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Abstract. In recent years, several lightweight thread (LWT) libraries
have emerged to tackle exascale challenges. These offer programming
models (PMs) based on user-level threads and incorporate their own
lightweight mechanisms. However, each library proposes its own PM,
exposing different semantics and hindering portability.

To address this drawback, we have designed Generic Lightweight
Thread (GLT), an application programming interface that frames the
functionality of the most popular LWT libraries for high-performance
computing under a single PM. We implement GLT on top of Argobots,
MassiveThreads, and Qthreads. We provide GLT as a dynamic library,
as well as in the form of a static version based on macro preprocessing
resolution to reduce overhead. This paper discusses the GLT PM and
demonstrates its minimal performance impact.

1 Introduction

The number of processors in high-performance computing (HPC) systems has
been continuously increasing, as reflected in the supercomputers of the June
Top500 lists [5]. Following this trend, exascale systems are expected to leverage
hundreds of millions of cores. Hence, future applications will have to accommo-
date massive concurrency.

Leveraging this massive intranode parallelism efficiently with traditional
threading approaches may be difficult because of their relatively expensive con-
text switching and synchronization mechanisms. In response, dynamic scheduling
and lightweight thread (LWT) and tasklet models are designed to deal with the
required levels of parallelism.

Different user-level thread (ULT) and tasklet libraries have been imple-
mented in the past, such as Windows Fibers [14], Solaris Threads [2], Conver-
seThreads [13], Nanos++ [8], MassiveThreads [15], Qthreads [20], and Argob-
ots [16] were the last three LWT solutions are compared. These solutions demon-
strate semantic and performance benefits over the classic POSIX threads [3].
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The variety of LWT libraries, however, hinders portability. Their programming
models (PMs) and internal strategies differ among implementations, and hence
developing and maintaining applications and runtime systems for different LWT
approaches require considerable effort. In this scenario, a unified standard inter-
face can be highly beneficial, as long as it supports most of the functionalities
offered by the LWT libraries while maintaining their performance.

In this paper we introduce the design of a unified LWT application program-
ming interface (API), named Generic Lightweight Thread (GLT), that groups
the functionality of popular LWT solutions for HPC under the same PM. To the
best of our knowledge, this is the first paper proposing a unified API for LWT
solutions oriented to HPC. GLT is presented as a proof of concept in order to
spark a joint effort from the community to design a standard LWT API.

We implement GLT on top of Argobots, MassiveThreads, and Qthreads.
The library choices are based on the work presented in [9], where a set of LWT
implementations was reviewed, from the semantic point of view, using a set of
OpenMP microbenchmarks.

In addition to a dynamic GLT library that enables switching the underly-
ing LWT implementation, we provide a static version to minimize the overhead.
Using the GLT API, application programmers can develop a single code for dif-
ferent LWT approaches. The design of a single API to take advantage of the
functionality of different LWT libraries, along with an efficient implementation
composed primarily of wrappers resolved at compile time, provides a semanti-
cally powerful, efficient framework for LWT programming.

Our experiments demonstrate the feasibility of a GLT implementation, which
does not exert any perceivable negative performance impact on applications.
In our experiments, the average performance overhead when using static and
dynamic GLT approaches, instead of the original LWT libraries, is 0.08% and
0.6%, respectively.

In summary, the contributions of this paper are as follows: (1) analysis of
the semantics/PMs of the three major LWT solutions for HPC; (2) design of a
generic LWT API capable of offering the functionality of its underlying libraries
efficiently; (3) practical demonstration of the GLT portability; and (4) experi-
mental performance evaluation of the GLT API on top of three reference LWT
libraries for HPC.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 offers background on our reference LWT libraries. Section 4 justifies
the need for a unified LWT API. Section 5 discusses the GLT PM. Section 6
introduces the GLT unified API. Section 7 provides an in-depth performance
analysis. Section 8 contains conclusions and future work proposals.

2 Related Work

In computer science, libraries commonly offer similar functionality. This situa-
tion may be caused by several circumstances, for example, a topic that is being
developed by different institutions at the same time (e.g., MPICH [4] and Open
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MPI [12]) or new implementations that aim to improve legacy or commercial
codes (e.g., BLIS [19]).

