
Advanced Thread Synchronization for
Multithreaded MPI Implementations

Hoang-Vu Dang
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

Email: hdang8@illinois.edu

Sangmin Seo, Abdelhalim Amer, and Pavan Balaji
Mathematics and Computer Science Division

Argonne National Laboratory
Lemont, IL 60439, USA

Emails: {sseo,aamer,balaji}@anl.gov

Abstract—Concurrent multithreaded access to the Message
Passing Interface (MPI) is gaining importance to support
emerging hybrid MPI applications. The interoperability between
threads and MPI, however, is complex and renders efficient
implementations nontrivial. Prior studies showed that threads
waiting for communication progress (waiting threads) often
interfere with others (active threads) and degrade their progress.
This situation occurs when both classes of threads compete for
the same MPI resource and ownership passing to waiting threads
does not guarantee communication to advance. The best-known
practical solution prioritizes active threads and adapts first-in-
first-out arbitration within each class. This approach, however,
suffers from residual wasted resource acquisitions (waste) and
ignores data locality, thus resulting in poor scalability.

In this work, we propose thread synchronization improvements
to eliminate waste while preserving data locality in a production
MPI implementation. First, we leverage MPI knowledge and a
fast synchronization method to eliminate waste and accelerate
progress. Second, we rely on a cooperative progress model that
dynamically elects and restricts a single waiting thread to drive
a communication context for improved data locality. Third, we
prioritize active threads and synchronize them with a locality-
preserving lock that is hierarchical and exploits unbounded bias
for high throughput. Results show significant improvement in
synthetic microbenchmarks and two MPI+OpenMP applications.

Index Terms—MPI; threads; OpenMP; thread safety; lock;
mutex; synchronization

I. INTRODUCTION

Message Passing Interface (MPI) applications are moving
toward interoperating with MPI through multiple threads.
The primary driving factors are ease of programmability for
emerging fine-grained threading models and the desire to effi-
ciently utilize modern network fabrics, which require multiple
communicating cores to fully exploit their capabilities. In order
to meet such expectations, thread safety is a prerequisite, and
its corresponding overheads should be minimal.

The intricacies of the MPI standard render designing and
implementing correct and efficient support for threading non-
trivial. As a result, most production implementations satisfy
the core of the thread compliance through locks, since using
exclusively lock-free or wait-free objects is complex to im-
plement and to maintain. MPI implementations were shown
to suffer significantly from scalability issues due to lock con-
tention. Thus, several works explored different directions for
potential improvements. Three orthogonal aspects contribute

to the costs of locking: lock granularity, ownership passing
latency, and ownership arbitration. Lock granularity in MPI
implementations were explored in prior works [1], [2], and
reducing lock ownership passing latency has been extensively
studied [3], [4], [5]. In our prior work [6], we identified
arbitration as an important factor that was missing from the
literature. Here, we build on our prior findings and provide
further insight and improvements that combine more advanced
arbitration and locality-preserving methods.

The major arbitration aspect of locking in MPI implemen-
tations is the relation between threads waiting for communi-
cation progress (waiting threads), which occurs in routines
with blocking semantics, and the others (active threads).
When threads in either of these states compete for the same
resource (e.g., a critical section that protects a message queue),
ownership passing to a waiting thread does not guarantee
communication to advance. Consequently, wasted resource ac-
quisitions unnecessarily degrade the progress of active threads.
We showed in our prior work that such a scenario often occurs
when an unfair lock is monopolized by waiting threads [6]. We
also demonstrated that prioritizing active threads and adopting
first-in-first-out (FIFO) ownership passing within each class
of threads can significantly improve communication progress.
This method, however, scales poorly. First, it suffers from
residual wasted acquisitions caused by a blind O(N) lookup
complexity to find a thread capable of making progress among
N waiters. Second, it is data locality oblivious.

We propose in this work to build on our prioritization
method a synchronization model that incorporates MPI and
hardware information to achieve an O(1) reactivation of
waiting threads and locality preservation. The key components
of this method are as follows. First, at most one thread among
waiters (none if there are no waiters), called the server, is
elected to drive a communication context. Restricting access
to a single waiter improves locality of the communication
context data structures. Second, the reactivation of waiting
threads is driven by MPI knowledge; waiting threads use
private synchronization counters to wait, track their pending
MPI operations, and receive wakeup signals from the server
on their completion. Third, in addition to raising the priority
of active threads, we synchronize their concurrent accesses
with a locality-preserving high-throughput lock achieved by a

combination of unbounded lock monopolization and NUMA-
awareness. Results show significant improvement in synthetic
microbenchmarks and two MPI+OpenMP applications.

II. THREAD SAFETY IN MPI IMPLEMENTATIONS

Supporting MPI_THREAD_MULTIPLE—allowing multiple
threads to concurrently call MPI—is nontrivial. First, the MPI
standard imposes certain ordering1 and progress2 guarantees
on thread-compliant implementations, which restrict the thread
safety design space. Second, application threads are allowed
to share MPI objects, such as communicators and requests,
and may suffer contention because of the resulting sharing of
MPI internal data structures (e.g., message queues). Combined
with the large set of MPI routines with disparate thread safety
requirements, these intricacies make correct and efficient sup-
port for threading arduous. As a result, most production MPI
runtimes implement the core of the thread compliance through
locking, since lock-free or wait-free designs are complex
to implement and to maintain. Moreover, the majority of
MPI implementations ensure thread safety through a single
global lock (often referred to as global granularity). Such
a conservative approach is prone to high contention, but its
simplicity makes correct threading support less error prone
than with fine-grained designs. In this study, we also focus
on the global granularity. Other related work on the topic of
thread granularity is reviewed in Section VI.

For a lock-based MPI implementation, arbitration of the
concurrent accesses is an important factor. Suppose that one
thread is performing a blocking operation (e.g., MPI_Recv or
MPI_Wait) and successfully acquires the global lock of the
MPI library. If the operation cannot be satisfied immediately,
however, the thread must release the lock. Failure to do so pre-
vents other threads from entering the critical section, violates
MPI progress requirements, and may lead to a deadlock. Thus,
arbitrating lock ownership has correctness implications. In the
remainder of paper, all our thread-safe methods guarantee
arbitration correctness, and the focus will be their performance
implications.

