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Abstract—The availability and amount of sequenced
genomes have been rapidly growing in recent years because of
the adoption of next-generation sequencing (NGS) technologies
that enable high-throughput short-read generation at highly
competitive cost. Since this trend is expected to continue in the
foreseeable future, the design and implementation of efficient
and scalable NGS bioinformatics algorithms are important to
research and industrial applications. In this paper, we introduce
S-Aligner—a highly scalable read mapper designed for the
Sunway Taihu Light supercomputer and its fourth-generation
ShenWei many-core architecture (SW26010). S-Aligner em-
ploys a combination of optimization techniques to overcome
both the memory-bound and the compute-bound bottlenecks
in the read mapping algorithm. In order to make full use of
the compute power of Sunway Taihu Light, our design employs
three levels of parallelism: (1) internode parallelism using
MPI based on a task-grid pattern, (2) intranode parallelism
using multithreading and asynchronous data transfer to fully
utilize all 260 cores of the SW26010 many-core processor,
and (3) vectorization to exploit the available 256-bit SIMD
vector registers. Moreover, we have employed asynchronous
access patterns and data-sharing strategies during file I/O to
overcome bandwidth limitations of the network file system.
Our performance evaluation demonstrates that S-Aligner scales
almost linearly with approximately 95% efficiency for up to
13,312 nodes (concurrently harnessing more than 3 million
compute cores). Furthermore, our implementation on a single
node outperforms the established RazerS3 mapper running
on a platform with eight Intel Xeon E7-8860v3 CPUs while
achieving highly competitive alignment accuracy.

I. INTRODUCTION

Next-generation sequencing (NGS) technologies have rev-

olutionized the field of computational biology because of

their massive throughput at highly competitive cost. Today,

NGS data is processed in almost every field of bioinfor-

matics, with important applications including personalized

cancer treatment and precision medicine. Modern NGS

instruments such as Illumina sequencers [25] enable the

recording of billions of short DNA fragments per day. The

produced short reads are usually only a few hundred base

pairs (bps) in length compared with complete genomes of

typical mammals covering billions of nucleotides. In order to

further analyze the set of delocalized reads, they are typically
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mapped to a given reference genome by computing base-

pair-level alignments to determine their original positions.

This exhaustive probing of possible alignments is a compute-

heavy task and thus justifies the need for massively parallel

and efficient computation patterns. Moreover, read alignment

(or mapping) is crucial for many DNA sequence analysis

pipelines such as genotyping, the discovery of single nu-

cleotide polymorphism, or personal genomics.

The naı̈ve computation of optimal local alignments be-

tween each read and the reference genome is considered

prohibitive because of the demanding time complexity of

the Smith-Waterman algorithm [27] that is proportional to

the product of the sequences’ lengths. Thus, methods based

on a seed-and-extend approach are typically employed to

dramatically reduce the number of alignment positions by

considering only those regions in the reference genome that

contain an exact occurrence of a substring of a read. Among

existing read mappers are two predominant operation modes:

any-best and all. Bowtie2 [14], BWA [17], GEM [19], and

CUSHAW [18] run in any-best mode, which determines only

one or a few best alignments (also called intervals) of each

read to the reference genome. Other mappers such as Raz-

erS3 [28], Hobbes2 [13], BitMapper [6], and mrFAST [4]

operate in all mode, which reports all intervals satisfying a

certain constraint, for example, compliance with a predefined

edit distance threshold. Because of their extensive nature,

all-mappers demand far more computational resources than

their any-best counterparts do. Nevertheless, when studying

gene innovation or phenotypic variation, the complete list of

alignments is crucial for a thorough analysis.

Consequently, we pursue the design of an all-mapper in

order to support a wide range of biomedical applications.

Associated runtimes can be dramatically reduced if we target

clusters with a large number of compute nodes. In the recent

past, the prevalent trend in supercomputing has favored

heterogeneous nodes featuring attached coprocessors, such

as GPUs or Xeon Phi architectures, because of their vast

compute capabilities and low energy footprint. A similar

architecture has recently been introduced with the Sunway
Taihu Light supercomputer, which is based on the neo-

heterogeneous SW26010 many-core processor. This cluster
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consists of 40,960 nodes. Each node provides 260 compute

cores organized in four compute groups (CGs). A total of

10,649,600 cores provides Linpack performance of up to 93

PFlop/s, rendering it the world’s fastest supercomputer in

the Top500 list of November 2016.

