a send or receive operation through the completion call
MPI_TEST{ALL|ANY|SOME} or MPI_WAIT{ALL|ANY|SOME}.

B. Casper

Casper is a process-based asynchronous progress model
for MPI one-sided communication [16]. It allows the user to
specify a few numbers of cores on modern multicore or many-
core architectures as background “ghost processes”; those
cores then are kept aside by Casper at MPI initialization and
dedicated to communication asynchronous progress.

Ghost Isolation: To transparently hide the ghost pro-
cesses from the user application, we create an internal
COMM_USER_WORLD communicator that consists only of user
processes, and we replace MPI_COMM_WORLD at every user
MPI call with this new communicator through the PMPI
interface.1 Therefore, any user-created subcommunicator also
excludes the ghost processes.

Communication Redirection: The MPI one-sided model
(known as RMA) is based on window exposure. Thus
Casper can intercept the user window allocation call and
internally expose the user window buffer also to the
ghost process on the same node through the powerful
MPI_WIN_ALLOCATE_SHARED function. Moreover, the one-
sided model requires only the sender side (i.e., origin process)
to issue RMA operations but does not require the receiver
side (i.e.. target process) to explicitly issue a matching MPI
call to process the message. Therefore, a user process can
redirect its RMA operation issued to a remote target process
by redirecting the operation to the corresponding ghost process
on that remote node and reach the same memory location on
the user target process with appropriate offset translation.

III. BASIC DESIGN

From this section, we extend the Casper framework to cover
the important two-sided communication model. Although the
basic isolation of ghost processes can be reused, the commu-
nication portion must be completely redesigned. The reason
is that, unlike the well-studied one-sided model, the data

1MPI Profiling Interface.



buffer passed to two-sided send/receive calls is not naturally
managed by MPI. More important, the two-sided operations
are based on the explicit matching as we introduced in the
preceding section. Therefore, we propose a new framework,
called CasperII, to enable the asynchronous progress of two-
sided communication. In the rest of this section, we present the
basic design of CasperII; we discuss its semantics correctness
issues and solutions in Section IV.

A. Design Challenges

In two-sided communication, we desire to overlap com-
munication and computation on both the sender and receiver
processes. To asynchronously take communication, we can
offload the communication operations to a ghost process, thus
allowing the ghost process to handle data movement while the
user process can simultaneously perform computation.

Although the concept of offloading is straightforward, we
have to address three critical issues in our implementation.
First, the ghost processes are always hidden from user com-
municators, as we introduced in Section II-B, however, we now
need them to explicitly issue MPI calls over some user commu-
nicators. Second, we cannot implicitly map the user-managed
buffers used in two-sided calls; thus, an additional buffer
sharing mechanism is required. Third, the send or receive
operation must return an MPI_Request object for the user
process to wait or to test the request to ensure communication
completion. These semantics issues require that we design a
lightweight routine to synchronize the message completion on
the ghost process to the user process.

B. Offloading Framework

We describe our detailed design by dividing the framework
into the following four steps.

Communicator Expansion: As the first step, we intercept all
communicator creation calls through PMPI. Thus, whenever
the user creates a new subcommunicator, CasperII can create
an internal communicator including all user processes in the
user subcommunicator and the corresponding ghost processes.
Only the user subcommunicator is returned to the user to
ensure the transparency of the ghost processes.

Shared Buffer Allocation: To avoid expensive copying of the
user data between the user and ghost processes, the second
step is to map the user buffer into the memory of the
ghost process on the same node. To simplify this work, we
require the user to allocate the data buffer through the MPI-
3 MPI_WIN_ALLOCATE_SHARED function to register it as an
offloadable message location. Doing so allows us to internally
allocate a shared buffer over both the user and ghost processes.
Since most applications use only a few statically allocated
buffers for message exchange, this tradeoff is negligible. We
cache the address, the base address on ghost process, and
the size of every buffer. Thus we can validate the buffer
and translate its starting address to be accessed by the ghost
process at a later message posting.

User Processes Ghost 
Process

isend
Irecv

2. Poll user
offloading queues

1. Enqueue
post calls

3. Translate & 
Issue MPI call

SPSC offloading queue
over shared memory

Ghost 
Process

Node 0 Node 1

isend
Irecv

isend
Irecv
isend
Irecv

isend
Irecv
isend
Irecv

Fig. 1. Offloading user communication to a ghost process.