We illustrate the relationship between thread safety and
MPI communication in Figure 1. It describes a simplified
implementation of MPI_Isend and MPI_Wait. These routines
are examples of a nonblocking MPI call, to send a mes-
sage, and a blocking MPI call, to wait for its completion.
In the example we distinguish two major code paths with
distinct progress properties. The first, which we refer to as
the main path, is taken by both routines between the first
lock acquisition (lines 18 and 40) and the last lock release
operation (lines 22 and 44). This code path is similar to
most MPI routines and often advances the system. The other
path, which we refer to as the progress loop, concerns only
blocking calls. It is characterized by a tight loop (line 28)

1When threads issue ordered MPI operations (e.g., point-to-point) and the
user establishes a relative ordering among the corresponding threads, such
order needs to be preserved.

2For instance, threads waiting in MPI blocking calls must not block the
progress of other threads.

waiting for the completion of a target operation. This path does
not guarantee progress and is characterized by high-frequency
lock acquire/release operations. Thus, by our prior definition,
threads executing the progress loop are waiting threads and
the others are active threads. We consider lock acquisitions
by waiters as wasted (or simply as causing waste) when they
yield no progress while active threads are waiting for the lock.

Regardless of the state in which a thread is, however, the
arbitration of the concurrent accesses is dictated solely by the
lock arbitration. That is, lock ownership passing defines the
order in which threads execute the critical section. In order
to promote progress of the system, our prior work exploited
this distinction between the threads in the locking imple-
mentation [6], [7]. We considered active threads as having a
higher priority; thus we extended traditional lock acquisition
interfaces with a low-priority interface. The goal was to have
waiting threads acquire the lock with lower priority than that
of active threads (line 33). By combining this method with
FIFO locks (ticket [8] and CLH [9]), we achieved better
communication progress by promoting operation injection into
the network and reducing waste. This solution, however, relies
on a blind FIFO arbitration among waiting threads. That is, if
only one among N threads has its operation completed, O(N)
lock-passing operations are needed in order to reactivate it.

In this paper, we leverage knowledge from the MPI runtime
to reactivate waiting threads in O(1) complexity. Furthermore,
prior works ignored the memory hierarchy and incurred heavy
lock-passing costs. We address this issue as well by promot-
ing locality-preserving practices. We use the O(N) locality-
oblivious prior work implemented on top of the FIFO-based
CLH lock [9] and the production MPICH [10] as the baseline
for comparison. We choose MPICH for its thread-compliance
maturity and its relevance as one of the most widely adopted
MPI libraries, used directly or indirectly through third-party
platform-specific tuned derivatives. We do believe, however,
that the findings in this paper can be beneficial to other MPI
implementations as well as other communication runtimes.

III. SHORTCOMINGS OF EXISTING METHODS

This section re-evaluates the issues in the multithreaded
communication and describes the motivation for our methods.
For clarity, we define the following terminology:

• MTX: MPICH implementation using a Pthreads mutex as
a lock (this is the same as the MPICH 3.2 released)

• CLH: MPICH implementation using the CLH lock [7]
• P-CLH: MPICH implementation using the CLH lock with

prioritization of the main path [7]

A. Experimental Setup

We use latency, bandwidth, and message rate as metrics
to evaluate the performance of our baseline CLH and P-CLH.
We note that the performance of the baseline is superior to
that of MTX for MPI_THREAD_MULTIPLE when there is no
oversubscription [7].

The latency benchmark is similar to the multithreaded OSU
latency benchmark (osu_latency_mt [11]) except that we

1 typedef struct request {
2 REQUEST_BODY;
3 bool complete;
4 void *(* completion_cb)(*);
5 } request_t;
6
7 // Global lock
8 lock_t g_lock;
9

10 // Callback to complete a request
11 void complete_request(request_t *req) {
12 req ->complete = true;
13 }
14
15 // Issuing a nonblocking send operation
16 void MPI_Isend (..., MPI_Request *handle) {
17 request_t *req;
18 acquire(g_lock);
19 req = create_request ();
20 req ->completion_cb = complete_request;
21 Isend_body(req);
22 release(g_lock);
23 set_request(handle , req);
24 }
25
26 // Internal progress routine
27 void progress_wait(request_t *req) {
28 while (!req ->complete) {
29 bool made_progress = poll_network ();
30 if (! made_progress) {
31 release(g_lock);
32 yield();
33 acquire_low(g_lock);
34 }
35 }
36 }
37
38 // Waiting for request completion
39 void MPI_Wait (..., MPI_Request *handle) {
40 acquire(g_lock);
41 request_t *req = get_request(handle);
42 progress_wait(req);
43 *handle = MPI_REQUEST_NULL;
44 release(g_lock);
45 }

Fig. 1. Simplified thread-safe implementation of MPI_Isend and MPI_Wait.
It assumes a global critical section (protected by g_lock) and a callback-
based request completion. poll_network is a hardware network call that
progresses all outstanding operations. In particular, during this call, user-
provided completion callback functions are executed when the corresponding
operations have completed. complete_request simply marks the request
as complete. Lock ownership passing is ensured through the acquire,
acquire_low (for low priority), and release calls.

used OpenMP instead of Pthreads to take advantage of the
OpenMP thread-binding capability. This benchmark uses two
MPI ranks, one per compute node. One MPI rank (sender)
performs a number of pairs (10,000 for messages up to size ≤
8 KB, 1,000 for larger messages) of MPI_Send and MPI_Recv

to the other MPI rank (receiver). The receiver creates a fixed
number of threads to perform a corresponding MPI_Recv and
MPI_Send such that the total number of requests matches the
sender’s. The latency is computed at the sender by taking the
average time used per message.