In this paper, we introduce S-Aligner—a highly scalable

read mapper targeting the Sunway Taihu Light supercom-

puter and its SW26010 architecture. To the best of our

knowledge, we are the first to investigate the applicability

and scalability of read mapping on this architecture. Our

approach relies on four major contributions.

1) We provide an efficient implementation of Myers’ bit-

parallel string matching algorithm that harnesses the

full parallelization and vectorization potential of the

SW26010 many-core processor. Our new implemen-

tation is three orders of magnitude faster than a naı̈ve

single-threaded Myers version.

2) We exploit fast local device memory via direct mem-

ory access (DMA) intrinsics for intra-CG communica-

tion, which results in a 22× speedup compared with

the non-DMA variant.

3) We propose a highly scalable inter-CG communication

scheme. This results in a parallelization efficiency of

over 95% when using 53,248 CGs.

4) We employ asynchronous file loading and data-sharing

strategies to effectively hide the latency of the network

file system.

We expect that the presented techniques can guide the

design and implementation of similar types of applications

on the neo-heterogeneous many-core cluster architecture of

Sunway Taihu Light.

The rest of this paper is organized as follows: Sec-

tion II describes required background about the Sunway

Taihu Light architecture, related work, and the seed-and-

extend approach to read mapping. Details of the design and

implementation of S-Aligner are presented in Section III.

Performance evaluations in terms of speed, scalability, and

alignment quality are carried out in Section IV. Section V

summarizes our conclusions.

II. BACKGROUND

This section begins with a description of the Sunlight

Taihu Light architecture. Several parallel read mapping

approaches on compute clusters are then reviewed, before

we focus on the seed-and-extend approach.

A. Sunway Taihu Light Architecture

The Sunway Taihu Light has been manufactured by the

National Research Center of Parallel Computer Engineering

& Technology of the People’s Republic of China and is

located at the Wuxi Supercomputing Center. It provides a

theoretical peak performance of 125 PFlop/s and an effective

performance-to-power ratio of over 6 GFlop/s per watt. It

consists of 40,960 nodes with 1.4 PB attached memory. The

interconnection network provides roughly 70 TB/s bisection

bandwidth and 12 GB/s point-to-point communication band-

width.

Figure 1. Architecture of the SW26010 processor, which is partitioned
into four CGs.

Each node is equipped with a single SW26010 processor

that is subdivided into four CGs. A CG is the basic unit that

can be addressed by the job scheduling system. Each CG

consists of a single master processor (MP), 64 slave proces-
sors (SPs), and 8 GB of attached DDR3 shared memory. All

nodes can access a shared network file system for loading

and storing data. The operating system is a customized

Linux flavor running on the MP. Users may manually launch

threads on the SPs in order to parallelize compute-heavy

portions of their code. Both the MP and 64 SPs support

ShenWei’s RISC basic instruction set, which provides scalar

and SIMD operations. Moreover, reduction primitives can

be called exclusively on the MP, while the SPs exhibit

specialized intrinsics for high-precision integer arithmetic.
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The 8 GB attached shared memory can be accessed by both

the MP and the 64 SPs via a memory controller with a

shared bandwidth of approximately 136 GB/s. The MP has

its own cache (L1 and L2), and each SP can access 64 KB

of fast local device memory (LDM). Data residing in shared

memory can be written to LDM by using DMA intrinsics

and subsequently communicated via a broadcast to the LDM

of other SPs. Figure 1 shows the hardware layout.

ShenWei’s SIMD instruction set features 256-bit-wide

vector types and a set of corresponding intrinsics provided

by the ShenWei 5 Compiler Collection. The MPI library

(Sunway MPI) is a derivative of the MPICH implementation

and is compliant with the MPI-3 standard. Basic threading

capabilities for the SPs are provided by the athread library.

B. Related Work

We are not the first to parallelize read mapping on a

compute cluster. Among the earliest tools are pBWA [23]

and pMap [1]; pBWA is an MPI implementation of Version

0.5.9 of the BWA aligner, whereas pMap provides an MPI-

based framework for the concurrent execution of popular

aligners such as BWA [17] and Bowtie [15]. Other imple-

mentations exploit MapReduce frameworks, for example,

the Hadoop-based SEAL [24] and BigBWA [2] tools and

the Spark-based SparkBWA suite [3], in order to guarantee

fault tolerance. Unfortunately, all these approaches suffer

from insufficient scalability when executed on hundreds

of nodes. The metaframework parSRA [9] is written in

UPC++ and designed to support the execution of a variety

of read mappers. It combines dynamic scheduling and a

virtual file system layer for read distribution to overcome

the limitations imposed by pMap and MapReduce-based

approaches. CUSHAW3-UPC++ [10] and merAligner [8] are

other PGAS-based short-read aligners written in UPC; both

demonstrate good scalability. Although pMap and parSRA

allow for the execution of single-node GPU aligners such as

nvBowtie [22], none of the cited tools is explicitly designed

for heterogeneous clusters consisting of thousands of many-

core processors. Furthermore, all previous approaches target

traditional hardware architectures.

