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Abstract—Scientists increasingly want to assemble large 
genomes, metagenomes, and large numbers of individual 
genomes. In order to meet the demand for processing these 
huge datasets, parallel genome assembly is a vital step.  Among 
all the parallel genome assemblers, de Bruijn graph based ones 
are most popular. However, the size of de Bruijn graph is 
determined by the number of distinct kmers used in the 
algorithm, thus redundant kmers in the genome datasets donot 
contribute to the graph size. The scalability of genome 
assemblers is influenced directly by the distinct kmers in the 
dataset or de Bruijn graph size, rather than the input dataset 
size. In order to assembly large genomes, we have artificially 
created 16 datasets of 4 Terabytes in total from the human 
reference genome. The human reference genome is firstly 
mutated with a 5% mutation rate, and then subjected to a 
genome sequencing data simulator ART. The simulated 
datasets have linearly increasing number of distinct kmers as 
the size/number of the combined datasets increases. We then 
evaluate all five time-consuming steps of the SWAP-Assembler 
2.0 (SWAP2) using these 16 simulated datasets. Compared 
with our previous experiment on 1000 human dataset with 
fixed de Bruijn graph size, the weak-scaling test shows that 
SWAP2 can scale well from 1024 cores using one dataset to 
16,384 cores. The percentage of time usage for all five steps of 
SWAP2 is fixed, and total time usage is also constant. The 
result showed that the time usage of graph simplification 
occupied almost 75% of the total time usage, which will be 
subject to further optimization for future work.  
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I.  INTRODUCTION  
There is a growing gap between the output of new 

generation of massively parallel sequencing machines and 
the ability to analyze the resulting data. Scientists 
increasingly want to assemble and analyze very large 
genomes [1], metagenomes [2,3], and large numbers of 
individual genomes for personalized healthcare [4,5,6,7]. In 
order to meet the demand for processing these huge datasets 
[8], parallel genome assembly seems promising, however the 
genome assembly algorithm/problem is very hard to scale for 
the following reasons [9,10].  

First, the state-of-art parallel assembly solutions are 
dominantly utilizing the de Bruijn graph (DBG) strategy [11]. 
This strategy is a variant of traveling salesman problem or 
equivalent to the Euler path problem, which is a well-known 
NP-hard problem [12]. This DBG strategy is the fundamental 
guideline for modern second-generation sequence assemblers, 
such as Euler [13], Velvet [14], IDBA [15], SOAPdenovo 
[16], Ray[17], ABySS [18], HipMer[19], etc. However the 
graph reduction step in this strategy involving set operations 
are both computing expensive and memory exhausting [11]. 
In practice, assemblers have developed their own practical 
methods to deal with gaps and branches caused by uneven 
coverage, erroneous reads and repeats in graph reduction 
step, and a set of shorter genome sequences called contigs 
are generated instead of original references to simplify this 
problem and minimize the computing resource usage. 

Second, sequencing machines are not accurate. About 
50% to 80% of k-mers are erroneous [15,20], thus the nodes 
and edges in the graph may not be considered trustable 
depending on what error rate the user is willing to tolerate. 
What is more, kmers located in the low coverage gaps are 
hard to be distinguished from erroneous kmers.  

Last, the number of nodes in the graph representing the 
genome information is enormous. One base pair (bp) in the 
sequencing data can generate a kmer (node) in the de Bruijn 
graph. However, the size of de Bruijn graph is determined 
only by the number of distinct kmers, thus redundant kmers 
in the datasets do not contribute to the graph size. The 
scalability of genome assemblers is influenced directly by 
the distinct kmers in the dataset or de Bruijn graph size, 
rather than the input dataset size. For example, 1000 human 
dataset [21,22] with 4 terabytes data contains about 242 k-
mers, only less than 3 billion nodes are used for building the 
de Bruijn graph. Assembling Hexaploid bread wheat 
(Triticum aestivum) genome can generate about 10~17 
billion nodes in the de Bruijn graph depending on the 
algorithms used. For meta-genomes, the size of the graph 
during the assembly process can be orders of magnitude 
higher than those for human and wheat. This would 
introduce huge communication volume, computing load, and 
memory usage. 