The bandwidth and message rate benchmarks are the same
as those studied in [6]. These benchmarks also create two

MPI ranks in two different nodes (sender and receiver); each
creates the same number of OpenMP threads. The sender
performs a number of MPI_Isends in each thread (the default
64 messages is used in our experiments) before waiting for all
of them with MPI_Waitall; It then performs MPI_Recv. The
receiver side similarly performs MPI_Irecv, MPI_Waitall,
and MPI_Send in each thread to match the sender. This process
is repeated so that the number of messages is the same as that
in the latency benchmark. The message rate is computed at
the sender as the total number of messages over the overall
execution time. The bandwidth is computed similarly but using
the total size of transferred data instead of the number of
messages.

Our platform for the experiments is a cluster of Intel
Haswell-EP machines. Each node consists of two Intel Xeon
E5-2699 v3 CPUs (36 cores in total) whose cores are arranged
into four NUMA domains. The nodes are interconnected by
using Mellanox FDR InfiniBand. We compiled our bench-
marks and MPICH (for both CLH and P-CLH) using the Intel
compiler 16.0.3 with the MXM low-level communication
runtime included in HPC-X 1.6.392. We used the MPI_T

instrumentation available in MPICH for profiling and instru-
mentation, in order to obtain breakdowns in timing and internal
counters such as the number of network polls, and HPC-
Toolkit [12] for measuring the number of cache misses. All our
tests were done with each thread bound to a CPU core using
two OpenMP environment variables: OMP_PROC_BIND=close
and OMP_PLACES=cores. MPICH uses a single communica-
tion context per MPI process; thus we expect high degrees of
contention for communication-intensive codes. Furthermore,
message rates are bound by single-threaded performance be-
cause of the limited concurrency of a globally locked single-
communication context implementation.

B. Performance Results

Figure 2 illustrates the results of each benchmark. The
results show that as the number of threads increases from 1
to 36, the communication performance degrades significantly.
For instance, while the latency measured with one thread is
about 1.5 µs, it increases to 23 µs for CLH and 11.5 µs for P-

CLH with 36 threads. In the following subsections, we analyze
the performance of each benchmark in detail.

C. Analysis of Latency and Bandwidth Results

To reveal where most of the execution times in Figure 2 are
spent, we divided the execution time into four parts as shown
in Figure 3. The breakdown timing is measured and reported at
the sender side (similar results can be obtained at the receiver
side). In the figure, as the number of threads increases, the
execution time of each portion increases. Most notably, in the
latency and bandwidth cases, we see a large increase in EMPTY

CS, that is, wasted time in the critical section (CS) without
doing useful work.

The waste in the latency and bandwidth results is caused
primarily by the increased number of network polls when more
threads are involved in the communication. Figure 4 shows

1

2

4

8

16

32

1 8 14 22 28 36

La
te
nc
y	(
us
ec
)

#	Threads

CLH
P-CLH

(a) Latency (the lower, the better)

2048

4096

8192

1 8 14 22 28 36

Ba
nd

w
id
th
	(M

B/
s)

#	Threads

(b) Bandwidth (the higher, the better)

262144

524288

1048576

2097152

4194304

1 8 14 22 28 36

M
es
sa
ge
	ra
te
	(m

sg
	/
s)

#	Threads

(c) Message Rate (the higher, the better)

Fig. 2. Initial performance results of CLH and P-CLH. The message size is 64 bytes for the latency and message rate benchmarks and is 1 MB for the
bandwidth benchmark.

0

5

10

15

20

25

1 9 18 27 36 1 9 18 27 36

CLH P-CLH

Ti
m
in
g	
br
ea
kd

ow
n	
(u
se
c)

TitleISSUE POLL EMPTY	CS SYNC

(a) Latency (the lower, the better)

0

100

200

300

400

1 9 18 27 36 1 9 18 27 36

CLH P-CLH

Ti
m
in
g	
br
ea
kd

ow
n	
(u
se
c)

TitleISSUE POLL EMPTY	CS SYNC

(b) Bandwidth (the higher, the better)

0

0.5

1

1.5

2

2.5

1 9 18 27 36 1 9 18 27 36

CLH P-CLH

Ti
m
in
g	
br
ea
kd

ow
n	
(u
se
c)

TitleISSUE POLL EMPTY	CS SYNC

(c) Message Rate (the higher, the better)

Fig. 3. Execution time breakdown of the performance results in Figure 2. ISSUE, POLL, EMPTY CS, and SYNC represent time spent in issuing operations,
time spent in making progress, time wasted in the CS without doing useful work, and time spent in synchronizations, respectively. The timing overhead is
about 8%, 1% and 6% on average (harmonic mean) of the total execution time for the latency, bandwidth and message rate benchmark respectively.

1
2
4
8
16
32
64

1 4 8 12 16 20 24 28 32 36Av
er
ag
e	#

	o
f	n

et
w
or
k	

po
lls
	p
er
	m
es
sa
ge

#	Threads

CLH

P-CLH

Fig. 4. Average number of network polls performed per message in the latency
benchmark with CLH and P-CLH.

the average number of network polls performed per message
in the latency benchmark (we omit the result of the bandwidth
benchmark because it showed a similar pattern). Although the
number of messages is constant across all experiments, the
number of network polls per message increases as the number
of threads increases. Recall that any waiting threads executing
a blocking operation can enter the CS through the progress
loop. If more waiting threads enter the CS and perform
unnecessary work (e.g., network polling), it can delay active
threads from proceeding and consequently slow the overall
performance. By prioritizing the main path, P-CLH enables more
work to be injected into the runtime compared with CLH; hence
it improves the performance because of the presence of more
active threads. However, P-CLH still suffers from O(N) FIFO

0

20

40

60

80

100

1 9 18 27 36 1 9 18 27 36 1 9 18 27 36

L1 L2 L3

#	
Ca
ch
e	
m
iss

es

ISSUE

POLL

Fig. 5. Average number of L1, L2, and L3 cache misses per message for
different numbers of threads in the message rate benchmark using P-CLH. The
breakdown represents the numbers of misses that occurred in MPI_Isend or
MPI_Irecv (ISSUE) and in MPI_Wait (POLL).

ownership passing between N waiting threads, which reduces
its performance with increased numbers of threads.