To the best of our knowledge, S-Aligner is the first at-

tempt to implement a fully scalable read mapper specifically

designed to fit the characteristics of Sunway Taihu Light.

Previous algorithms mapped onto this novel supercomputer

have focused mainly on application domains outside bioin-

formatics, such as Earth system modeling, ocean surface

wave modeling, atomistic simulation, and phase-field simu-

lation [7].

C. Seed-and-Extend Approach

Consider a set of reads R, a reference genome G, and an

error threshold e. The read mapping problem can be defined

as follows: Find all substrings g of G that are within edit

distance e to some read R ∈ R. We call such occurrences

g in G matches.

This problem can be solved by a classical dynamic
programming (DP) approach that calculates the semi-global

alignment between each R ∈ R and G. Unfortunately, each

alignment results in a time complexity proportional to the

product of the sequences’ lengths, which renders intractable

the alignment of a large number of short reads to a reference

genome a few billion letters long. In order to address

this problem, most state-of-the-art solutions [26] employ

the seed-and-extend approach, which follows a three-stage

pipeline.

• Stage 1: Filtration. This stage identifies promising

candidate regions (called seeds) for each read in G.

A popular strategy in order to discard large regions

of G is based on the fact that if a read R ∈ R is

divided into e+1 non-overlapping q-grams (substrings

of length q = �|R| /(e + 1)�), then (according to

the pigeonhole principle) at least one of them occurs

exactly in a match. Such occurrences can be identified

quickly by looking them up in precomputed q-gram

index data structure (also called the reference genome
index), which stores all substrings of length q of G.

• Stage 2. Verification. This stage determines whether a

seed can actually be extended to a full match within

edit distance e. This requires the implementation of a

verification algorithm in order to analyze the vicinity of

each seed. Most mappers typically apply fast versions

of DP-based algorithms for this step.

• Stage 3. Alignment. This stage generates the base-pair-

level alignment information of a read and its verified

intervals in G.

Established all-mappers such as RazerS3 [28] and mr-

FAST [4] follow this pipeline. Our profiling of RazerS3 and

mrFAST using a typical benchmark data set including the

human reference HG19 and 1 million simulated Illumina

reads (with a read length of 100 bps) reveals that Stage 2

occupies 67% and 93% of the overall runtime, respectively.

These results show that a fast implementation of Myers’ bit-

parallel algorithm for computing the edit distance between a

read and an interval is a crucial component when designing

efficient all-mappers.

Consider two strings s and s′ of length n and m, re-

spectively. Their edit distance is the minimum number of

point mutations (i.e., insertions, deletions, or substitutions)

required to transform s into s′. It can be determined by

relaxing the cells of a cost matrix C of size (n+1)×(m+1)
according to the recurrence relation shown in Equation 1,

where 0 < i ≤ n , 0 < j ≤ m, and the characteristic
function χ(x �= y) is 1 if x �= y, and 0 otherwise.

Initial conditions are set to C[i, 0] = i, C[0, j] = j, and

C[0, 0] = 0.
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C[i, j] = min

⎧⎪⎨
⎪⎩

C[i− 1, j − 1] + χ(si−1 �= s′j−1)

C[i− 1, j] + 1

C[i, j − 1] + 1

(1)

Myers proposed a bit-vector algorithm [21] that exploits

bit parallelism by encoding the differences (deltas) between

adjacent rows and columns in the cost matrix C, as defined

in Equation 2, where Δhi,j , Δvi,j , and Δdi,j are the discrete

derivatives of C[i, j] in the horizontal, vertical, and diagonal

direction, respectively.

Δvi,j = C[i, j]− C[i− 1, j] ∈ {0,±1}
Δhi,j = C[i, j]− C[i, j − 1] ∈ {0,±1} (2)

Δdi,j = C[i, j]− C[i− 1, j − 1] ∈ {0,+1}
Note that the absolute values in Equation 2 are either

0 or 1. Thus, we can encode the relatively small state

space with the help of five vectors using one-hot encoding.