Post Offloading: The message posting call (i.e., nonblocking
send or receive) is offloaded to the local ghost process through
a shared lock-free queue. To minimize potential contention,
we create a separate queue on each user process and let the
ghost process poll one or multiple queues in a single-producer-
single-consumer fashion. The queue elements are called post
cells. We allocate both the shared queues and a fixed number
of free cells on every process through the MPI-3 shared-
memory functionality at MPI initialization. Figure 1 illustrates
the example with a ghost process serving two user processes.
We intercept all send/receive calls and enqueue a post cell
with message information including the buffer address, count,
datatype, tag, and communicator to the shared queue. An MPI
generalized request (i.e., by calling MPI_GREQUEST_START

function) is created and stored in a local hash with the corre-
sponding cell’s address and then returned to user program. On
every ghost process, it always polls the user offloading queues.
Once the ghost process has polled out an offloaded post,
it replaces the user communicator to the internal expanded
communicator and translates the source or destination rank
to the corresponding ghost process’s rank, then makes the
corresponding call to MPI.

Asynchronous Completion: The ghost process frequently tests
the completion of all issued communication requests. Once
it has found a completed request, it updates an atomic flag
located in the corresponding post cell. Whenever the user
tests or waits for a request, we internally fetch the post cell
associated with that request from the local hash and check its
completion through the atomic flag. Once the communication
is completed, the post cell is then returned to a free pool and
reused by the next offloading.

To avoid unnecessary internal processing at every MPI mes-
sage call, we enable this work only when the user passes an
info hint to the communicator. To be specific, we allocate the
shared buffer only when the user sets shmbuf_regist=true;
we expand the communicator and offload messages only when
the user specifies the wildcard_used hint with specific
values as described in Section IV-C. We note that these info
hints are not defined by the MPI standard and are CasperII-
specific extensions.

IV. CORRECTNESS CHALLENGES AND SOLUTION

Although the offloading framework enables asynchronous
progress, several correctness issues may occur when multiple
user processes share the same ghost process or when the user
utilizes an MPI wildcard receive. In this section, we address



these cases in CasperII in order to maintain correctness as
specified in MPI standard while improving performance.

A. Message Matching with a Shared Ghost Process

On multicore and many-core systems, an MPI application
launches multiple processes that reside on different CPU
cores of the same node. CasperII keeps aside only one or a
few cores from the application to reduce occupation of the
computing resources. In this case, the same ghost process
may be shared by multiple user processes. Therefore, different
source or destination ranks in the messages offloaded from
user processes can be translated to the rank of the same ghost
process. Because of the message-matching policy as described
in Section II-A, a send can mismatch a receive if the original
destination process and the actual receiver process share the
same ghost process in the same communicator and with the
same tag.

To address this critical issue, we study two approaches.
One is based on duplicated communicators for different user
processes, and the other is based on internal tag encoding.

Duplicating Communicators: Consider a set of
{communicator, rank, and tag} information that compose a
unique message-matching id. When the uniqueness of rank
is weakened, we can transfer the differences of rank to the
communicator portion, thus ensuring the same uniqueness.
In detail, because the rank of multiple user processes may
be confused only when they share the same ghost process,
we can duplicate a separate communicator for each of
those user processes at the user subcommunicator creation
and use a different communicator for the communication
offloaded from each user process. More specifically, we can
duplicate N internal communicators for every user-created
subcommunicator, where N is the number of user processes
sharing the same ghost process. A send call targeting to the
ith user process bound to ghost process g is translated to a
call over the ith communicator with g as the destination rank.
A receive call posted by the ith user process of g is offloaded
to g and issued over the ith communicator. The user-specified
tag remains the same. Following this strategy, the messages
can always match correctly on the ghost processes. We note
that for a highly optimized MPI implementation, the memory
consumed by a duplicated communicator can be reduced to
a constant value [18]; thus the side effect of this approach
should be small.

Tag Encoding: The second approach is to keep the same
communicator but shift the difference to the tag portion. MPI
defines the attribute MPI_TAG_UB to indicate the upper bound
of the tag value supported by the MPI implementation. We
note that although the tag parameter is an integer variable,
MPI defines a valid tag value that must be in the range from
0 to the value returned for MPI_TAG_UB, inclusive; the upper
boundary must be at least (215−1), as specified in standard.
However, most MPI implementations support a larger range
(e.g., (230−1)). Therefore, we can reserve a few bits in the
tag range by replacing the MPI_TAG_UB value returned to the

user program and encode the user rank information into the
reserved bits. Figure 2 shows the structure of such an encoded
tag. Instead of rank, here we use the user process’s relative
offset in its process group sharing the same ghost process as
the “id”; thus the required bits are compressed to be only
Nu/Ng , where Nu and Ng are the number of user processes
and the number of ghost processes on a node, respectively. In
practice, this value is usually within two digits, thus requiring
at most 7 bits. By using the reserved bits, we can encode the
destination rank’s offset in the tag portion for every message,
similar to the translation in the first approach, thus ensuring
correct matching.