D. Analysis of Message Rate Results

The execution time breakdown of the message rate results
in Figure 3(c) shows that the majority of its time is spent
in issuing messages (i.e., ISSUE). The overall message rate is
again confirmed to be bounded by the issuing rate, as also
reported in [7]. This phenomenon can be understood better by
looking at the number of cache misses in Figure 5. As we
increase the number of threads in the experiment, the number
of cache misses increases substantially—first in the L1 and L2

1 typedef struct request {
2 REQUEST_BODY;
3 bool complete;
4 void *(* completion_cb)(*);
5 scount_t scounter;
6 } request_t;
7
8 bool server = false; // is there a server?
9 list <scount_t *> waiters; // list of waiters

10
11 // Callback when a request is finished
12 void complete_request(request_t *req) {
13 req ->complete = true;
14 list_remove(waiters , &req ->scounter);
15 scount_signal(&req ->scounter , false);
16 }
17
18 void progress_wait(request_t *req) {
19 bool elected = false; // am I the server?
20 while (!req ->complete) {
21 bool made_progress = poll_network ();
22 if (! made_progress) {
23 if (! server) { // no active server
24 elected = true; // I am elected
25 server = true; // as a server
26 }
27 if (elected) { // I am a server
28 release(g_lock);
29 yield();
30 acquire_low(g_lock);
31 } else { // I am a waiter
32 list_append(waiters , &req ->scounter);
33 scount_wait(&req ->scounter ,g_lock ,1);
34 }
35 }
36 }
37 if (elected) // I am no longer
38 server = false; // the server
39 // Wake up a potential server
40 if (! server && !list_empty(waiters))
41 scount_signal(list_pop(waiters), true);
42 }

Fig. 6. Modifications to Figure 1 for selective reactivation.

caches within the same NUMA node (≤ 9 threads) and then
in the L3 cache when going out of the NUMA node (> 9
threads). This increasing rate reflects the trend of our message
rate benchmark results in Figure 2(c).

The increase in cache misses happens mainly in the issuing
part of the benchmark because of the FIFO ownership passing
exercised in the CLH lock used in CLH and P-CLH. Even though
issuers initiate MPI operations and make progress, they take
turns in entering the CS, thus causing the data movement
and resulting in the increase in cache misses. The decreasing
message rate with a larger number of threads signifies the
problem of thread synchronization, especially lock ownership
passing, between active threads.

IV. THREAD SYNCHRONIZATION TECHNIQUES

In this section, we present our solutions for the problems
presented in Section III.

A. Selective Reactivation of Waiting Threads

Our idea for solving the latency and bandwidth problems de-
scribed in Section III-C is to allow only one waiting thread to

1 typedef struct scount {
2 int cur_count;
3 cond_t cvar;
4 } scount_t;
5
6 /* Wait for N events. This routine assumes
7 the lock L associated to the condition
8 variable C->cvar is held. */
9 void scount_wait(scount_t *C, lock_t L,

10 int N) {
11 C->cur_count = N;
12 /* cond_wait releases L to wait for signal ,
13 then reacquires it at returns. */
14 cond_wait(&C->cvar , L);
15 }
16
17 /* Signal one event or force -wakeup on
18 condition variable C->cvar. */
19 void scount_signal(scount_t *C, bool force) {
20 if (force) cond_signal(&C->cvar);
21 else {
22 C->cur_count --;
23 if (!C->cur_count) cond_signal(&C->cvar);
24 }
25 }

Fig. 7. Example implementation of a synchronization counter. It assumes the
existence of generic condition variable (cvar) and lock (L) implementations.
The routine scount_wait allows waiting for N events and scount_signal
decrements the number of pending events (cur_count) for C and wakes up
the corresponding thread when there are no more pending events. We also
allow forced wakeup with the Boolean force.

drive a communication context while making all other waiting
threads wait outside the CS until their request is completed. At
most one thread, called the server, is elected among all waiting
threads, and only the server is allowed to enter the CS and
poll the network for communication progression. In contrast
to a previously studied approach that utilizes a dedicated
communication server [13], our method is a decentralized one
that can be easily integrated in existing MPI implementations,
which do not assume a centralized entity for making progress
or thread arbitration. Restricting access to a single waiter
also increases the likelihood of residency in cache of the
communication context data structures and avoids contention
for the CS.

Remaining or new waiting threads become waiters and wait
until the server completes their request. A waiter indicates
its waiting intent through a synchronization counter whose
initial value equals the number of pending operations that it
is waiting for. When the server completes a request, it enables
the waiter associated with the request to continue the execution
with a signal (i.e., work-driven, selective reactivation). To
avoid starvation, when the server finishes its own request,
it elects another waiter, if there is one, to hand over its
server role; otherwise, the waiters will be waiting forever,
since none is making progress. Note that the number of
servers depends on the network hardware and communication
volume. For our purpose, a single server is sufficient; but
the selective reactivation method can easily be extended for
multiple servers. Figure 6 depicts our selective reactivation
method with a single server.

1

2

4

8

16

32

1 8 14 22 28 36

La
te
nc
y	(
us
ec
)

#	Threads

P-CLH
CLH-USC
P-CLH-USC

(a) Latency (the lower. the better)

2048

4096

8192

1 8 14 22 28 36

Ba
nd

w
id
th
	(M

B/
s)

#	Threads

(b) Bandwidth (the higher, the better)

262144

524288

1048576

2097152

4194304

1 8 14 22 28 36

M
es
sa
ge
	ra
te
	(m

sg
	/
s)

#	Threads

(c) Message Rate (the higher, the better)

Fig. 8. Performance results of CLH and P-CLH with selective reactivation. The message size is 64 bytes for the latency and message rate benchmarks and
is 1 MB for the bandwidth benchmark. CLH-USC and P-CLH-USC represent the results using selective reactivation with a user-level synchronization counter
implementation along with CLH and P-CLH, respectively.

