
Scalable Assembly for Massive Genomic Graphs

Jintao Meng1,2*, Ning Guo1*, Jianqiu Ge1, Yanjie Wei1, Pavan Balaji3, Bingqiang Wang4
1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China

2 Risk Management Department, WeBank Co. Ltd, 518057, Shenzhen, China
3 Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439-4844, USA

4 National Supercomputer Center in Guangzhou, Sun Yat-sen University, 510006, Guangzhou, China
E-mail: yj.wei@siat.ac.cn, balaji@anl.gov

Abstract—Scientists increasingly want to assemble large
genomes, metagenomes, and large numbers of individual
genomes. In order to meet the demand for processing these
huge datasets, parallel genome assembly is a vital step. Among
all the parallel genome assemblers, de Bruijn graph based ones
are most popular. However, the size of de Bruijn graph is
determined by the number of distinct kmers used in the
algorithm, thus redundant kmers in the genome datasets donot
contribute to the graph size. The scalability of genome
assemblers is influenced directly by the distinct kmers in the
dataset or de Bruijn graph size, rather than the input dataset
size. In order to assembly large genomes, we have artificially
created 16 datasets of 4 Terabytes in total from the human
reference genome. The human reference genome is firstly
mutated with a 5% mutation rate, and then subjected to a
genome sequencing data simulator ART. The simulated
datasets have linearly increasing number of distinct kmers as
the size/number of the combined datasets increases. We then
evaluate all five time-consuming steps of the SWAP-Assembler
2.0 (SWAP2) using these 16 simulated datasets. Compared
with our previous experiment on 1000 human dataset with
fixed de Bruijn graph size, the weak-scaling test shows that
SWAP2 can scale well from 1024 cores using one dataset to
16,384 cores. The percentage of time usage for all five steps of
SWAP2 is fixed, and total time usage is also constant. The
result showed that the time usage of graph simplification
occupied almost 75% of the total time usage, which will be
subject to further optimization for future work.

Keywords-weak-scaling; genome assembly; De Bruijn
Graph; data simulation

* contributed equally

I. INTRODUCTION
There is a growing gap between the output of new

generation of massively parallel sequencing machines and
the ability to analyze the resulting data. Scientists
increasingly want to assemble and analyze very large
genomes [1], metagenomes [2,3], and large numbers of
individual genomes for personalized healthcare [4,5,6,7]. In
order to meet the demand for processing these huge datasets
[8], parallel genome assembly seems promising, however the
genome assembly algorithm/problem is very hard to scale for
the following reasons [9,10].

First, the state-of-art parallel assembly solutions are
dominantly utilizing the de Bruijn graph (DBG) strategy [11].
This strategy is a variant of traveling salesman problem or
equivalent to the Euler path problem, which is a well-known
NP-hard problem [12]. This DBG strategy is the fundamental
guideline for modern second-generation sequence assemblers,
such as Euler [13], Velvet [14], IDBA [15], SOAPdenovo
[16], Ray[17], ABySS [18], HipMer[19], etc. However the
graph reduction step in this strategy involving set operations
are both computing expensive and memory exhausting [11].
In practice, assemblers have developed their own practical
methods to deal with gaps and branches caused by uneven
coverage, erroneous reads and repeats in graph reduction
step, and a set of shorter genome sequences called contigs
are generated instead of original references to simplify this
problem and minimize the computing resource usage.

Second, sequencing machines are not accurate. About
50% to 80% of k-mers are erroneous [15,20], thus the nodes
and edges in the graph may not be considered trustable
depending on what error rate the user is willing to tolerate.
What is more, kmers located in the low coverage gaps are
hard to be distinguished from erroneous kmers.