Figure 2 shows an example of the encoding of the vertical

derivative Δv and its associated one-hot representations V +

and V −. With this bit-vector representation the cell updates

can be rewritten in terms of logical operations, as shown in

Equation 3:

H−
i,j = χ(Δhi,j = −1) = V +

i,j−1 ∧D0
i,j

V −i,j = χ(Δvi,j = −1) = H+
i−1,j ∧D0

i,j

H+
i,j = χ(Δhi,j = +1) = V −i,j−1 ∨ ¬(V +

i,j−1 ∨D0
i,j) (3)

V +
i,j = χ(Δvi,j = +1) = H−

i−1,j ∨ ¬(H+
i−1,j ∨D0

i,j)

D0
i,j = χ(Δdi,j = 0) = V −i,j−1 ∨H−

i−1,j ∨ χ(si−1 = s′j−1)

III. DESIGN OF S-ALIGNER

This section describes the implementation of both the

inter-CG and intra-CG parallelism for S-Aligner. Also dis-

cussed are our bit-level encoding strategy and the exploita-

tion of local device memory.

A. Large-Scale Inter-CG Parallelization

The highest level of parallelization employs a coarse-

grained partitioning scheme over a block distribution of

reads and reference genomes using MPI. In our experiments

we process up to 1.6 TB of read data using up to 13,312

SW26010 nodes executing more than 50,000 dispatched

processes. Thus, a naı̈ve partitioning of the read file into

50,000 pieces of approximately 32 MB is not a suitable

solution because of the excessive data replication of the

reference genome index. Instead, we employ a partitioning

strategy based on a task grid pattern for the inter-CG

parallelization by concurrently assigning pairs of reference

genome blocks and read chunks to individual CGs. The two

dimensions of the grid are spanned by the reference block

Figure 2. Relations between the original matrix, Δv, V +, and V −. Here
(a) shows the original score matrix; light-shaded cells indicate Δvi,j =
+1 while heavily shaded cells correspond to Δvi,j = −1. The vertical
derivative Δv shown in (b) is subsequently one-hot encoded by the bit
vectors V + and V − in (c) and (d), respectively.

identifiers (rows) and read chunk identifiers (columns) as

shown in Figure 3(a). Thus, processes in the same row share

a unique reference genome (index) block while processes

within a column use the same read chunk. Each process

executes several cells in one row in order to avoid replicating

the relatively big reference index.

The read input file is partitioned into chunks of fixed

size. This partitioning can be easily achieved by splitting

by lines. For the reference genome, we first concatenate

the individual chromosomes to form one long string. We

then divide it into blocks of suitable size according to the

memory capacity of a CG (≈300 million bps per block).

Note that this partitioning scheme is disadvantageous when

a chromosome is scattered over two blocks or a read is

mapped to the junction point of two chromosomes. This

issue can be resolved by padding N’s between chromosomes.

Moreover, when dividing a chromosome into two blocks,

we store several base pairs in a neighborhood around the

break point in both chunks. As a result, a read is always

mapped correctly to a contiguous region. Figure 4 depicts

this approach.

The computing nodes of Sunway Taihu Light are con-

nected to a network file system via a 1 GBit/s interface,

while the overall file system bandwidth is ∼ 290 GB/s

for the whole cluster. In practice, efficient data distribution

patterns must be employed in order to reach reasonable

performance. The file system bandwidth is low compared

with the bisection bandwidth of ∼ 70 TB/s among compute

nodes. To address this issue, we employ a group-and-
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Figure 3. Our task-partitioning and file-loading strategy: (a) overall design;
(b) and (c) detailed behavior of processes.

Figure 4. Exemplary partitioning of a reference genome based on
concatenation and padded splits.

broadcast data reuse strategy to avoid redundant file system

accesses by sharing identical data via Sunway’s network

among nodes. As tasks are assigned to grid cells, we cluster

processes working on the same reference genome block to

a row group (ref broadcast group), while processes working

on the same read chunk are clustered to a column group.

If a process calculates cells in the first row or first column

(read broadcast group), it loads the corresponding reference

block or read chunk from the file system as shown in

Figure 3(b). Subsequently, it broadcasts the loaded data

to processes calculating the same row or column, while

the other processes wait for the broadcast data as shown

in Figure 3(c). After the data-loading stage, processes can

perform their computation concurrently.

Figure 5. Asynchronous data loading strategy: (a) default case and (b)
case when there is no significantly shorter reference block.

Our reference genome-partitioning strategy illustrated in

Figure 4 often generates one reference genome block that is

significantly shorter than the others. This block is assigned to

the first row of our task grid. Thus, processes in the first row

take less time during computation and will have sufficient

time to load reads for the subsequent round of computation.