With the above challenges and high increasing rate of 
sequencing data at 5-fold a year [23], single server’s 
computation power has been already exhausted, and the gap 
between the computation capacity and the sequencing data is 
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still widening. Large scale parallel computing system is one 
option. Scalability, however, is a primary metric to prove its 
feasibility. 

Previously we developed the SWAP-Assembler [10,24, 
25], which can assemble the Yanhuang genome [26] in 26 
minutes using 2,048 cores on TianHe 1A [27], 99 seconds 
using 16,384 cores on Tianhe 2 [25,28,29,30] and 64 seconds 
using 65,536 cores on Mira [25,31]. We further improved the 
SWAP-Assembler by analyzing and optimizing its most 
time-consuming steps—input parallelization, k-mer graph 
construction, and graph simplification (edge merging)— 
with the aim of developing a much faster assembly tool that 
can scale to hundreds of thousands of cores by using a 
largest genome assembly dataset of 4 terabytes. However the 
reference size of our previous dataset is limited as 3 billion, 
which means that the constructed de Bruijn graph has less 
than 3 billion nodes. Before this work, the record of largest 
assembly to date was kept by HipMer on assembling wheat 
with a reference of 16 Gbp [19,32]. 

In order to assembly large genomes and test SWAP2, we 
have artificially created 16 datasets of 4 Terabytes in total 
from the human reference genome. The largest combined 
dataset can generates about 50 billion nodes for the de Bruijn 
graph. This is about 16 times (50 billion nodes) larger than 
our previous work [25] and 3 times larger than wheat, and 
we conducted a weak scaling experiment on Mira using these 
16 mutated human genome datasets with 50X coverage each. 
The result shows that SWAP2 can scale well from 1024 
cores on assembling one dataset to 16,384 cores with 16 
combined datasets.  The percentage of time usage for all five 
steps of SWAP2 is fixed, and total time usage is also kept 
constant. SWAP2 is able to assemble a simulated genome 
(4T in total) with a de Bruijn graph of about 50 billion nodes 
in about 39 minutes. The result also discover that the time 
usage of graph simplification took almost 75% of the total 
time usage, which will be subject to further optimization for 
future work. 

The rest of the paper is organized as follows. Section II 
briefly introduces the problem of genome assembly and 
related works. Section III presents the workflow on 
generating the simulated datasets. The performance 
evaluation for SWAP2 on Mira is presented in Section IV. 
We summarize the conclusion in Section V. 
 

II. BACKGROUND 

A. Problem Description 
Given a biological genome sample with reference 

sequence w  Ng , where N = {A, T, C, G}, g = |w|, a large 
number of short sequences called reads, S = {s1, s2, ..., sh}, 
can be generated from the sequencing machines. Here si is a 
substring of w with some editorial errors introduced by 
sequencing machines, 1<i<h. Genome assembly problem is 
to recover the reference sequence w with S. 

Genome assembly with the de Bruijn graph (DBG) 
strategy is the process of reconstructing the reference 
genome sequence from these reads using de Bruijn graph  
consisted with k-mers. However this strategy is a variant of 

traveling salesman problem or equivalent to the Euler path 
problem, which is NP-hard [12]. Finding the original 
reference sequence from all possible Euler paths cannot be 
solved in polynomial time. What is more, gaps and branches 
caused by uneven coverage as well as erroneous reads and 
repeats prevent from obtaining a full length genome. In real 
cases, a set of shorter genome sequences called contigs are 
generated by merging unanimous paths instead. Our work 
focuses on finding a scalable solution for this general 
genome assembly problem [10, 24, 25]. 

B. Related works 
Several state-of-art parallel assemblers have been 

proposed [2,9,17,19,32,33,34,35,36,38,39]. Most of them 
follow the de Bruijn graph (DBG) strategy proposed by 
Pevzner et al. in 2001 [11].  