Last, the number of nodes in the graph representing the
genome information is enormous. One base pair (bp) in the
sequencing data can generate a kmer (node) in the de Bruijn
graph. However, the size of de Bruijn graph is determined
only by the number of distinct kmers, thus redundant kmers
in the datasets do not contribute to the graph size. The
scalability of genome assemblers is influenced directly by
the distinct kmers in the dataset or de Bruijn graph size,
rather than the input dataset size. For example, 1000 human
dataset [21,22] with 4 terabytes data contains about 242 k-
mers, only less than 3 billion nodes are used for building the
de Bruijn graph. Assembling Hexaploid bread wheat
(Triticum aestivum) genome can generate about 10~17
billion nodes in the de Bruijn graph depending on the
algorithms used. For meta-genomes, the size of the graph
during the assembly process can be orders of magnitude
higher than those for human and wheat. This would
introduce huge communication volume, computing load, and
memory usage.

With the above challenges and high increasing rate of
sequencing data at 5-fold a year [23], single server’s
computation power has been already exhausted, and the gap
between the computation capacity and the sequencing data is

2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-5090-6611-7/17 $31.00 © 2017 IEEE

DOI 10.1109/CCGRID.2017.122

665

still widening. Large scale parallel computing system is one
option. Scalability, however, is a primary metric to prove its
feasibility.

Previously we developed the SWAP-Assembler [10,24,
25], which can assemble the Yanhuang genome [26] in 26
minutes using 2,048 cores on TianHe 1A [27], 99 seconds
using 16,384 cores on Tianhe 2 [25,28,29,30] and 64 seconds
using 65,536 cores on Mira [25,31]. We further improved the
SWAP-Assembler by analyzing and optimizing its most
time-consuming steps—input parallelization, k-mer graph
construction, and graph simplification (edge merging)—
with the aim of developing a much faster assembly tool that
can scale to hundreds of thousands of cores by using a
largest genome assembly dataset of 4 terabytes. However the
reference size of our previous dataset is limited as 3 billion,
which means that the constructed de Bruijn graph has less
than 3 billion nodes. Before this work, the record of largest
assembly to date was kept by HipMer on assembling wheat
with a reference of 16 Gbp [19,32].

In order to assembly large genomes and test SWAP2, we
have artificially created 16 datasets of 4 Terabytes in total
from the human reference genome. The largest combined
dataset can generates about 50 billion nodes for the de Bruijn
graph. This is about 16 times (50 billion nodes) larger than
our previous work [25] and 3 times larger than wheat, and
we conducted a weak scaling experiment on Mira using these
16 mutated human genome datasets with 50X coverage each.
The result shows that SWAP2 can scale well from 1024
cores on assembling one dataset to 16,384 cores with 16
combined datasets. The percentage of time usage for all five
steps of SWAP2 is fixed, and total time usage is also kept
constant. SWAP2 is able to assemble a simulated genome
(4T in total) with a de Bruijn graph of about 50 billion nodes
in about 39 minutes. The result also discover that the time
usage of graph simplification took almost 75% of the total
time usage, which will be subject to further optimization for
future work.

The rest of the paper is organized as follows. Section II
briefly introduces the problem of genome assembly and
related works. Section III presents the workflow on
generating the simulated datasets. The performance
evaluation for SWAP2 on Mira is presented in Section IV.
We summarize the conclusion in Section V.

II. BACKGROUND

A. Problem Description
Given a biological genome sample with reference

sequence w Ng , where N = {A, T, C, G}, g = |w|, a large
number of short sequences called reads, S = {s1, s2, ..., sh},
can be generated from the sequencing machines. Here si is a
substring of w with some editorial errors introduced by
sequencing machines, 1<i<h. Genome assembly problem is
to recover the reference sequence w with S.

Genome assembly with the de Bruijn graph (DBG)
strategy is the process of reconstructing the reference
genome sequence from these reads using de Bruijn graph
consisted with k-mers. However this strategy is a variant of

traveling salesman problem or equivalent to the Euler path
problem, which is NP-hard [12]. Finding the original
reference sequence from all possible Euler paths cannot be
solved in polynomial time. What is more, gaps and branches
caused by uneven coverage as well as erroneous reads and
repeats prevent from obtaining a full length genome. In real
cases, a set of shorter genome sequences called contigs are
generated by merging unanimous paths instead. Our work
focuses on finding a scalable solution for this general
genome assembly problem [10, 24, 25].