This approach therefore reduces the idle time of other

processes waiting for read data. Figure 5(a) illustrates this

strategy.

We further provide an optional asynchronous data-loading

strategy in case no significantly shorter reference block

exists. In this case we add a row of processes that loads

only reads. When other processes in the column are com-

puting alignments, these processes exclusively load new

read chunks. After loading and computation have been

completed, all processes within a column receive the loaded

data by means of an MPI_Bcast. In our experiments, this

approach reduces the idle time between computing two read
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chunks by over 90% when using 8 processes. Figure 5(b)

illustrates this strategy.

B. Multithreaded Intra-CG Parallelization

Figure 6. Workflow of S-Aligner on a single CG: gray boxes correspond
to tasks assigned to SPs while tasks in white boxes are executed on the
MP.

The second level of parallelism exploits the threading

capabilities of a CG. Our design within a single node is

a comprehensive read mapper based on the described seed-

and-extend approach using a three-stage pipeline: filtration,

verification, and alignment. The filtration step uses a lookup

table of q-grams of the assigned reference genome block that

can be loaded from a preprocessed index file or, alternatively,

calculated on the fly by a radix sort-based hash table

construction method. After the MP performs the lookup of

each non-overlapping q-gram of a read, it stores the retrieved

intervals in a SIMD-friendly manner allowing for efficient

vectorization during the subsequent verification step on the

SPs. Verification selects all intervals that comply with the

restricted edit distance using Myers’ bit-parallel algorithm.

We then employ a banded version of the Smith-Waterman

algorithm on the SPs to align the remaining intervals that

have passed verification. Figure 6 shows the workflow of

our intra-CG implementation.

Figure 7. Asynchronous filtration.

The intra-CG parallelization is realized by a task par-

allelization scheme implemented by using spawn and join

calls of the athread library. The MP executes the filtration

stage while the SPs process the verification step. Each read

is divided into non-overlapping q-grams. The MP looks up

those q-grams in the reference genome index and returns

a number of intervals. The MP copies them to a buffer

that is transferred to the LDM of SPs for verification. We

employ a dual buffer strategy by allocating two buffers for

storing the intervals identified by the MP. When the MP has

finished filling one buffer, it waits for the SP thread group to

join and then dispatches an SP thread group to verify these

intervals. Subsequently, the MP fills another buffer, while

the SP thread group performs verification. These steps are

repeated until all reads are processed (see Figure 7). The

dual buffer strategy reduces the idle times of SPs and is also

used for implementing the subsequent alignment stage. Note

that athread_spwan has only a minor overhead in our

implementation (less than 1% of computation time). Thus,

short task granularities are not a major concern. Further, our

implementation does not require much memory since it has

a linear space complexity; 32KB of scratchpad memory is

sufficient for a round of computation.

Figure 8 illustrates our framework for dividing the com-

putation between the MP and SPs within a single CG. The

number of seeds identified for a given read can vary, whereas

the verification time of a single seed is constant. Thus, a

simple static assignment of seed intervals per read to SPs

can cause workload imbalance. To balance the workload, we

introduce the parameter slice num, which restricts the max-

imum number of seed intervals to be verified for one read. If
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Figure 8. Framework of our parallelization scheme within one CG: the
MP performs filtration and output of alignment results while SPs verify
identified candidate locations and generate base-pair level alignments. Gray
boxes indicate the intervals verified in the second round of verification
(assuming slice num = 4).

more than slice num seed intervals are to be verified for a

read, we spawn verification threads with the first slice num
intervals. The remaining intervals will be verified in a

subsequent round of spawns. A value of slice num that

is too large can reduce the overhead of spawning SP thread

groups, but it worsens the workload balance, and vice versa.

Our default value of slice num = 100 provides a good

trade-off in practice.

C. SIMD Vectorization

Implementing Myers’ bit-parallel algorithm by using

ShenWei’s SIMD intrinsics requires a bit-level encoding

of DNA sequences to efficiently evaluate the characteristic

function χ(si−1 = s′j−1) for all i, j.

Different approaches have been used in existing aligners:

BWA [17] employs an array of structures (AoS), whereas

RazerS3 [28] stores a DNA sequence in a profile by us-

ing one-hot encoding. While the AoS approach is more

space efficient and cache friendly, the usage of a profile

with one-hot encoding supports bit-parallel computation in

a more efficient way. Because of the small size of the

LDM and the requirement of bit parallelism, we employ

an encoding strategy that combines an AoS with an SoA

(structure of arrays) approach, which we call an AoSoA

(array of structures of arrays). This mixed strategy builds

two bit-vectors in an interleaved fashion. Thus, we can fetch

the encoded sequence by one DNA-intrinsic and calculate

χ(si−1 = s′j−1) in terms of two logical equality operations.