… DST OFFSET USER TAG 

MPI_TAG_UB 

INT_MAX 

Exposed MPI_TAG_UB (>= 32767)

0 

Fig. 2. Encoding rank offset in the tag integer.

Unlike the first approach, the tag-encoding method does
not involve any communicator duplication, thus reducing the
pressure of subcommunicator creation. However, we notice a
limitation when the communication involves the wildcard tag
(i.e., receive with MPI_ANY_TAG as the tag value). The reason
is that the encoded tag value can no longer be recognized as a
wildcard value in MPI. Therefore, the tag-encoding approach
should be used only when the user explicitly hints that no
wildcard tag is used and we have internally determined that
sufficient tag space is available for any possible user offset.

B. Wildcard Receive

As introduced in Section II-A, a receive call may be speci-
fied with the wildcard MPI_ANY_SOURCE value for the source
rank. Thus it can match with the message sent from any source
in the communicator. A similar rule applies to the wildcard
tag. Although the duplicating communicator approach ensures
correct matching of any wildcard receive, a wrong source value
can be returned in the receive MPI_Status object, since the
message is sent by an internal ghost process.

To transfer the real user source rank, we can reuse the
tag-encoding method. In other words, after replacing the
communicator in the offloaded send call, we also encode the
send user’s offset into the tag value; on the receiver side, we
replace the receive tag by MPI_ANY_TAG. Therefore, the offset
of the user source can be transferred to the receiver ghost
process and recovered to the original rank by integrating with
the ghost source rank from the internal status.MPI_SOURCE.
To simplify the recovery processing, we reorder ranks for the
internal communicator at the time of communicator expansion
in order to ensure that a user rank can always be calculated
by g+i, where g is the rank of its ghost process and i is the
offset.

Unfortunately, this method still cannot cover the case where
the user specifies a receive with a wildcard source together
with a distinct tag. The reason is that the receive tag is
internally replaced by MPI_ANY_TAG in order to match an
arbitrary source, thus resulting in loss of the user-specific tag.



C. Info-Based Algorithm Selection

We next define the hint interface to assist us in
choosing the appropriate internal algorithm. We define
a communicator info key wildcard_used with values
any_src|any_tag_same_tag|none. The default any_src
is the most relaxed value, which means that the user program
may use wildcard source with any format of tag in the
communication. In the case of wildcard_used=any_src,
we have to disable the asynchronous progress for the com-
municator because of the uncovered wildcard corner issue.
The second any_tag_same_tag means only that the wild-
card tag or the same tag (e.g., all communication calls
use tag 0) is used. Thus, with this info value we enable
the asynchronous progress for the communicator and choose
the communicator duplicating approach, including the case
of any_src|any_tag_same_tag, which also enables the
source offset encoding. The strictest value is none, which
means that no wildcard source or tag is used. In this case,
we choose the most lightweight tag-encoding approach. Note
that none cannot be combined with the others.

V. EVALUATION

In this section, we evaluate CasperII on the NERSC
Cori Cray XC40 supercomputer (https://www.nersc.gov/users/
computational-systems/cori/configuration/). Cori consists of a
Haswell cluster and a KNL cluster. The Haswell compute node
is composed of two 16-core Intel Xeon E5-2698 processors at
2.3 GHz, and the KNL compute node is composed of a single-
socket Intel Xeon Phi Processor 7250 processor with 68 cores
at 1.4 GHz. Each compute node is connected via the Cray
Aries interconnect with Dragonfly topology.

We evaluate the proposed work on both clusters (using the
default quad cache mode on KNL) and use the Cray MPI
(version 7.4.4) and the Intel icc compiler (version 2017.2.174)
in all experiments, by comparing with both the original MPI
and two conventional thread-based implementations with ded-
icated cores. The first implementation is the default version in
MPICH (denoted by Thread), 2 and the second is the CrayMPI
optimized version (denoted by Thread(opt)). 3 We omit the
comparison with the interrupt-based approach in CrayMPI
since its significant overhead is already well studied in our
previous work [16]. All experiments were compiled with an
-O2 flag and executed with explicit core-binding to ensure a
dedicated core per process or thread. Every experiment was
run ten times, and the average result is reported.