B. Related works
Several state-of-art parallel assemblers have been

proposed [2,9,17,19,32,33,34,35,36,38,39]. Most of them
follow the de Bruijn graph (DBG) strategy proposed by
Pevzner et al. in 2001 [11].

In ABySS [9], the parallelization is achieved by
distributing kmers to multi-servers in order to build a
distributed de Bruijn graph. Error removal and graph
reduction are implemented over MPI communication
primitives.

Ray [2], [17] is a general distributed engine proposed by
Boisvert for traditional de Bruijn graphs, which extends k-
mers (or seeds) into contigs with a heuristically greedy
strategy by measuring the overlapping level of reads in both
directions. Performance results on the Hg14 dataset, however
indicate that Ray is 12 times slower than the SWAP-
Assembler on 512 cores [10].

PASHA [33] focuses on parallelizing k-mer generation
and distribution and DBG simplification in order to improve
its efficiency with multithreads technology. However,
PASHA allows only a single process for each unanimous
path, thus limiting its degree of parallelism. Performance
results [33] show that PASHA can scale to 16 cores on a
machine with 32 cores on three different datasets.

YAGA [34,35] constructs a distributed de Bruijn graph by
maintaining edge tuples in a community of servers.
Reducible edges belonging to one unanimous path are
grouped into one server with a list ranking algorithm [36].
These unanimous paths are reduced locally on separate
servers. The recursive list ranking algorithm used in YAGA
has a memory usage of O(nlog(np)), however, this induces
large memory usage and causes low efficiency. Here n is the
input data size, and p is the number of processes

HipMer [19,32] is an efficient end-to-end genome
assembler by parallelizing the Meraculous code with both
MPI and UPC language [43]. In their work, the optimizations
include improving scalability of parallel k-mer analysis, a
novel communication-avoiding parallel algorithm in the
traversal of the de Bruijn graph and parallelizing the
Meraculous scaffolding modules by leveraging the one-sided
communication capabilities of UPC [37]. Experiments show
that HipMer achieves a scalability of 15,360 cores on both
human genome sequencing data (290 Gbp in fasta format)
and wheat genome sequencing data (477 Gbp in fasta
format).

Spaler [38] is a Spark and GraphX [39] based de novo
genome assembler using de Bruijn graph. In Spaler, the
authors parallelize the de novo genome assembly problem

666

with spark on distributed memory systems. Spaler used an
efficient algorithm based on an iterative graph reduction
technique in order to generate contigs from the DBG with a
random merging approach. The authors also showed the
effects of partitioning size on the running time and solving
complex structure to increases the quality of the results.
Comparing results shows that Spaler is faster than RAY, and
ABySS with 256 cores, but still slower than SWAP-
Assembler.

III. DATA SIMULATION AND EVALUATION
In our previous experiment [25] part of the 1000 human

dataset was used [40]. This dataset contains sequences
randomly selected from the 1000 human genome sequences,
and the size (or number of distinct kmers) of de Bruijn graph
constructed from this dataset is about 3 billion. This prevents
us from conducting a weak scaling test for all five steps of
SWAP2.

To conduct a weak scaling test, the size of the de Bruijn
graph should increase proportionally with the dataset size.
However, real dataset is hard to meet this criteria. Instead, in
this paper well-designed simulated datasets were used, with
the number of distinct kmers increasing proportionally with
the dataset size.

Figure 1. Workflow of data simulation

In this section, we first present the data generation

workflow, and then present the evaluation of the dataset.
Each of the 16 simulated datasets is firstly mutated from a
given human reference genome with a 5% mutation rate,
then the mutated dataset is subject to a sequencing data
simulator ART [41], with the coverage parameter set as
50X. The size of each simulated data is about 250 Gbytes.
The above workflow is used to generate 16 datasets, and the
total size is 4 Terabytes.