Figure 9 illustrates the encoding strategy.

Figure 9. Bit-level encoding strategies for DNA sequences. For simplicity,
we use a 4-bit word instead of a 64-bit word for illustrating our combined
AoSoA strategy (bottom).

When updating the five bit-vectors according to Equa-

tion 3 along the columns in a bit-parallel fashion, a circular

dependency needs to be resolved: D0
i,j depends on H−

i−1,j ,

which in turn depends on D0
i−1,j (a value we have not

computed yet). Myers [21] has shown that this can be

solved by using logical operations and an addition. Shen-

Wei’s SIMD instructions support 256-bit integer arithmetic,

such as simd_uaddo_take_carry (short for SIMD

unsigned octa-word add, taking carry), which adds two 256-

bit operands and returns a 256-bit unsigned integer. Thus,

different from implementations of Myers’ algorithm on other

architectures (e.g., [5]), our implementation does not require

additional instructions to process carries generated within

a SIMD lane. Unfortunately, there is no 256-bit compare

instruction. Thus, we have implemented comparisons in

terms of shifting operations.

Furthermore, we have simplified the core loop as much as

possible in order to avoid branching statements. This action

results in an implementation consisting of 23 intrinsics

as shown in Figure 10, where resi32 is set to |read|
mod 32− 1.

D. Exploiting Local Device Memory

Since SPs do not have any cache and the latency to

access the DDR3 shared memory is high, the usage of the

explicitly managed LDM is crucial. DMA fetching is the

most efficient way to transfer data between main memory

and LDM (i.e., significantly faster than using functions

such as memcpy). DMA calls are handled by the memory

controller, and SPs can continue to perform computation.

Thus, we can overlap data transfers from shared memory

to LDM and the verification of intervals using Myers’

algorithm by using asynchronous DMA-fetching intrinsics

presented by ShenWei.
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1 t1 = simd_vxorw(ref_hi,read_hi[k]);
2 t2 = simd_vxorw(ref_lo,read_lo[k]);
3 X = simd_vbisw(t1,t2);
4 X = simd_vxorw(X,one);
5 X = simd_vbisw(X,VP[k]);
6 D0 = simd_vandw(X,VP[k]);
7 D0 = simd_uaddo_take_carry(D0,VP[k]);
8 D0 = simd_vandw(D0,VP[k]);
9 D0 = simd_vandw(D0,X);

10 HN = simd_vandw(VP[k],D0);
11 HP = simd_vbisw(VP[k],D0);
12 HP = simd_vxorw(HP,one);
13 HP = simd_vbisw(HP,VN[k]);
14 X = simd_sllow(HP,resi32);
15 X = simd_vbisw(X,pr_HP);
16 pr_HP = simd_srlow(HP,255);
17 VN[k] = simd_vandw(X,D0);
18 VP[k] = simd_vbisw(X,D0);
19 VP[k] = simd_vxorw(VP[k],one);
20 t2 = simd_sllow(HN,resi32);
21 t2 = simd_vbisw(t2,pr_HN);
22 pr_HN = simd_srlow(HN,255);
23 VP[k] = simd_vbisw(t2,VP[k]);

Figure 10. SIMD core instructions used to implement Myers’ algorithm
on ShenWei. The reference sequence is presented as ref_hi, the high-bit
of the pattern, and ref_lo, the low-bit of the pattern. The read sequence
is stored in the vectors read_hi[k] and read_lo[k]. The variables
D0, HN, HP, VN, VP refer to the corresponding variables in Equation 3.

Figure 11. Asynchronous data transfer to LDM.

Figure 11 shows our framework for asynchronous data

transfer from DDR3 shared main memory to the LDM of

SPs. We allocate two buffers in LDM. When an interval

in one buffer is verified, the subsequent interval is being

fetched to the other buffer using DMA intrinsics. The SP

busy-waits for the completion of DMA-fetching before it

starts the next verification.

Here we use a busy-waiting strategy because the time

used for DMA fetching is usually shorter than the time

required for verification. Thus, in the common case the

DMA reply word needs to be checked just once in order

to pass the busy-wait loop. Our experimental results show

that our asynchronous data transfer implementation can hide

the DMA-fetching latency almost completely and gains a

performance improvement of a factor of 22 compared with

an implementation based on memcpy.