A. Overhead Analysis

In the first set of experiments, we analyze the additional
overhead caused by the offloading framework.

2Set MPICH_ASYNC_PROGRESS=1; the thread always polls progress.
3Set MPICH_NEMESIS_ASYNC_PROGRESS=1; the thread polls progress

only for rendezvous messages.

1) Offloading Overhead: We modify the OSU point-to-
point latency microbenchmark [19] by replacing the block-
ing send-recv ping-pong with the nonblocking isend-irecv,
followed by a waitall call. We also replace the data
buffer allocation by using MPI_WIN_ALLOCATE_SHARED with
shmbuf_regist=true info (see Section III-B) and spec-
ify the wildcard_used to none and any_tag_same_tag

to trigger the tag-encoding approach and the communicator
duplication approach, respectively. We denote the former as
CspII(tag) and the latter as CspII(dup). We perform the ex-
periment on two nodes each with a user process and a ghost
process (or a helper thread in the thread approaches).

Figure 3(a) compares the message posting overhead (i.e.,
time of isend-irecv calls) on Haswell. The CasperII approaches
always outperform the original MPI, reporting 0.1 to 1 µs less
cost for message sizes from 0 bytes to 4 Kbytes and a consis-
tent 0.2 µs gap for large messages (≥ 8 Kbytes). The reason
is that the user process only locally enqueues a post cell with
message information to the shared queue at the posting call in
CasperII. In contrast, the original MPI transfers the message
data at the posting call for small messages (< 8 Kbytes, known
as the eager protocol) and issues handshake packets for large
messages (known as the rendezvous protocol). The default
thread-based approach reports more than 2 µs overhead than
that of the original MPI because of lock contention in MPI.
The CrayMPI optimized version eliminates such overhead for
eager messages by disabling the thread polling; however, it
delivers the most expensive overhead when such polling is
enabled for rendezvous messages. We note that the visible
overhead of the original MPI for 4 Kbytes message is because
of an inappropriate eager threshold set at the system, a topic
that is out of the scope for this work.

Figure 3(b) shows a similar trend of results on KNL. The
original MPI takes 1 to 5 µs more overhead than CasperII, the
default thread approach takes close to 10 µs more overhead
than the original MPI, and the CrayMPI optimized thread
approach reports up to 40 µs overhead when thread polling
is enabled.

Figure 3(c) compares the overhead of the waitall call on
Haswell. The baseline original MPI take 0.8 to 1 µs time for
eager messages. The overhead increases with increasing of
message size in the rendezvous range and eventually increases
to 568 µs at 4 Mbytes message. Compared against the baseline,
we observe close to 2 to 3x overhead in the offloading
approaches for eager message sizes up to 8 Kbytes. This
overhead gradually decreases with increasing of message size
and eventually becomes negligible at large messages. The
visible overhead at eager messages is caused by the slight
delay of the offloaded message posting and the synchronization
of completion between user and ghost processes. On the KNL
platform, the offloading overhead seems less significant, as
shown in Figure 3(d), reporting 1.6 to 2x higher cost than that
of the original MPI. This overhead becomes negligible when
message size is greater than 8 Kbytes. In contrast, the thread-
based approaches are always more expensive when thread
polling is enabled.
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Fig. 3. Offloading overhead in nonblocking ping-pong. (Note: in order to demonstrate the overhead, we enable offloading for all messages by setting
offload_min_msgsz=0 in CasperII.)

Observing a consistent trend in both the CspII(tag) and
CspII(dup) approaches, we conclude that the selection of dif-
ferent algorithms does not have an impact on the performance-
critical routines. Thus we omit the second communicator du-
plication approach and show the tag-encoding-based approach
in the remaining experiments. Moreover, we introduce the
offload_min_msgsz communicator info hint as the offload-
ing threshold based on message size (in bytes). Messages
smaller than this value are issued through the original MPI
routine similar to the optimized thread approach. This allows
us to further investigate the impact of offloading-based asyn-
chronous progress on small messages.
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Fig. 4. Message rate evaluation.