A. Workflow of data simulation
The GRC (Genome Reference Consortium) version of

Human Genome Build 37, patch release 38 is downloaded
from [42] as the reference genome set. This human reference
contains 1464 contigs and the total length of this reference is
3,232,546,710 bp.

The workflow of sequencing data simulation is presented
in Figure 1 and described as follows:

1. Reference mutation: the downloaded reference is
first mutated to generate a different reference dataset

with a 5% random mutation rate. Each mutation is
guaranteed with a unique random number within the
script.

2. Data simulation: the simulation tool ART [41] is
used to generate the sequencing data using the
mutated reference dataset. In the paper we selected
Illumina as the sequencing platform and set the fold
of read coverage parameter as depth, and the length of
read as readLen base pairs. Specially in our
experiment the depth or coverage is set to be 50, and
readLen is set to be 100.

3. Data format conversion: The data generated in Step
2 is in fastq format, and the fastx[43] toolset is used to
convert the data into fasta format. Finally each dataset
has about 250 Gbytes.

Overall 16 datasets were generated with 16 different
random numbers, each with 250 Gbytes. These datasets are
denoted as S1,S2,…S16, respectively.

B. data analysis and evalution
With these 16 simulated datasets, SWAP2 is used as a

kmer counting tool for analysis of the simulated datasets. We
run SWAP2 separately on datasets W1(S1) of 250 Gbytes, W2
(created by combining S1 and S2) of 500 Gbytes, …, W16
(created by combining all 16 simulation datasets) of 4
Terabytes. In these five analysis runs, the length of kmer is
set as 31.

Table 1 and Figure 2 show the results on these 5 datasets
W={W1, W2, W4, W8, W16}. The horizontal axis presents the
corresponding combined datasets and the vertical axis
presents the number of kmers with different occurring
frequency in each dataset. Specially we selected the number
of distinct kmers with its frequency greater or equal to 1, the
number of non-unique kmers with its frequency larger than 1,
and the number of kmers with its frequency larger than
(kmers used by SWAP2 to build the de Bruijn graph), here
is set to be 3 in our experiment. Generally, most unique
kmers are generated by sequencing errors (or simulation
errors in our case), and then kmers are selected by a user
selected threshold to construct the initial de Bruijn graph
in SWAP2.

Table 1. The analysis results on k-mers with different
frequencies. The kmers with its frequencies larger than 3
are selected to construct the de bruijn graph. Thus the
number of kmers with frequnce larger than 3 equals to
the number of nodes in de Bruijn graph. (unit: billion).

Number
of
datasets

kmers with
freq >= 1
(distinct
kmer)

kmers with
freq > 1
(non-unique
kmer)

kmers with
freq > 3
(graph size)

1 27.69 7.86 3.378
2 54.16 15.42 6.695
4 105.36 30.03 13.201
8 203.49 58.06 25.845

16 396.18 112.32 50.171

667

Figure 2. Kmer counting statistic results on simulated
datasets. Note that the unit in this figure is billion.

From Table 1, dataset W1 generated 3.378 billion kmers
with its frequency larger than 3, while dataset W2 produced
about 6.695 billion kmers. The largest dataset W16 contains
50.171 billion kmers which is almost 15 times larger than W1.
Figure 2 confirms that with the increasing number of
combined datasets, the number of distinct kmers, non-unique
kmer and kmers with frequency larger than 3 are all growing
nearly linearly. This reflects that these simulated datasets can
be used in the weak-scaling experiments. In the following
sections, the kmers with frequency larger than 3 were used to
construct the de Bruijn graph in SWAP2 for performance
evaluation.