IV. PERFORMANCE EVALUATION

The performance of S-Aligner has been evaluated on the

Sunway Taihu Light supercomputer. We use GRCh381 as

the human reference genome. For the read input data sets

we use either ERR0131352 or reads simulated by Mason

[11] or wgsim [16].3 We first evaluate the performance in

terms of runtime and mapping accuracy on a single node.

Subsequently, we evaluate the scalability of our implemen-

tation by varying the number of utilized nodes up to 13,312.

A. Single-Node Performance Analysis

In our single-node experiment, we used the first chromo-

some of GRCh38 as reference and 20K reads of length 200

bps generated by Mason as input data.

First, we evaluated the runtime performance of four

different implementations of edit distance calculation using

Myers’ algorithm in one CG: (1) a naı̈ve method using

the MP only, (2) a naı̈ve method with a nonvectorized SP

parallelization, (3) a vectorized Myers algorithm with the

MP only, and (4) our vectorized Myers algorithm with SP

parallelization.

Figure 12. Comparison of the runtimes of four implementations of Myers’
algorithm on a single CG.

The results in Figure 12 show that making full use

of SPs and bit-parallel SIMD vectorization gains dramatic

1available at http://hgdownload.cse.ucsc.
edu/downloads.html

2available at ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR013/
ERR013135

3Note that Mason usually generates reads of higher quality but does not
support long reads.
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speedups (118× and 63×, respectively). Since the MP does

not support high-precision (256-bit integer) extensions, we

implemented a workaround for the high-precision addition

operation. This makes it run slower on a single MP than

on a single SP. Thus, using SPs can gain a superlinear

speedup in this application. Furthermore, our bit-parallel

SIMD implementation is able to update 256 cells simultane-

ously using 23 instructions (i.e., 0.09 instructions per cell)

while the naı̈ve implementation computes one cell using 6

instructions. This results in a theoretical speedup of ∼67×,

which explains the actually achieved speedup of 63×.

Second, we evaluated the impact of using asynchronous

filtration and the impact of using DMA intrinsics versus

memcpy. The results are shown in Figure 13.

Figure 13. Evaluation with and without I/O optimizations.

The results demonstrate that DMA fetching is key for

achieving high performance when using SPs, since a

speedup of ∼22× is gained over memcpy. This can be

attributed to two factors: (1) DMA transfers require fewer

compute resources since they are performed by the memory

controller, whereas memcpy uses an SP to write data to

memory; and (2) DMA fetching can be performed asyn-

chronously, thus enabling the latency of fetching data to be

hidden by computation. Furthermore, asynchronous filtration

gains ∼15% speedup.

In summary, the architecture of SW26010 differs signif-

icantly from a conventional x86 64 CPU. Straightforward

migration of code therefore typically results in an inefficient

implementation on SW26010, and architecture-specific opti-

mizations are required in order to achieve high performance.

As a case study, we compiled and executed multithreaded

BWA [17] (one of the most well-known any-best mappers)

on SW26010. It runs two times slower than S-Aligner, while

finding significantly fewer locations, showing the importance

of making changes according to this specific architecture.

B. Comparison with RazerS3

In our experiment with RazerS3, we used the first chro-

mosome from GRCh38 as reference and various numbers

of reads from ERR013135. The runtime of S-Aligner on a

Table I
RUNTIME COMPARISON BETWEEN S-ALIGNER

RUNNING ON A SINGLE CG AND RAZERS3
RUNNING ON A SINGLE NODE WITH EIGHT XEON

E7-8860V3 CPUS.

Ref Reads Time(s)

#bps Count #bps RazerS3† S-Aligner‡
116M 40M 108 939 405
253M 40M 108 3,044 892
253M 40M 200 3,430 2,580
† Result is from a machine with eight Xeon E7-8860v3
(128 cores up to 3.20 GHz).
‡ Result is from a node with a SW26010 (260 cores
with frequency of 1.45 GHz).

Table II
ACCURACY EVALUATION OF S-ALIGNER FOR BOTH REAL

AND SIMULATED DATA.

Chrom Reads
Interv. found

Index Origin Count #bps
1st ERR013135 20,000 108 99.34%
1st Mason 20,000 200 99.82%

single SW26010 node was compared with that of RazerS3,

a representative all-mapper. Since RazerS3 does not support

ShenWei’s architecture, we ran it on a machine with Intel

processors using multithreading with default parameters

(e.g., the accuracy parameter is set to 98%). Measured

runtimes are shown in Table I. One can see that S-Aligner

executed on a single SW26010 (260 cores running at 1.45

GHz) outperforms RazerS3 running on eight Xeon E7-

8860v3 CPUs (128 cores running at 3.2 GHz).