2) Message Rate: Having isolated each portion’s overhead
in the latency-style experiment, we compared the message rate
of each approach. Figure 4(a) shows the results measured by
using the OSU point-to-point message rate microbenchmark
on Haswell. We show two options of CasperII. The first
enables offloading for all message sizes (denoted by CspII(all))
by setting offload_min_msgsz=0, and the second enables
offloading only for messages larger than 4 Kbytes by set-
ting offload_min_msgsz=8192 (denoted by CspII(8k)). The
most expensive default thread approach reports up to a 4x
degraded message rate compared with that of the original
MPI. Both the optimized thread approach and the CspII(8k)
approach disable asynchronous progress for eager messages.
CspII(8k) outperforms the former; it reports up to 1.15x
degradation at eager messages, and eventually becomes close
to the original approach at a message size of 16 Kbytes.
CspII(all) reports more overhead than CspII(8k) at small
messages because of the offloading overhead as analyzed
in Section V-A1. Figure 4(b) reports the results on KNL.
CspII(8k) degrades only at most 1.3x and becomes close to
the original MPI for medium-sized and large messages.

B. Asynchronous Progress

In the second set of experiments, we analyze the asyn-
chronous progress improvements achieved in various scenar-
ios.

1) Overlap: First, we focus on the computation and com-
munication overlap between two processes. We extend the
nonblocking ping-pong experiment used in Section V-A1 by
adding a computation delay between the posting call and the
completion call. Thus, every process performs as isend-irecv-
delay-waitall. We still execute the experiment on two nodes
each with a single user process. We vary the delay time with
increasing message size by using the latency obtained in the
offload overhead experiment (sum of the post time and the
wait time) on each platform.

Figure 5(a) shows the execution time obtained by each ap-
proach on Haswell. Compared with the original MPI, although
both CasperII and the thread-based approaches can reduce the
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Fig. 5. Computation and communication overlap in nonblocking ping-pong.

execution time by up to 50% (shown as 0.5x relative time) for
large messages, the default thread approach results in about
50% degradation in small messages because of the overhead
of multithreading. The optimized thread approach starts thread
polling from 8 Kbytes. However, its threads contention over-
head is more expensive than the benefit from asynchronous
progress, thus resulting in up to 30% degradation in medium-
sized messages. To better compare the overlap status, we then
compare the overhead distribution of every internal portion
for each approach, shown as Figures 6(a), 6(b), 6(c), and
6(d), respectively. The results clearly indicate that the waitall
overhead can be fully overlapped with the computation portion
in CasperII but that it cannot be hidden with only the original
MPI and dominates the overall time at close to 50%.

Figure 5(b) shows the time observed on KNL. The thread-
based approaches deliver more significant overhead at small
and medium-sized messages, while the CasperII approaches
can always reduce the time and deliver 20% to 50% improved
performance when offloading is enabled.

2) Scalability: In our next experiment we scalethe com-
parison to multiple nodes. Instead of simple ping-pong, we
choose the nearest-neighbor communication pattern with a
two-dimensional Cartesian topology common in domain ap-
plications. Every process handles a 65536×65536 matrix with
double elements and exchanges the boundaries with its four
neighbors by using isend-irecv calls and a waitall. We insert
a 300 µs computation delay between the posting calls and

the waitall call and scale from 2 nodes to 512 nodes with
a user process (and a ghost process in CasperII or a thread
in the thread-based approach) on every node. Because only
large messages (512 Kbytes) are transferred, we compared
the original MPI with only the optimized thread approach and
CasperII with an 8192 offloading threshold.

Figure 7(a) shows the execution time of each approach on
Haswell. Both the thread approach and CspII(8k) consistently
improve the performance compared with the original MPI.
CspII(8k) delivers the best performance, taking 40% to 10%
reduced time. By profiling the overhead of each portion, we
notice that although the thread approach reduces a similar
amount of overhead in the waitall call, it increases the posting
overhead from 4 µs to 15 µs compared with the original MPI,
while CspII(8k) costs less than 2 µs.

Figure 7(b) shows a similar trend on the KNL platform. We
report up to 30% improved time in the CspII(8k) approach,
while the optimized thread approach achieves only at most
15%.

VI. RELATED WORK

Traditional approaches to enable asynchronous progress for
MPI two-sided communication usually rely on thread-based or
interrupt-based models. Because of the capability of message
asynchronous completion in the eager protocol, researchers
also investigated the ways to utilize such feature. We then
summarize the related work in each approach.