IV. PERFORMANCE EVALUATION
The newly released SWAP-Assembler 2 (SWAP2 for

short]) is used in this experiment; this software is available
online in SourceForge [44,45]. In this performance
evaluation, 32,768 computing nodes in Mira at Argonne
National Laboratory [31] were allocated. Each compute node
is equipped with 16 cores and 16 GB of memory; all nodes
are connected with a high-speed 5D-torus network with the
bidirectional bandwidth of 10 GB/s. The I/O storage system
of Mira uses the IBM GPFS system; it supports parallel file
I/O defined in MPI-3.

In this section, we conduct a weak scaling test with 16
simulated datasets as generated in Section III. The data size
in this test was increased from one dataset (or 250 GB) to 16
datasets (or 4 TB) as the number of cores increased from
1,024 to 16,384. Here all these kmers with occurrence less

than and equal to a given threshold � are filtered, and all the
remaining k-mers are used to construct the de Bruijn graph.
As indicated in Table 1, the largest size is about 50 billion
vertices in the initial de Bruijn graph in SWAP2. Last
column in Table 1 presents the number of kmers with its
frequency larger than 3 for different combined datasets. Here
the filtering threshold � is set to be 3.

 Table 1 and Figure 2 show that the number of kmers
with its frequency larger than 3 increases nearly linearly with
the number/size of combined datasets, indicating these
combined datasets can be used to conduct a weak-scaling test.

The weak-scaling test results are presented in Table 2 and
Figure 3. The performance results can be analyzed from the
following 3 aspects.

Scalability: Table 2 shows that SWAP2 can scale to
16,384 cores on 4 TB sequencing data. The total time usage
of SWAP2 decreases slightly when the number of cores
increases from 1024 to 16,384. The same trend can be found
in the last four steps of SWAP2 except for the Input
Parallelization step. According to Table 2 and Figure 3, one
can see that the actual number of the kmers with its
frequency larger than 3 in the de Bruijn graph is slightly less
than the ideal value for conducting an ideal weak-scaling test.
This reflects that slightly less-used kmers for large No. of
cores resulted in slight decrease on the time usage in the last
four steps .
 Efficiency: The efficiency of SWAP2 is also affected by
the number of kmers with its frequency larger than 3, and
decreases slightly when the number of cores increasing from
1024 to 16,384. We re-calculated the efficiency by dividing
the actual number of kmers with its frequency larger than 3
and then multiplying the ideal number of kmers, the re-
calculated efficiency line (corrected line in Figure 3) is
presented in figure 3. The corrected efficiency is kept to be
100% during the whole test.

Bottlenecks: The time usage of graph simplification
occupied almost 75% of the total time usage, and this ratio is
fixed during the whole test. Previous evaluation results in [25]
with fixed de Bruijn graph size showed that the input
parallelization step is the most time consuming step,
however the weak scaling test in this paper has identified
new bottleneck for this application, which is the subject for
future work.
Although the above performance test on SWAP2 is
optimized on Mira, the strategies used are general and focus
only on SWAP2’s major steps. The related simulation code

Table 2. Time usage of SWAP2 for the weak-scaling test. This experiment started with 1024 cores and one dataset of
50X, the dataset doubles when the number of cores doubles. The experiment scaled to 16384 cores with all 16
datasets combined. Each computing node was allocated 4 processes (ppn = 4); time is measured in seconds.

668

and scripts for data simulation and performance evaluation
can be downloaded from [45].

V. CONCLUSTION
In this paper, we evaluated SWAP-Assembler 2 with a

larger de Bruijn graph, 16 times larger than our previous
work [26]. The previous experiment on 1000 human dataset
only contain one human reference of 3 billion nucleotides. In
this paper we conducted an experiment on Mira using 16
mutated human datasets with 50X coverage, and in total we
simulated 4 Terabytes sequencing data with a combined
reference of about 50 billion nucleotides. The result shows
that SWAP2 can scale well from 1024 cores on assembling
one dataset to 16,384 cores with 16 combined datasets, and
SWAP2 is able to assemble a simulated genome (4T in total)
with a de Bruijn graph size of about 50 billion nodes in about
39 minutes when using 16,384 cores. The percentage of time
usage for all five steps of SWAP2 is fixed, and total time
usage is also kept constant. The result also discover that the
time usage of graph simplification occupied almost 75% of
the total time usage, which will be the focus for further
optimization.