In the past, some efforts have been made to join several solutions under a
unique API. These common APIs aim to gather significant common features
of the original libraries and offer them to users, who benefit from having to
learn only a single API. One of these efforts in peer-to-peer overlay is [10], in
which all the common functionality of the underlying libraries is joined as Tier-
0 capabilities and offered under a unified API. Part of the community in cloud
computing also proposed a common API in [17]. There have been also efforts
in the unified runtime systems with the aim to unify heterogeneous multi-core
architectures [6] and task scheduling [7].

No unified API has been available, however, for the diverse LWT libraries
that exist today.

3 Background

In this section we provide an overview of the most widely adopted stand-alone
LWT solutions for HPC.

Qthreads presents a PM with three hierarchical levels composed of shepherds,
workers, and work units. In Qthreads, a large number of user-level threads may
access any word in memory. Associated full/empty bits are used for synchronizing
between ULTs as well as leveraging mutex mechanisms. As a drawback, allowing
all threads to access any word in memory requires hidden synchronization, which
may severely impair performance.

MassiveThreads exposes a recursive-oriented PM. It follows a work-first policy
by default, which implies that upon creation, a ULT is immediately executed,
pushing the ULT in execution into a ready queue. This policy may be configured
at library compile time. MassiveThreads exploits the concept of worker as a
hardware resource (generally a core), which is created at initialization time.
This library does not allow creating ULTs in other threads’ queues. Instead, it
relies on a work-stealing mechanism.

Argobots is a flexible, mechanism-oriented LWT library. It supports two types
of work units: ULTs and tasklets. While the former are the base for all the
aforenamed libraries, the latter provides a lighter stackless work unit. Argobots
provides the programmer with absolute control of all library resources. Pro-
grammers may dynamically create as many execution streams (abstraction of
hardware resources) as desired during runtime instead of at initialization. Users
can also decide the number of required work unit pools. Although there are
default schedulers for each pool, programmers may create their own instances.
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4 Benefits of a Unified LWT API

A unified threading API implemented on top of several underlying libraries
avoids having to modify the application code in order to execute it on top of
different threading solutions. Different hardware platforms may leverage distinct
native LWT libraries for technical or strategic reasons. If more than one is avail-
able, users may want to select the library delivering the best performance for
their particular case.

To support this assertation experimentally, we have designed two simple
microbenchmarks that create fine-grained ULTs. These microbenchmarks are
merely created in order to demonstrate how a programmer could benefit from
the common API, selecting the desired underlying solution and achieving the
best performance possible without modifying the application code.

In the first microbenchmark, each thread creates and executes a range of
ULTs. In the second microbenchmark, a single thread creates all the ULTs, which
are executed by all the threads. These microbenchmarks have been implemented
on top of each native LWT library (Argobots, Qthreads, and MassiveThreads),
as well as using the GLT API. Each test has been executed using 72 threads with
72, 720, and 1,440 ULTs. The results are the average of 1,000 executions on a
36-core (72-hardware thread) machine equipped with two 18-core Intel Xeon E5-
2699 v3 (2.30 GHz) CPUs and 128 GB of RAM. The LWT libraries are Argobots
03-2016, Qthreads version 1.10, and MassiveThreads version 0.95.

Figure 1 shows the microbenchmarks’ performance results. Although the GLT
implementations are executed on top of the three libraries, only that offering the
highest performance is shown. In Fig. 1a this corresponds to GLT over Argobots
for 72 and 720 ULTs and to GLT over MassiveThreads for the largest size. In
Fig. 1b, on the other hand, GLT over Argobots is the best option for the smallest
dataset size, while GLT over the Qthreads library offers the highest performance
for the other two problem sizes.

(a) All threads create ULTs. (b) A single thread creates all the ULTs.

Fig. 1. Performance of the underlying LWT libraries and the best GLT implementation
choice when a set of ULTs are created and executed.

These experiments demonstrate the benefits of using a unified LWT API on
top of different underlying native implementations. Within the same platform,
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different LWT libraries may yield distinct performance for different applications.
Even the same application may benefit from different LWT implementations
depending on the dataset sizes. Therefore, a unified LWT API such as GLT
enables users to select the most appropriate underlying native LWT implemen-
tation while avoiding the additional work of implementing the same application
using several LWT APIs. Determining the best underlying implementation for a
particular case is left out of the scope of this paper.

5 GLT Programming Model

As introduced in Sect. 3, each LWT library offers its own PM. Therefore, choosing
a correct default PM for GLT is critical.