0
2
4
6
8
10
12

1 9 18 27 36 1 9 18 27 36

P-CLH P-CLH-USC

Ti
m
in
g	
br
ea
kd

ow
n	
(u
se
c)

TitleISSUE POLL EMPTY	CS SYNC

(a) Latency (the lower, the better)

0

100

200

300

400

1 9 18 27 36 1 9 18 27 36

P-CLH P-CLH-USC

Ti
m
in
g	
br
ea
kd

ow
n	
(u
se
c)

TitleISSUE POLL EMPTY	CS SYNC

(b) Bandwidth (the higher, the better)

0

0.5

1

1.5

2

2.5

1 9 18 27 36 1 9 18 27 36

P-CLH P-CLH-USC

Ti
m
in
g	
br
ea
kd

ow
n	
(u
se
c)

TitleISSUE POLL EMPTY	CS SYNC

(c) Message rate (the higher, the better)

Fig. 9. Execution time breakdown of the P-CLH and P-CLH-USC results in Figure 8. We omit the breakdown of the CLH-USC results because it shows
a pattern similar to that of the P-CLH-USC results. ISSUE, POLL, EMPTY CS, and SYNC represent time spent in issuing operations, time spent in making
progress, time wasted in CS without doing useful work, and time spent in synchronizations, respectively. The timing overhead is about 8%, 1%, and 7% on
average (harmonic mean) of the total execution time for the latency, bandwidth, and message rate benchmark respectively.

Implementing the selective reactivation requires two impor-
tant changes to the runtime: (1) defining a synchronization
counter implementation and (2) associating a counter per
blocking operation and storing its reference in the corre-
sponding request objects. In Figure 6, we assume a generic
synchronization counter object referred to by the abstract type
scount_t. This object supports two types of operation: a
signal operation is translated to scount_signal(), and a
wait operation is translated to scount_wait(). Each request
contains a scount_t object (line 5) representing our synchro-
nization structure. For an MPI_Waitall operation, a reference
to the counter object will be initialized to the number of
pending operations and stored in all of them to consume signal
events.

Since a request object is associated with a scount_t object,
we can tie the waiting thread to the request by making the
waiting thread wait on the associated scount_t object. In
addition, because the one-to-one mapping between a thread
and a scount_t object is maintained, one scount_t object
can be regarded as representing one waiting thread. If the
thread cannot complete the request and is required to wait,
it will not enter the CS using the progress loop path but
instead will be blocked inside the synchronization object if a
server already exists, as shown at line 33. When the request is

finished, the signal operation is performed by the server at the
callback function (line 15). The scount_t objects are linked
in a globally shared doubly linked list (line 9), so that the
server can find a target waiter when needed. With the doubly
linked list, we can efficiently remove a waiter from the list
when it is signaled, that is, when the request is finished by the
server.

An example implementation of the synchronization counter
is illustrated in Figure 7. It assumes generic lock and condition
variable implementations underneath. A scount_wait opera-
tion publishes the intent to wait for N events. scount_signal
events decrement the counter and wake up the thread when
reaching zero (i.e., all events are satisfied). The force argu-
ment forces a thread wakeup regardless of the counter value.
This is essential for electing the next server when the current
one is leaving the runtime. In the case of waiting for the
completion of multiple requests, more than one request object
may share one synchronization counter object. The server
issues signals whenever it completes one of the requests, and
a thread wakeup is triggered when the counter has reached 0
(see line 15 in Figure 6 and the routine scount_signal in
Figure 7). This strategy prevents the waiter thread from being
woken up multiple times, many of those just to figure out that
not all its requests are finished, and thus adding meaningless

1
2
4
8

16
32
64
128

1 8 14 22 28 36

La
te
nc
y	(
us
ec
)

#	Threads

MTX
MTX-KSC

(a) Latency (the lower, the better)

2048

8192

1 8 14 22 28 36

Ba
nd

w
di
th
	(M

B/
s)

#	Threads

(b) Bandwidth (the higher, the better)

262144

2097152

1 8 14 22 28 36

M
es
sa
ge
	ra
te
	(m

sg
/s
)

#	Threads

(c) Message Rate (the higher, the better)

Fig. 10. Performance results of the vanilla MPICH-3.2 (MTX) and our modification using selective reactivation with the Pthreads mutex and kernel-level
synchronization counter (MTX-KSC). The message size is 64 bytes for the latency and message rate and is 1 MB for the bandwidth benchmark.

0.25

0.5

1

2

4

8

1 5 9 13 17 21 25 29 33

La
te
nc
y	(
us
ec
)

Thread	ID

MTX-KSC
CLH-USC

Socket 0 Socket 1
NUMA 0 NUMA 1

Fig. 11. Ping-pong latency between a thread pinned to core 0 and another
thread pinned to a different core indicated by the Thread ID using (1) Pthreads
mutex and kernel-level synchronization counter (MTX-KSC) and (2) the CLH
lock and user-level synchronization counter (CLH-USC).

synchronization overhead.
To support other blocking operations without requests such

as MPI_Win_flush, we can tie the waiting thread to associated
pending objects, for example, MPI_Window, in a similar way.
We leave for future work the task of extending our selective
reactivation method to support these kinds of operations.

We implemented the selective reactivation method in the
baseline CLH and P-CLH. Figures 8 and 9 illustrate the perfor-
mance results of our implementations with the microbench-
marks and the execution time breakdowns, respectively. The
results show that compared with the baseline, our selective
reactivation method is effective in lowering the communication
latency in multithreaded communication cases (Figure 8(a))
and in improving the bandwidth significantly with a larger
number of threads (Figure 8(b)). Specifically, the latency and
bandwidth are improved by 3 times and 5 times with 36
threads, respectively. These improvements come mainly from
the reduction of the time spent in EMPTY CS, as shown in
Figures 9(a) and 9(b).

The selective reactivation method can also be applied to MTX

by using a kernel-level synchronization counter, which can be
implemented with a Pthreads condition variable and a counter.
However, since the kernel-level synchronization counter has
higher latency due to its kernel-specific implementation, it
should be used only when oversubscription is required. The

performance improvement when applying the selective reacti-
vation technique to MTX is shown in Figure 10. The selective
reactivation (denoted as MTX-KSC) performs significantly better
than the baseline in the latency and bandwidth benchmarks.
However, the absolute latency of MTX-KSC is still far worse than
that of CLH and P-CLH using selective reactivation (P-CLH-USC

and P-CLH-USC in Figure 8(a)) because of the higher latency
of both the kernel-level lock and synchronization counter
implementations. Figure 11 shows up to sixfold differences
in latency when using a kernel-level and a user-level lock and
synchronization counter.