ACKNOWLEDGMENT
This work is supported by the National Key Research and
Development Program of China under Grant No.
2016YFB0201305, National High Technology Research and
Development Program of China under grant No.
2015AA020109, Guangdong Provincial Department of
Science and Technology under grant No. 2016B090918122,
Special Program for Applied Research on Super
Computation of the NSFC-Guangdong Joint Fund (the
second phase), the Science Technology and Innovation
Committee of Shenzhen Municipality under grant No.
JCYJ20160331190123578 and JCYJ20140901003939036,
Zhejiang Provincial Natural Science Foundation of China un

der Grant No. LQ16F020006,Youth Innovation Promotion
Association, CAS to Yanjie Wei. The material is based
upon work supported by the U.S. Department of Energy,
Office of Science, under contract DEAC02-06CH11357.
The calculations were performed on Mira at the Argonne
Leadership Computing Facility.

REFERENCES
[1] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G.

Shan, K. Kristiansen et al., “De novo assembly of human genomes
with massively parallel short read sequencing,” Genome research,
vol. 20, no. 2, pp. 265–272, 2010.

[2] S. Boisvert, F. Raymond, E. Godzaridis, F. Laviolette, J. Corbeil et
al.,“Ray Meta: scalable de novo metagenome assembly and
profiling,”Genome Biol, vol. 13, no. 12, p. R122, 2012.

[3] T. Namiki, T. Hachiya, H. Tanaka, and Y. Sakakibara, “MetaVelvet:
an extension of Velvet assembler to de novo metagenome assembly
from short sequence reads,” Nucleic acids research, vol. 40, no. 20,
pp. e155–e155, 2012.

[4] E. Le Chatelier, T. Nielsen, J. Qin, E. Prifti, F. Hildebrand, G. Falony,
M. Almeida, M. Arumugam, J.-M. Batto, S. Kennedy et al.,
“Richness of human gut microbiome correlates with metabolic
markers,” Nature, vol. 500, no. 7464, pp. 541–546, 2013.

[5] M. Arumugam, J. Raes, E. Pelletier, D. Le Paslier, T. Yamada, D. R.
Mende, G. R. Fernandes, J. Tap, T. Bruls, J.-M. Batto et al.,
“Enterotypes of the human gut microbiome,” Nature, vol. 473, no.
7346, pp. 174–180, 2011.

[6] J. Qin, R. Li, J. Raes, M. Arumugam, K. S. Burgdorf, C. Manichanh,
T. Nielsen, N. Pons, F. Levenez, T. Yamada et al., “A human gut
microbial gene catalogue established by metagenomic sequencing,”
nature, vol. 464, no. 7285, pp. 59–65, 2010.

[7] S. R. Gill, M. Pop, R. T. DeBoy, P. B. Eckburg, P. J. Turnbaugh, B.
S. Samuel, J. I. Gordon, D. A. Relman, C. M. Fraser-Liggett, and K.
E. Nelson, “Metagenomic analysis of the human distal gut
microbiome,” science, vol. 312, no. 5778, pp. 1355–1359, 2006.

[8] J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nature
biotechnology, vol. 26, no. 10, pp. 1135–1145, 2008.

[9] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and
I. Birol, “ABySS: a parallel assembler for short read sequence data,”
Genome research, vol. 19, no. 6, pp. 1117–1123, 2009.

[10] J. Meng, B. Wang, Y. Wei, S. Feng, and P. Balaji, “SWAP-
Assembler: scalable and efficient genome assembly towards

Figure 3. Accumulated time usage and efficiency of all five steps in SWAP2 for the weak-scaling test. Each
computing node was allocated 4 processes (ppn = 4); time is measured in seconds.