In ABySS [9], the parallelization is achieved by 
distributing kmers to multi-servers in order to build a 
distributed de Bruijn graph. Error removal and graph 
reduction are implemented over MPI communication 
primitives.  

Ray [2], [17] is a general distributed engine proposed by 
Boisvert for traditional de Bruijn graphs, which extends k-
mers (or seeds) into contigs with a heuristically greedy 
strategy by measuring the overlapping level of reads in both 
directions. Performance results on the Hg14 dataset, however 
indicate that Ray is 12 times slower than the SWAP-
Assembler on 512 cores [10]. 

PASHA [33] focuses on parallelizing k-mer generation 
and distribution and DBG simplification in order to improve 
its efficiency with multithreads technology. However, 
PASHA allows only a single process for each unanimous 
path, thus limiting its degree of parallelism. Performance 
results [33] show that PASHA can scale to 16 cores on a 
machine with 32 cores on three different datasets. 

YAGA [34,35] constructs a distributed de Bruijn graph by 
maintaining edge tuples in a community of servers. 
Reducible edges belonging to one unanimous path are 
grouped into one server with a list ranking algorithm [36]. 
These unanimous paths are reduced locally on separate 
servers. The recursive list ranking algorithm used in YAGA 
has a memory usage of O(nlog(np)), however, this induces 
large memory usage and causes low efficiency. Here n is the 
input data size, and p is the number of processes 

HipMer [19,32] is an efficient end-to-end genome 
assembler by parallelizing the Meraculous code with both 
MPI and UPC language [43]. In their work, the optimizations 
include improving scalability of parallel k-mer analysis, a 
novel communication-avoiding parallel algorithm in the 
traversal of the de Bruijn graph and parallelizing the 
Meraculous scaffolding modules by leveraging the one-sided 
communication capabilities of UPC [37]. Experiments show 
that HipMer achieves a scalability of 15,360 cores on both 
human genome sequencing data (290 Gbp in fasta format) 
and wheat genome sequencing data (477 Gbp in fasta 
format). 

Spaler [38] is a Spark and GraphX [39] based de novo 
genome assembler using de Bruijn graph. In Spaler, the 
authors parallelize the de novo genome assembly problem 
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with spark on distributed memory systems. Spaler used an 
efficient algorithm based on an iterative graph reduction 
technique in order to generate contigs from the DBG with a 
random merging approach. The authors also showed the 
effects of partitioning size on the running time and solving 
complex structure to increases the quality of the results. 
Comparing results shows that Spaler is faster than RAY, and 
ABySS with 256 cores, but still slower than SWAP-
Assembler.  
 

III. DATA SIMULATION AND EVALUATION 
In our previous experiment [25] part of the 1000 human 

dataset was used [40]. This dataset contains sequences 
randomly selected from the  1000 human genome sequences, 
and the size (or number of distinct kmers) of de Bruijn graph 
constructed from this dataset is about 3 billion. This prevents 
us from conducting a weak scaling test for all five steps of 
SWAP2.  

To conduct a weak scaling test, the size of the de Bruijn 
graph should increase proportionally with the dataset size. 
However, real dataset is hard to meet this criteria. Instead, in 
this paper well-designed simulated datasets were used, with 
the number of distinct kmers increasing proportionally with 
the dataset size.  

 
Figure 1. Workflow of data simulation 

 
In this section, we first present the data generation 

workflow, and then present the evaluation of the dataset. 
Each of the 16 simulated datasets is firstly mutated from a 
given human reference genome with a 5% mutation rate, 
then the mutated dataset is subject to a sequencing data 
simulator ART [41], with  the coverage parameter set as  
50X. The size of each simulated data is about 250 Gbytes. 
The above workflow is used to generate 16 datasets, and the 
total size is 4 Terabytes.  

A. Workflow of data simulation 
The GRC (Genome Reference Consortium) version of 

Human Genome Build 37, patch release 38 is downloaded 
from [42] as the reference genome set. This human reference 
contains 1464 contigs and the total length of this reference is 
3,232,546,710 bp.  