Rabema [12] (Read Alignment BEnchMark) is a well-

defined read alignment benchmark that can evaluate the

quality of read mappers in both all and any-best mode. We

evaluated the accuracy of S-Aligner in all mode based on

Rabema by using the result of RazerS3 with the accuracy

parameter set to 100% as gold standard. S-Aligner can find

up to 99.8% of the normalized intervals found by RazerS3

(100% accuracy), which is higher than the accuracy of

RazerS3 executed with default parameters (98% accuracy).

Detailed results are provided in Table II.

C. Scalability Analysis

To evaluate weak and strong scalability, we measured

the runtimes of S-Aligner using different numbers of nodes

ranging from 13 to 13,312. The full GRCh38 assembly of

the human genome was used as reference.

Note that our evaluation starts with 13 nodes since the

human reference needs to be divided in our implementation

into at least 12 blocks (due to the limitation of the size of

the shared memory). In this case each node processes one

block while the remaining node loads reads.

Input reads were simulated by Mason with an error rate

of 4% and a length of 200 bps. Weak scalability was

measured for numbers of nodes ranging from 13 to 3,328

by increasing the number of input reads from 16 million to

4 billion, correspondingly. Strong scalability was measured
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by increasing the number of nodes from 3,328 to 13,312

while keeping the number of input reads constant at 4

billion. We measured the performance in terms of read
base-pairs processed per second in total and normalized

per node (see Table III). Figure 14 shows the achieved

speedups and efficiencies. The results demonstrate weak

scalability since the normalized node performance is almost

constant for the number of nodes ranging from 13 to 3,328.

Furthermore, the node performance only slightly decreases

when increasing the number of nodes from 3,328 to 13,312

while keeping the number of input reads constant at 4 billion,

thus demonstrating strong scalability for sufficiently large

input datasets.

Table III
PERFORMANCE AND RUNTIME EVALUATION OF S-ALIGNER USING

DIFFERENT NUMBERS OF NODES.

# Nodes
Reads

Time(s)
Performance (bpps)

Count # bps Total (M) Node (K)
13 16M 200 1,315 2.43 185.43
52 64M 200 1,321 9.69 184.80

208 256M 200 1,321 38.76 184.66
832 1,024M 200 1,327 154.33 184.59

3,328 4,096M 200 1,349 607.26 179.67
13,312 4,096M 200 344 2,381.40 178.90

# Nodes is the number of nodes involved in computing..
bpps is short for million base pairs processed per second.
M (K) indicates that column is presented in millions (thousands).

Figure 14. Speedup and efficiency of S-Aligner for different numbers of
nodes.

V. CONCLUSION

NGS data will continue to grow rapidly in the foreseeable

future. Read mapping is a critical and compute-intensive

step for a variety of NGS pipelines. While significant efforts

have been devoted to optimizing this task, it is still a major

bottleneck. In this paper, we have introduced S-Aligner—

a highly scalable read mapper specifically designed to fit

the characteristics of the Sunway Taihu Light supercomputer

and its SW26010 architecture. It scales almost linearly with

over 95% parallelization efficiency when distributed over

more than 50,000 processes. As a result, S-Aligner can map

≈ 1.6 TB of read data to the whole human genome in

just a few minutes. Moreover, when executed on a single

node it can outperform the popular all-mapper RazerS3

executed on eight Xeon E7-8860 CPUs while achieving

highly competitive mapping accuracy.

From S-Aligner we learn a number of lessons about prop-

erly designing parallelization and communication patterns in

order to achieve both high performance and scalability on

the new Sunway Taihu Light supercomputer:

1) Both multithreading and SIMD vectorization must be

employed in order to fully exploit the computational

resources of the SW26010 processor.

2) Within an SP the fast LDM must be used via DMA

intrinsics in order to guarantee efficient intra-CG com-

munication.

3) A scalable inter-CG communication scheme must be

implemented in a way that efficiently hides the inter-

connection network bottleneck.

4) Asynchronous file-loading and data-sharing strategies

need to be implemented in order to effectively hide

the latency of the network file system.

The techniques presented in this paper can also be adapted to

map similar applications exhibiting a pipeline of hashing and

verification, such as large-scale approximate near duplicate

object detection [29] or de novo genome assembly [20] onto

the heterogeneous many-core cluster architecture of Sunway

Taihu Light.
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