Figure 2 depicts the set of elements that compose the GLT PM. A GLT thread
is composed of the operating system (OS) thread, a queue of ULTs/tasklets, and
a scheduler that sets the order of the execution of these work units. The different
functionality exposed by their PMs is explained in this section.

Fig. 2. GLT PM elements abstraction.

A GLT thread executes ULTs in an OS thread. GLT threads are conceptually
equivalent to shepherds in Qthreads, execution streams in Argobots, and workers
in MassiveThreads. ULTs are conceptually equivalent to qthreads in Qthreads
and to threads in Argobots and MassiveThreads.

GLT sets the environment during the initialization function. By default, one
thread is created per CPU core. This number, however, can be defined by the
user by means of an environment variable. Each thread is bound to a specific
CPU core in the system.

Furthermore, nothing prevents users from changing the default initial
resources for the underlying LWT library (e.g., number of pools in Argobots
or number of workers per thread in Qthreads) by means of its own environ-
ment variables, which is honored by the GLT implementation. Affinity is always
enabled mapping one GLT thread to each CPU system. No other bindings are
allowed due to the GLT PM.
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While all our reference libraries provide ULTs, Argobots additionally sup-
ports tasklets. Tasklets are lighter than ULTs, but they cannot migrate or yield
because a tasklet does not own a stack. These work units are suitable for com-
putation codes that do not include blocking calls. All codes that can be executed
by a tasklet can also be executed by a ULT. If GLT is used on top of a library
with no native support for tasklets, ULTs are transparently used underneath
instead, yielding the expected functionality but no performance benefits.

GLT scheduling relies on the underlying library. This may be specified dur-
ing the configuration step prior to building those libraries or, as in the case of
Argobots, can be changed at execution time.

6 GLT Design and Implementation Details

This section discusses the GLT design choices and describes several implemen-
tation details.

6.1 API

GLT objects start with the upper-case prefix “GLT ”. Table 1 shows the equiva-
lences between the main GLT object types and those of the reference libraries.

Table 1. GLT object equivalences (prefix shown next to each library name).

GLT (GLT ) Argobots (ABT ) Qthreads MassiveThreads (myth )

ult thread aligned t thread t

tasklet task aligned t thread t

thread xstream qthread shepherd id t thread t

mutex mutex aligned t mutex t

barrier barrier qt barrier t barrier t

cond cond aligned t cond t

GLT functions are organized into modules depending on their functional-
ity. Many GLT functions are simple wrappers to those in the underlying LWT
libraries, hence yielding low performance overhead. Some other GLT functions
require more elaborate implementations because no direct mapping to the under-
lying library functionality exists.

GLT is divided into modules that enclose the main necessary semantics. The
functionality supported by a complete unified LWT PM is distributed into the
following 7 API modules:
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– Setup. This module initializes and finalizes the library.
– Work Unit. It is composed of 18 functions that are used for work unit

management. It supports two types of work units: ULTs and tasklets. In
case the underlying library does not support tasklets, ULTs are leveraged to
deliver analogous functionality.

– Mutex. This module includes 5 basic functions to create, destroy, lock,
unlock, and try to lock mutexes. Qthreads supports only locking and unlock-
ing natively because of the full/empty-bit mechanism; the remaining functions
have been implemented on top of these semantics.

– Barrier. Three functions are provided for barrier management.
– Condition. Five condition management functions are supported natively by

Argobots and MassiveThreads and developed for Qthreads.
– Util. It consists of 6 functions to measure elapsed times or to obtain a

timestamp and 2 functions that return the number of threads and the rank
of the current thread.

– Key. This module hosts 4 work-unit data management functions. Natively
supported by Argobots and MassiveThreads and implemented for Qthreads.

Although some LWT libraries offer a more complete set of functions, we have
included only those that are relevant for the PM we propose. However, we plan
to study the addition of the extra functionality if any PM benefits from them.

6.2 Implementations

Our GLT implementation can be used in two ways. On the one hand, a set
of dynamic libraries compiled on top of the different reference libraries may
be generated. This eases the switch among the underlying LWT implementa-
tions by linking the application to a different library at load time. On the other
hand, we have devised our GLT implementation as a header-only library. This
second approach offers higher performance than the former because all the func-
tions are labeled as static inline. Most compilers will honor these modifiers
and prevent the additional function call. The performance result in most cases
is analogous to that obtained if the user employs the original library directly,
yielding no performance impact for those functions with a direct mapping to the
underlying library.