669

thousands of cores,” BMC bioinformatics, vol. 15, no. Suppl 9, p. S2,
2014.

[11] P. A. Pevzner, H. Tang, and M. S. Waterman, “An eulerian path
approach to dna fragment assembly,” Proceedings of the National
Academy of Sciences, vol. 98, no. 17, pp. 9748–9753, 2001.

[12] P. Pevzner, Computational molecular biology: an algorithmic
approach. MIT press, 2000.

[13] P.A. Pevzner, H. Tang, M.S. Waterman, ”An Eulerian path approach
to DNA fragment assembly,” PNAS, vol. 98 no. 17, pp. 9748-9753,
Aug, 2001.

[14] D.R. Zerbino, E. Birney, ”Velvet: algorithms for de novo short read
assembly using De Bruijn graphs,” Genome Research, vol. 18, no.5,
pp.821-829, 2008.

[15] Y. Peng, H.C.M. Leung, S.M. Yiu and F. Y. L. Chin, ”IDBA - A
Practical Iterative de Bruijn Graph De Novo Assembler,” Proceedings
of the 14th Annual international conference on Research in
Computational Molecular Biology (RECOMB’10), pp. 426-440, 2010

[16] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li,
G.Shan, K. Kristiansen, S. Li, H. Yang, J. Wang, J. Wang, ”De novo
assembly of human genomes with massively parallel short read
sequencing,” Genome Research, vol. 20, no. 2, pp. 265-272, 2010.

[17] S. Boisvert, F. Laviolette, and J. Corbeil, “Ray: simultaneous
assembly of reads from a mix of high-throughput sequencing
technologies,” Journal of Computational Biology, vol. 17, no. 11, pp.
1519–1533, 2010.

[18] J.T. Simpson, K. Wong, S.D. Jackman, J.E. Schein, S.J. Jones, I.
Birol,”ABySS: a parallel assembler for short read sequence data,”
Genome Research, vol. 19 , no. 6 , pp. 1117-1123, 2009

[19] E. Georganas, A. Buluc¸, J. Chapman, S. Hofmeyr, C. Aluru, R.
Egan, L. Oliker, D. Rokhsar, and K. Yelick, “HipMer: an extreme-
scale de novo genome assembler,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis. ACM, 2015, p. 14.

[20] J. Meng, J. Yuan, J. Cheng, Y. Wei, and S. Feng, “Small world
asynchronous parallel model for genome assembly,” in Network and
Parallel Computing. Springer, 2012, pp. 145–155.

[21] N. Siva, “1000 Genomes project,” Nature biotechnology, vol. 26, no.
3, pp. 256–256, 2008.

[22] Data provided by the 1000 genomes project. [Online]. Available:
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data

[23] L.D. Stein, ”The case for cloud computing in genome
informatics,”Genome Biology, vol. 11, issue. 5, pp. 207, May 2010.

[24] Jintao Meng, Bingqiang Wang, Yanjie Wei, Shengzhong Feng, Pavan
Balaji. SWAP-Assembler: Scalable and Efficient Genome Assembly
towards Thousands of Cores, in 4th annual RECOMB satellite
workshop on massively parallel sequencing (RECOMB-seq 2014),
April, 2014.

[25] Jintao Meng, Sangmin Seo, Pavan Balaji, Yanjie Wei, Bingqiang
Wang, Shengzhong Feng, SWAP-Assembler 2: Optimization of De
Novo Genome Assembler at Extreme Scale, in Proceeding of the 45th
International Conference on Parallel Processing (ICPP 2016),
Philadelphia, PA, 2016

[26] G. Li, L. Ma, C. Song, Z. Yang, X. Wang, H. Huang, Y. Li, R. Li, X.
Zhang, H. Yang et al., “The YH database: the first Asian diploid
genome database,” Nucleic acids research, vol. 37, no. suppl 1, pp.
D1025–D1028, 2009.