Thread-based asynchronous progress: The thread-based ap-
proach is the most common approach for supporting software
progress and is supported in many MPI implementations
such as MPICH and its derivatives [8][9][10]. This model
requires every MPI process to create a background thread
to asynchronously poll MPI internal progress in order to
process messages. While being a generic approach for various
MPI communication models, this approach suffers from the
restriction that a background thread can make progress only
for the process that spawned it. Thus it has to deploy at least as
many background threads as MPI processes on the computing
node. Consequently, the user must choose either to dedicate
half of the computing resources or to perform expensive
core oversubscription. Furthermore, this model forces the MPI
runtime to maintain multithreaded safety, which results in
further overheads because of lock contention and memory
barriers [12].

Kandalla et al. [20] proposes a functional partitioning ap-
proach for asynchronous nonblocking alltoall by utilizing the
concept of shared-memory mapping and progress threads. This
work is implemented inside the MVAPICH runtime, thus the
severe threads contention issue can be minimized with support
from the specific environment.

PIOMan [21] is a multithreaded communication engine
supporting thread-based asynchronous progress. It divides ren-
dezvous handshakes into multiple tasks and offloads them to
background threads running only on idle cores. This approach,
however, also suffers from a non-negligible overhead derived
from the necessary multithreaded safety [22].
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(a) Original MPI.
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(b) Default thread approach.
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(c) Optimized thread approach.
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(d) CasperII (all message offloading).

Fig. 6. Profiling of computation and communication overlap in nonblocking ping-pong on Haswell .
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Fig. 7. 2D nearest-neighbor communication with asynchronous progress.

PAMI [23] utilizes the communication threads on IBM Blue
Gene/Q for asynchronous progress. It uses a similar offloading
approach where the communication requests are offloaded to
the communication thread through atomic enqueue/dequeue
operations. However, this work relies on special hardware and
kernel support to reduce the overhead of offloading.

Vaidyanathan et al. [24] contributed a new approach for
portable asynchronous progress in “MPI+X” applications by
utilizing a dedicated thread together with a lock-free command
queue. The MPI+X model often utilizes multiple threads over
multicore or many-core systems to parallelize computation and
employs only a single MPI process per node for internode
communication. Thus only a single dedicated core is required
per node. This is the most similar approach to the offload-

ing framework in CasperII where the entire communication
operation is offloaded to a separate CPU core. We note,
however, that CasperII also natively support the traditional
MPI-only model, which still widely exists in domain appli-
cations. Moreover, offloading communication operations to a
separate process rather than a thread dramatically increases the
complexity of the work to transparently maintain the semantics
correctness.

Interrupt-based asynchronous progress: The other well-known
asynchronous progress approach in the MPI community is
the interrupt-based approach, which has been supported on
both Cray [15] and IBM systems [13], [14]. This approach
assumes that all processes are busy in external computation,
thus utilizing a system interrupt to awaken the kernel thread to
asynchronously trigger software operation at message arrival.
The design is straightforward. However, the implementation
often relies on a platform-specific interrupt engine; otherwise
severe performance degradation might occur because of fre-
quently issued interrupts.

Asynchronous progress in eager protocol: The eager protocol
is wildly used in various MPI implementations for small
message transfer. A key feature of this protocol is that a send
message can be “eagerly” issued and finished asynchronously
regardless of the arrival of the receive call. To utilize this
feature also for large messages, Brightwell et al. [25] studied
an eager-optimized rendezvous protocol on Portals network
and summarized that the eager optimization still relies on the
frequency of MPI calls made in the application and requires
a large number of pre-posted receive calls. Different from the
thread-based or interrupt-based approaches, the communica-
tion overlap can be obtained from the eager protocol is known
to be limited because of the additional copy overhead and
resource restriction from MPI implementations.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present an efficient and portable process-
based asynchronous progress approach for MPI point-to-
point communication. The user can specify a few cores as
background ghost processes to be dedicated to asynchronous
communication for the remaining processes on the node. The



approach is based on message offloading where any user mes-
sage buffer allocated from MPI_WIN_ALLOCATED_SHARED

can be mapped into the memory address space of a ghost
process on the node. Thus the communication operations can
be offloaded to the ghost process through lightweight, shared
lock-free queue without extra data copy.

Although the basic framework is straightforward, we have
to resolve several critical issues in order to ensure the seman-
tics correctness as defined in the MPI standard. We discuss
efficient solutions to address these problems and demonstrate
significantly improved performance and overlap of communi-
cation and computation through several microbenchmarks on
both a multicore cluster and a many-core KNL environment.

We plan to further analyze and study the load balance of
communication when multiple user and ghost processes are
involved on a node, and we will study this approach in real
applications. We plan to extend the Casper framework to cover
MPI collective communication.
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