B. Locality-Preserving Locking with Unbounded Bias
In the preceding subsection, we showed that our selective

reactivation technique can eliminate wasted executions and
ensure that any thread entering the CS has a high chance of
performing useful work. This method, however, does not im-
prove the performance of the message rate case (Figure 9(c)).
The reason is that message rates were bound by the injection
rate of nonblocking calls to the runtime that suffers from
intranode data movement, as was analyzed in Section III-D.
Based on that analysis, we propose a new locking strategy that
is designed to reduce cache misses.

First, we introduce a “locality-preserving locking with un-
bounded bias” method based on CLH, which we refer to
as CLHub (Figure 12). The lock is designed to provide the
necessary property for our purpose—the lock is biased toward
the high-priority thread that most recently released the lock. It
is implemented by combining a simple spin lock (i.e., a biased
lock) to exploit the lock monopolization with two CLH locks
to handle high and low priorities while taking advantage of
the FIFO lock (e.g., reducing thread contention on the lock
by queuing threads in the lock structure). In the figure, the
data structure for the lock includes the following fields (lines
1–6): bias – a spin lock that has a biased behavior; fifoH
and fifoL – CLH locks to block threads in the high-priority
and low-priority paths, respectively; and filter – a flag to
switch between two priorities.

The lock allows only high-priority threads (i.e., active
threads in our case), which call acquire(), to utilize the mo-
nopolization, while low-priority threads (i.e., waiting threads)

1 typedef struct clhub {
2 spin_lock_t bias; // biased lock
3 clh_t fifoH; // FIFO lock for high priority
4 clh_t fifoL; // FIFO lock for low priority
5 int filter; // to switch between different

priority paths
6 } *clhub_t;
7
8 void acquire(clhub_t l) {
9 if (try_acquire(l->bias) == fail) {

10 acquire(l->fifoH);
11 l->filter = 1;
12 acquire(l->bias);
13 l->filter = 0;
14 release(l->fifoH);
15 }
16 }
17
18 void acquire_low(clhub_t l) {
19 acquire(l->fifoL);
20 while (l->filter == 1) {
21 }; // busy wait.
22 acquire(l->bias);
23 release(l->fifoL);
24 }
25
26 void release(clhub_t l) {
27 release(l->bias);
28 }

Fig. 12. Pseudocode of the locality-preserving lock with unbounded bias,
which uses a combination of a spin lock and two CLH locks. For simplicity,
we use the same function names (acquire and release) for different lock
types, but please consider them as overloaded functions that can handle proper
lock types.

rely on the FIFO property of the lock without the monopo-
lization through acquire_low(). Since active threads always
advance the system, in addition to raising their priority over
waiting threads, we synchronize their concurrent accesses with
a locality-preserving high-throughput lock. The locality preser-
vation is achieved through a competitive ownership passing,
which results in core-level unbounded lock monopolization.
The monopolization achieves locality preservation of the lock
and critical section data but does not cause starvation for
waiting threads in practice since active threads are guaranteed
to complete their operations in a bounded number of steps.

Figure 13 illustrates an example usage of our locality-
preserving lock of Figure 12. In the figure, threads T0, T1,
and T2 perform acquire(), and T0 succeeds initially. In
acquire(), trying to acquire the biased lock (bias) first (line
9 in Figure 12) allows the same thread, here T0, to execute the
CS in a loop without interfering with other threads because
of the lock monopolization behavior. Both T1 and T2 fail
to acquire bias, and thus they attempt to acquire a FIFO
lock, fifoH (line 10). Only T1 will succeed and become
the candidate for entering the CS after T0; T2 is queued in
fifoH. The candidate T1 waits on the biased lock for its turn
(line 12) but is able to succeed only if T0 releases and does
not immediately reacquire the lock. When that happens, T1
becomes the owner of bias, and it elects T2 waiting on fifoH

as the candidate by releasing fifoH (line 14). On the other

T1

T3

fifoH

fifoL

bias

T2

T4

T1 T2

T3

fifoH

fifoL

bias

T4

T0 T1

T3

fifoH

fifoL

bias

T2

T4

T3

T4

fifoL

fifoH

T0 T1

T3

fifoH

fifoL

bias

T2

T4

(a) (b)

bias

(c)

(d) (e)

filter filter filter

filter

Fig. 13. Illustration of five threads (T0,..,T4) using the locality-preserving
lock: (a) T0 performs acquire() and succeeds, taking bias. Right after T0,
T1 and T2 perform acquire() while T3 and T4 perform acquire_low().
As a result, T1, T2, T3, and T4 spin at bias (i.e., T1 becomes candidate),
fifoH, filter, and fifoL, respectively. (b) T0 releases bias. (c) If T0 calls
acquire() immediately again, it has a higher chance of taking bias than
does T1 because of locality. (d) If T0 finishes and moves on, T1 can succeed,
acquiring bias. (e) Only when there is no high-priority thread is filter
released and low-priority threads can acquire bias.

hand, when acquire_low() is used (as for T3 and T4), the
FIFO behavior is maintained as threads will be queued up in
fifoL (line 19). filter serves as a mechanism to switch
between low-priority and high-priority paths when low and
high priorities are mixed. The low-priority thread runs only
when there is not a concurrently running high-priority thread.

Now, we combine our locality-preserving lock with a
NUMA-aware lock using the “lock cohorting” technique [3].
The technique uses a hierarchical locking strategy (i.e., two
levels of lock, one at each NUMA node and the other at
global scope) in order to allow prioritizing ownership passing
to threads in the same NUMA node and to make it NUMA-
aware with minimal cost. Since fairness is not needed at the
high-priority branch, we replace fifoH in Figure 12 with this
NUMA-aware lock to further improve cache locality. Note that
this hierarchical locality-preserving lock results in NUMA-
node level unbounded lock monopolization. We implemented
this lock using a spin lock for the global scope and a CLH lock
for the NUMA node, which is similar to C-BO-MCS described
in [3] except that we replace MCS with our existing CLH
lock implementation and we do not employ back-off for the
spinlock.