[27] X.-J. Yang, X.-K. Liao, K. Lu, Q.-F. Hu, J.-Q. Song, and J.-S.
Su,”The TianHe-1A supercomputer: its hardware and software,”
Journal of computer science and technology, vol. 26, no. 3, pp. 344–
351, 2011.

[28] Xiangke Liao, Liquan Xiao, Canqun Yang, Yutong Lu: MilkyWay-2
supercomputer: system and application. Frontiers of Computer
Science 8(3): 345-356

[29] Weixia Xu, Yutong Lu, Qiong Li, Enqiang Zhou, Zhenlong Song,
Yong Dong, Wei Zhang, Dengping Wei, Xiaoming Zhang, Haitao
Chen, Jianying Xing, Yuan Yuan: Hybrid hierarchy storage system in
MilkyWay-2 supercomputer. Frontiers of Computer Science 8(3):
367-377

[30] Xiangke Liao, Zhengbin Pang, Kefei Wang, Yutong Lu, Min Xie, Jun
Xia, Dezun Dong, Guang Suo: High Performance Interconnect
Network for Tianhe System. J. Comput. Sci. Technol. 30(2): 259-272
(2015)

[31] K. Kumaran, “Introduction to Mira,” in Code for Q Workshop.
[32] E. Georganas, A. Buluc¸, J. Chapman, L. Oliker, D. Rokhsar, and K.

Yelick, “Parallel de Bruijn graph construction and traversal for de
novo genome assembly,” in International Conference for High
Performance Computing, Networking, Storage and Analysis, SC14.
IEEE, 2014, pp. 437–448.

[33] Y. Liu, B. Schmidt, and D. L. Maskell, “Parallelized short read
assembly of large genomes using de Bruijn graphs,” BMC
bioinformatics, vol. 12, no. 1, p. 1, 2011.

[34] B. G. Jackson and S. Aluru, “Parallel construction of bidirected string
graphs for genome assembly,” in Parallel Processing, 2008. ICPP’08.
37th International Conference on. IEEE, 2008, pp. 346–353.

[35] B. G. Jackson, P. S. Schnable, and S. Aluru, “Parallel short sequence
assembly of transcriptomes,” BMC bioinformatics, vol. 10, no. Suppl
1, p. S14, 2009.

[36] F. Dehne and S. W. Song, “Randomized parallel list ranking for
distributed memory multiprocesors,” in Concurrency and Parallelism,
Programming, Networking, and Security. Springer, 1996, pp. 1–10.

[37] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and
K. Warren, Introduction to UPC and language specification. Center
for Computing Sciences, Institute for Defense Analyses, 1999.

[38] A. Abu-Doleh and U. V. Catalyurek, “Spaler: Spark and graphx based
de novo genome assembler,” in Big Data, 2015

[39] Gonzalez J E, Xin R S, Dave A, et al. GraphX: Graph Processing in a
Distributed Dataflow Framework[C], OSDI. 2014, 14: 599-613.

[40] N. Siva, “1000 Genomes project,” Nature biotechnology, vol. 26, no.
3, pp. 256–256, 2008.

[41] Huang W, Li L, Myers J R, et al. ART: a next-generation sequencing
read simulator[J]. Bioinformatics, 2012, 28(4): 593-594.

[42] The GRC (Genome Reference Consortium) version of Human
Genome, ftp://ftp.ncbi.nih.gov/genomes/Homo_sapiens/

[43] Gordon A, Hannon G J. Fastx-toolkit[J]. FASTQ/A short-reads
preprocessing tools (unpublished) http://hannonlab. cshl.
edu/fastx_toolkit, 2010.

[44] SWAP-Assembler2, https://sourceforge.net/projects/swapassembler.
[45] Simulation code and scripts, https://github.com/jtmeng/SWAP-

Assembler2/tree/master/utils

670