6.3 Semantic Mapping

GLT is largely composed of wrappers to the underlying LWT library functions.
The mapping between the most important functions of the GLT API and the
reference libraries is shown in Table 2.

The lack of tasklet support in Qthreads and MassiveThreads is compen-
sated with the use of the ULT functions. Moreover, since MassiveThreads does
not allow creating ULTs in other workers’ ready queue, when a glt tasklet/
ult creation to is called, the library just creates a ULT in the current worker’s
queue. Despite the fact that the different implementation approaches over differ-
ent underlying native LWT libraries may have performance implications, these
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Table 2. Mapping between some GLT functions and their equivalent in the underlying
libraries (prefix shown next to each library name).

GLT (glt ) Argobots (ABT ) Qthreads (qthread ) MassiveThreads (myth )

tasklet creation task create fork create

ult creation thread create fork create

ult creation to thread create fork to create

yield thread yield yield yield

ult join thread free readFF join

all conform to the exposed GLT semantics (offering the same functionality to
GLT users) while transparently leveraging the most efficient mechanism under-
neath.

7 Performance Evaluation

We next compare the performance of our test cases implemented directly on
top of the low-level libraries with the codes that use the GLT API. The results
correspond to the average of 1,000 executions. The software and hardware con-
figuration employed was introduced in Sect. 4.

7.1 Microbenchmarks

We leverage the Callgrind profiling tool [18] to measure the overhead in terms
of instructions per call of the most frequently used functions of the GLT code
for our three reference LWT libraries. These functions are initialization (Init),
work unit allocation (Malloc), work unit creation (Creation), yield (Yield),
join (Join), and number of threads query (Num thr).

Figure 3 shows our results for the Qthreads, MassiveThreads, and Argobots
GLT implementations, comparing the results with the native approaches. The
plots expose a common pattern: Init, Malloc, and Creation show a small incre-
ment in the number of instructions in both GLT variants (dynamic vs static); but
Yield, Join, and num threads experience this increment only in the stand-alone
version of GLT. These results reflect that the second group of functions contains
pure wrappers to the original functions and that the additional function call
overhead is added only in case of leveraging a separate GLT library. The library
initialization function adds a relatively high number of instructions because of
the GLT environment set up. Nevertheless, this is a one-time overhead intro-
ducing merely 10–15% additional instructions compared with the native LWT
solutions. The Malloc overhead (up to 4 instructions per call) is caused by the
type casting of the value returned by the allocation function to the appropriate
work unit pointer. The instructions added in Creation are due to the function
pointer casting and the return of the work unit handler. These results confirm
that the use of the GLT library as a high-level LWT API introduces fairly low
overhead.
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Fig. 3. Overhead (%) GLT approaches compared with overhead (%) native libraries.

7.2 N-Queens

We evaluated the overhead of the GLT API using a translation from an OpenMP
version of N-Queens [11]. The number of lines of code needed in the translation
are 185 for Argobots code compared with 158 for Qthreads, MassiveThreads,
and GLT. Our unified API does not add more lines to the code; indeed, it
even reduces the number compared with Argobots. The reason is the automatic
environment setup described in Sect. 6.

In the base OpenMP implementation, a single thread creates the first set of
tasks (to place a queen in a cell) and executes a taskwait. Each task creates
more tasks and waits for their termination. Our implementation of this algorithm
using LWTs follows the same philosophy. The main thread creates the first work
units, and each of these is placed into other threads’ queue until each thread has
at least one work unit to be executed. Once that is completed, each thread creates
its own work. The threads wait for the finalization using the join function.

Table 3 summarizes the average overhead of several thread configurations
(from 1 to 72 threads), for three problem sizes—10, 11, and 12 queens—and the
reference LWT libraries. While the average overhead for the stand-alone version
varies from 0.28% to 0.56%, for the header-only GLT deployment this overhead
is less than 0.1%.

These results showcase the low overhead introduced by the use of the GLT
API. The results also show a constant behavior that indicates that the overhead
is not caused by the size problem. The largest cost with respect to the native
implementations is under 0.6%.