The workflow of sequencing data simulation is presented 
in Figure 1 and described as follows: 

1. Reference mutation: the downloaded reference is 
first mutated to generate a different reference dataset 

with a 5% random mutation rate. Each mutation is 
guaranteed with a unique random number within the 
script.  

2. Data simulation:  the simulation tool ART [41] is 
used to generate the sequencing data using the 
mutated reference dataset. In the paper we selected 
Illumina as the sequencing platform and set the fold 
of read coverage parameter as depth, and the length of 
read as readLen base pairs. Specially in our 
experiment the depth or coverage is set to be 50, and 
readLen is set to be 100.  

3. Data format conversion:  The data generated in Step 
2 is in fastq format, and the fastx[43] toolset is used to 
convert the data into fasta format. Finally each dataset 
has about 250 Gbytes.  

Overall 16 datasets were generated with 16 different 
random numbers, each with 250 Gbytes. These datasets are 
denoted as S1,S2,…S16, respectively. 

B. data analysis and evalution  
With these 16 simulated datasets, SWAP2 is used as a 

kmer counting tool for analysis of the simulated datasets. We 
run SWAP2 separately on datasets W1(S1) of 250 Gbytes, W2 
(created by combining S1 and S2) of 500 Gbytes, …, W16 
(created by combining all 16 simulation datasets) of 4 
Terabytes. In these five analysis runs, the length of kmer is 
set as 31. 

Table 1 and Figure 2 show the results on these 5 datasets 
W={W1, W2, W4, W8, W16}. The horizontal axis presents the 
corresponding combined datasets and the vertical axis 
presents the number of kmers with different occurring 
frequency in each dataset. Specially we selected the number 
of distinct kmers with its frequency greater or equal  to 1, the 
number of non-unique kmers with its frequency larger than 1, 
and the number of kmers with its frequency larger than  
(kmers used by SWAP2 to build the de Bruijn graph), here
is set to be 3 in our experiment. Generally, most unique 
kmers are generated by sequencing errors (or simulation 
errors in our case),  and then kmers are selected by a user 
selected threshold to construct the initial de Bruijn graph 
in SWAP2. 
 

 

Table 1. The analysis results on k-mers with different 
frequencies. The kmers with its frequencies larger than 3 
are selected to construct the de bruijn graph.  Thus the 
number of kmers with frequnce larger than 3 equals to 
the number of nodes in de Bruijn graph. (unit: billion). 

Number 
of 
datasets 

kmers with 
freq >= 1 
(distinct  
kmer) 

kmers with 
freq > 1 
(non-unique 
kmer) 

kmers with 
freq > 3 
(graph size) 

1 27.69 7.86 3.378 
2 54.16 15.42 6.695 
4 105.36 30.03 13.201 
8 203.49 58.06 25.845 

16 396.18 112.32 50.171 

667



 
Figure 2. Kmer counting statistic results on simulated 
datasets. Note that the unit in this figure is billion. 
 

From Table 1, dataset W1 generated 3.378 billion kmers 
with its frequency larger than 3, while dataset W2 produced 
about 6.695 billion kmers. The largest dataset W16 contains 
50.171 billion kmers which is almost 15 times larger than W1. 
Figure 2 confirms that with the increasing number of 
combined datasets, the number of distinct kmers, non-unique 
kmer and kmers with frequency larger than 3 are all growing 
nearly linearly. This reflects that these simulated datasets can 
be used in the weak-scaling experiments. In the following 
sections, the kmers with frequency larger than 3 were used to 
construct the de Bruijn graph in SWAP2 for performance 
evaluation. 
 

IV. PERFORMANCE EVALUATION 
The newly released SWAP-Assembler 2 (SWAP2 for 

short]) is used in this experiment; this software is available 
online in SourceForge [44,45]. In this performance 
evaluation, 32,768 computing nodes in Mira at Argonne 
National Laboratory [31] were allocated. Each compute node 
is equipped with 16 cores and 16 GB of memory; all nodes 
are connected with a high-speed 5D-torus network with the 
bidirectional bandwidth of 10 GB/s. The I/O storage system 
of Mira uses the IBM GPFS system; it supports parallel file 
I/O defined in MPI-3.  