Figure 14 presents our optimization results for the message
rate. We note that our hierarchical locality-preserving lock
method does not affect the latency and bandwidth because the
latency benchmark is using blocking calls and the bandwidth
is limited by memory rather than cache. Although some
performance loss still occurs, we are able to obtain a message
rate of 2 million messages per second with 36 threads. This
improvement is due to the significant reduction in the number
of cache misses across all caches, as shown in Figure 14(c),
compared with that shown in Figure 5. We believe that our
performance number is the best message rate recorded for
this benchmark with this large number of kernel threads. We

262144

524288

1048576

2097152

4194304

1 8 14 22 28 36

M
es
sa
ge
	ra
te
	(m

sg
	/
s)

#	Threads

P-CLH-USC
P-HCLHub-USC

(a) Message rate for 64-byte message.

0

0.5

1

1.5

2

2.5

1 9 18 27 36 1 9 18 27 36

P-CLH-USC P-HCLHub-USC

Ti
m
in
g	
br
ea
kd

ow
n	
(u
se
c)

TitleISSUE POLL EMPTY	CS SYNC

(b) Execution time breakdown.

0

20

40

60

80

100

1 9 18 27 36 1 9 18 27 36 1 9 18 27 36

L1 L2 L3

#	
Ca
ch
e	
m
iss

es

ISSUE

POLL

(c) Breakdown of cache misses occurred in MPI_Isend
or MPI_Irecv (ISSUE) and in MPI_Wait (POLL).

Fig. 14. Results of using the selective reactivation technique in combination with the P-CLH lock (denoted as P-CLH-USC) and our hierarchical locality-
preserving lock (denoted as P-HCLHub-USC). The timing overhead is about 8% on average (harmonic mean) of the total execution time in the timing breakdown
analysis.

achieve a fivefold performance improvement compared with
the performance of the baseline case.

V. EVALUATION

All the experiments in this section were performed on the
Stampede cluster [14] each node of which is equipped with
dual 8-core Intel Xeon E5-2680 processors (16 cores in total)
and 32 GB of memory. Although the number of cores is
less than that of the previous cluster used for running the
benchmarks (which is less ideal for our cases), Stampede
allows us to experiment with more machine nodes while
using the same network interface (an FDR Mellanox device).
We compiled our programs with the Intel compiler version
15.0.2 using -O3. The MPI implementations were built with
the default configuration (-O2), and the MXM layer for
the MPI implementation was the same as that described in
Section III-A. All our tests were done with each thread bound
to a CPU core using two OpenMP environment variables:
OMP_PROC_BIND=close and OMP_PLACES=cores.

We first re-evaluated our communication benchmarks
on Stampede. Then, to further analyze the behavior of
our methods in practice, we ported two miniapps to use
MPI_THREAD_MULTIPLE and for multiple threads to perform
communications. In each experiment, we compared two MPI
implementations: one using a priority-based FIFO lock (P-CLH)
and the other with our two techniques presented in Section IV
(P-HCLHub-USC).

A. Communication Benchmarks

Figure 15 shows performance results of the communication
benchmarks that we used in the preceding sections. The results
on Stampede are also consistent with our previous results
obtained on Haswell clusters. Our method outperforms the
baseline for all tested cases. The improvement of our method
ranges from 1.4× to 3.5× depending on the message size.

B. Graph500

Graph500 [15] is a communication kernel that generates
a large-scale graph, assigns to each MPI process a fixed set
of vertices, and cooperatively traverses the graph in a breadth-
first manner until all vertices are visited. The kernel represents

irregular access patterns and fine-grained communication. It
is frequently used to evaluate the communication layer of
programming models and runtime systems.

Our reference implementation is obtained from the hybrid
approach implementation described in [16]. We modified this
implementation by converting nonblocking calls to blocking
calls and dedicating a subset of threads (half in this ex-
periment) to perform message receiving. We designate half
the threads, whose ID is an odd number, as senders and
the other half, whose ID is an even number, as receivers
so that the data locality is improved. With this version, we
more effectively evaluate our improvement with the selective
reactivation technique since blocking calls are used. We also
find that this implementation achieves better performance than
that reported before in the literature because of the poor
performance of MPI blocking calls inside threads.

Performance results of the Graph500 miniapp for both the
reference implementation and our modification are illustrated
in Figure 16. As the results indicate, MPI runtime enhanced
with our techniques (P-HCLHub-USC) consistently outperforms
the baseline (P-CLH). We achieve 13% improvement using
the reference implementation and 2× improvement (harmonic
mean) using our modification in terms of TEPS. Since this
miniapp is communication-bound and all threads heavily
participate in communication, how to manage thread syn-
chronization and arbitration is a major factor for achieving
better performance. In this regard, P-HCLHub-USC significantly
improves the communication latency in the multithreaded
communication case compared with the baseline.

C. HPCCG

HPCCG is a miniapp from the Mantevo benchmark suite
[17]. The miniapp represents a close approximation to a finite-
volume application. The communication pattern is irregular,
mainly due to several sparse matrix-vector multiplication steps
generated by the application. The problem size is determined
by the size of the matrix, in this case generated by the number
of rows per process. The communication is performed prior
to the local computation by using mainly point-to-point MPI
calls.

1
4
16
64

256
1024

LA
TE
NC

Y	
(U
SE
C)

MESSAGE	SIZE	(BYTE)

(a) Latency (the lower, the better)

1

4

32

256

2048

BA
ND

W
ID
TH

		(M
B/
S)

MESSAGE	SIZE	(BYTE)

P-CLH
P-HCLHub-USC

(b) Bandwidth (the higher, the better)

64

512

4096

32768

262144

2097152

M
ES
SA

GE
	R
AT
E	
(M

SG
/S
)

MESSAGE	SIZE	(BYTE)

(c) Message Rate (the higher, the better)

Fig. 15. Performance results on Stampede in terms of latency, bandwidth, and message rate for 16 threads with variable message sizes.