7.3 UTS Benchmark

UTS Benchmark is a parallel code that measures the performance attained when
executing an exhaustive search on an unbalanced tree. The tree is built at exe-
cution time by using a divisible random number generator that splits the struc-
ture, making possible the parallel processing while still generating a determin-
istic tree. We translated the original code written in Pthreads to our GLT API
using 71 code lines for the Argobots implementation and 38 for MassiveThreads,
Qthreads, and GLT.
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Table 3. Average overhead (%) executing the N-Queens application using headers (H)
and stand-alone (S) GLT implementations over the three libraries.

GLT underlying library (mode) Number of Queens

10 11 12

Argobots (H) 0.01 0.06 0.04

Argobots (S) 0.28 0.36 0.32

MassiveThreads (H) 0.02 0.01 0.00

MassiveThreads (S) 0.48 0.33 0.49

Qthreads (H) 0.08 0.08 0.09

Qthreads (S) 0.43 0.51 0.56

In the original Pthreads implementation, the main thread initializes the tree
and places the first (tree) node into its own queue. Then all threads execute
the same function. First, the next node in the queue is executed, and this node
creates more nodes that are pushed into the local queue. If its local queue is
empty, a thread tries to steal a certain number of nodes from other queues.

In our implementation, a work unit is created for each thread, and work-
stealing is performed as in the original code. Accessing other threads’ queues
requires synchronization among threads and is done via GLT mutex.

In this scenario, GLT can leverage the lighter tasklet work unit because the
code does not include any blocking or system call. As discussed in Sect. 6, GLT
implementations over MassiveThreads and Qthreads employ ULTs instead of
tasklets. For reference, we also include the results for native Argobots based on
ULTs.

Table 4. GLT average overhead executing the UTS benchmark using headers (H) and
stand-alone (S) GLT implementations over the three underlying libraries.

GLT underlying library (mode) Problem size

T1 T1L T1XL T1XXL

Argobots task (H) 0.06 0.00 0.01 0.00

Argobots task (S) 0.08 0.36 0.39 0.28

Argobots ULT (H) 0.03 0.01 0.01 0.00

Argobots ULT (S) 0.24 0.55 0.22 0.53

MassiveThreads (H) 0.11 0.00 0.08 0.05

MassiveThreads (S) 0.45 0.50 0.45 0.18

Qthreads (H) 0.00 0.01 0.02 0.06

Qthreads (S) 0.30 0.55 0.58 0.29

We calculated the average overhead for all the executions of different prob-
lem sizes in order to obtain a global vision of the overhead introduced by the
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GLT API. Table 4 shows the average overhead when executing the UTS bench-
mark with problems T1, T1L, T1XL, and T1XXL (of 4 million, 102 million,
1.6 billion, and 4.2 billion nodes, respectively), on top of the three underlying
libraries, modifying the number of threads from 1 to 72. As in the N-Queens
case, the difference using the stand-alone (S) and header-only (H) GLT versions
is perceivable, being under 0.6% for the former and just slightly above 0.1%
for the latter. The results also show a trend that does not correspond with the
problem size, so it indicates that the overhead is not caused by the size problem.

8 Conclusions

In this work we have introduced the GLT API [1]. This library proposes a uni-
fied API for LWT solutions that is the first attempt to standardize those PMs.
Moreover, we have implemented GLT on top of the major general-purpose LWT
solutions for HPC: Argobots, MassiveThreads, and Qthreads.

In addition, we have discussed the GLT PM and decomposed the API’s
modules. Furthermore, we have presented an example of the semantic mapping
between the GLT API with the LWT solutions. Using two microbenchmarks we
have also justified the need for a unified LWT API from the point of view of
portability.

Our performance evaluation, based on stand-alone and header-only imple-
mentations of the GLT API, demonstrates the low performance overhead of
this approach. We have demonstrated this overhead with a set of microbench-
marks that measure the instructions per call added with GLT. Moreover, we
have assessed the overhead by comparing the execution time of two applications
where, the stand-alone implementation produced an average overhead under
0.6%, while the header-only version showed an average overhead below 0.1%.

In conclusion, we have demonstrated the portability benefits that a unified
API for LWT libraries can offer to programmers translating their applications
from OpenMP and Pthreads to GLT API. As part of future work, we plan to
implement several high-level PMs on top of the GLT API, such as OpenMP or
OmpSs. Moreover, we plan to augment the API with additional functionality
that some PMs/applications can benefit from.
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11. Duran González, A., Teruel, X., Ferrer, R., Martorell Bofill, X., Ayguadé Parra,
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