In this section, we conduct a weak scaling test with 16 
simulated datasets as generated in Section III. The data size 
in this test was increased from one dataset (or 250 GB) to 16 
datasets (or 4 TB) as the number of cores increased from 
1,024 to 16,384. Here all these kmers with occurrence less 

than and equal to a given threshold � are filtered, and all the 
remaining k-mers are used to construct the de Bruijn graph. 
As indicated in Table 1, the largest size is about 50 billion 
vertices in the initial de Bruijn graph in SWAP2. Last 
column in Table 1 presents the number of kmers with its 
frequency larger than 3 for different combined datasets. Here 
the filtering threshold � is set to be 3. 

 Table 1 and Figure 2 show that the number of kmers 
with its frequency larger than 3 increases nearly linearly with 
the number/size of combined datasets, indicating these 
combined datasets can be used to conduct a weak-scaling test. 

The weak-scaling test results are presented in Table 2 and 
Figure 3. The performance results can be analyzed from the 
following 3 aspects.  

Scalability: Table 2 shows that SWAP2 can scale to 
16,384 cores on 4 TB sequencing data. The total time usage 
of SWAP2 decreases slightly when the number of cores 
increases from 1024 to 16,384. The same trend can be found 
in the last four steps of SWAP2 except for the Input 
Parallelization step. According to Table 2 and Figure 3, one 
can see that the actual number of the kmers with its 
frequency larger than 3 in the de Bruijn graph is slightly less 
than the ideal value for conducting an ideal weak-scaling test. 
This reflects that  slightly less-used kmers for large No. of 
cores resulted in slight decrease on the time usage in the last 
four steps . 
     Efficiency: The efficiency of SWAP2 is also affected by 
the number of kmers with its frequency larger than 3, and 
decreases slightly when the number of cores increasing from 
1024 to 16,384. We re-calculated the efficiency by dividing 
the actual number of  kmers with its frequency larger than 3 
and then multiplying the ideal number of  kmers, the re-
calculated  efficiency line (corrected line in Figure 3) is 
presented in figure 3. The corrected efficiency is kept to be 
100% during the whole test.  

Bottlenecks: The time usage of graph simplification 
occupied almost 75% of the total time usage, and this ratio is 
fixed during the whole test. Previous evaluation results in [25] 
with fixed de Bruijn graph size showed that the input 
parallelization step is the most time consuming step, 
however the weak scaling test in this paper has identified  
new bottleneck for this application, which is the subject for 
future work.   
Although the above performance test on SWAP2 is 
optimized on Mira, the strategies used are general and focus 
only on SWAP2’s major steps. The related simulation code 

Table 2. Time usage of SWAP2 for the weak-scaling test. This experiment started with 1024 cores and one dataset of 
50X, the dataset doubles when the number of cores doubles. The experiment scaled to 16384 cores with all 16 
datasets combined. Each computing node was allocated 4 processes (ppn = 4); time is measured in seconds. 
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and scripts for data simulation and performance evaluation 
can be downloaded from [45]. 
 

V. CONCLUSTION 
In this paper, we evaluated SWAP-Assembler 2 with a 

larger de Bruijn graph, 16 times larger than our previous 
work [26]. The previous experiment on 1000 human dataset 
only contain one human reference of 3 billion nucleotides. In 
this paper we conducted an experiment on Mira using 16 
mutated human datasets with 50X coverage, and in total we 
simulated 4 Terabytes sequencing data with a combined 
reference of about 50 billion nucleotides. The result shows 
that SWAP2 can scale well from 1024 cores on assembling 
one dataset to 16,384 cores with 16 combined datasets, and 
SWAP2 is able to assemble a simulated genome (4T in total) 
with a de Bruijn graph size of about 50 billion nodes in about 
39 minutes when using 16,384 cores. The percentage of time 
usage for all five steps of SWAP2 is fixed, and total time 
usage is also kept constant. The result also discover that the 
time usage of graph simplification occupied almost 75% of 
the total time usage, which will be the focus for  further 
optimization. 
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