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

32 64 128 256 512 1024 2048 4096

TE
PS

#	CORE

P-CLH
P-HCLHub-USC

(a) Results of Graph500 using non-blocking calls

0.00E+00
1.00E+09
2.00E+09
3.00E+09
4.00E+09
5.00E+09
6.00E+09

32 64 128 256 512 1024 2048 4096

TE
PS

#	CORE

P-CLH
P-HCLHub-USC

(b) Results of Graph500 using blocking calls

Fig. 16. Graph500 results (harmonic mean over 16 runs) using a weak-scaling
experiment with problem size scale 24 per node (i.e., 32 at 256 nodes) and 16
threads per node, in terms of traversed edges per second (TEPS – the higher,
the better).

The benchmark suite also provides three implementations:
MPI-only, MPI+OpenMP, and OpenMP. The MPI+OpenMP
implementation, however, is a MPI_THREAD_SINGLE appli-
cation where OpenMP is used only for parallel loops. Our
strategy for the hybrid implementation is to further subdivide
the matrix into smaller domains and assign those smaller
domains to each thread. Thus, each thread has to perform both
communication and computation. Communication between
threads in a node is done via shared memory for collectives
and shared states with appropriate synchronization.

The performance results of HPCCG are shown in Figure 17.
The MPI runtime incorporated with our methods (P-HCLHub-

USC) was able to outperform the baseline (P-CLH) by 3–5%
reduction in the execution time due to 20–25% improvement

0.00

0.20

0.40

0.60

0.80

1.00

32 64 128 256 512 1024 2048TI
M
E	
PE
R	
10
00
	IT

ER
AT
IO
NS

	(S
)

#	CORE

P-CLH

P-HCLHub-USC

Fig. 17. Performance results of HPCCG using weak scaling with 128K matrix
rows per node and 16 threads per node (the lower, the better).

in point-to-point communication. The overall performance
improvement is small, however, and statistically significant
only up to 64 nodes because of the dominance of the compu-
tation and allreduce operation, which is not improved by our
techniques (becomes >95% of the overall execution time at
128 nodes). From this experiment we confirm that when the
application is computation-bound, our techniques do not hurt
its performance; indeed, even in this case our methods can
improve the performance, as long as the application contains
situations where threads contend for the communication.

VI. RELATED WORK

Some early work on supporting the interoperability between
threads and MPI, such as MiMPI [18] and MPICH-MT [19],
focused only on thread safety issues, since multicore machines
did not exist at that time. Another approach is to implement
MPI processes as threads [20], [21], [22], [23], [24]. While
this approach can bring performance benefits for on-node
communication by exploiting efficient data sharing between
threads, it requires completely new implementations of both
the MPI runtime and shared-memory programming model
runtime. It also needs compiler support to privatize global
variables for each thread because MPI processes, which are
implemented as threads, have to own separate memory space
for global variables.

The issue of granularity and arbitration in supporting thread
safety has been studied before. For example, Dózsa et al. [2]

and Balaji et al. [1] studied the replacement of the MPI coarse-
grained lock with fine-grained locks and implemented parallel
receive queues using these locks. The implementation proved
to be complex and error-prone, however, and thus was not
completed. On the other hand, thread arbitration was studied
in detail first in [6], [7] and showed significant improvements.
In this paper, we have generalized the previous techniques and
improved upon the implementation.

Communication-aware techniques have been proposed in
other related contexts. AMPI [20] can selectively schedule
only threads whose MPI requests have completed, since it is
built on Charm++ [25]. Charm++ provides a message-driven
execution model, in which the arrival of messages triggers the
execution of appropriate chares, the Charm++ word for a task.
A similar technique was studied in [26], where a CPU core
was used for progress and to partly control the continuation of
OS-level threads by converting blocking calls to nonblocking
calls. Further improvement can be made by a more tightly
coupled design between the thread scheduler and the network
interface [13]. In these works, however, executions require a
centralized entity to control the executions of other entities
and thus can result in wasting a CPU core for the dedicated
scheduler.

VII. CONCLUSION

In this work, we tackled the problem of thread arbitration
and synchronization in the context of MPI, and we proposed
thread synchronization techniques to improve the communica-
tion performance in multithreaded communication scenarios
using MPI_THREAD_MULTIPLE. Our techniques reduce the
wasted time in the critical section while preserving data
locality. Our method adopts a synchronization counter-based
selective wakeup mechanism to reactivate waiting threads. It
relies on electing and assigning at most one waiting thread
to drive a communication context for improved data locality.
Furthermore, active threads are prioritized and synchronized
by using a locality-preserving lock that is hierarchical and
exploits unbounded bias for high throughput. Our method does
not count on an additional dedicated communication server
but is incorporated into the implementation in a decentralized
manner, which produces a scalable runtime systems. We
implemented our techniques in a production MPI implementa-
tion, MPICH. Experimental results on multicore clusters show
significant improvement in synthetic microbenchmarks and
two MPI+OpenMP applications.

We plan to explore more communication kernels and appli-
cations with our runtime. When more and more clusters with
a larger number of cores are deployed, we expect even greater
performance improvements on those systems using our thread
synchronization techniques.

ACKNOWLEDGMENT

We thank Marc Snir for a prior discussion that led to
this project and paper. This material was based upon work
supported by the U.S. Department of Energy, Office of Sci-
ence, under Contract DE-AC02-06CH11357. We gratefully

acknowledge the computing resources provided and operated
by the Joint Laboratory for System Evaluation (JLSE) at
Argonne National Laboratory. The work also used the Extreme
Science and Engineering Discovery Environment (XSEDE),
which is supported by National Science Foundation grant
number ACI-1053575.

REFERENCES

[1] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur, “Toward
efficient support for multithreaded MPI communication,” in EuroMPI
’08, pp. 120–129.

[2] G. Dózsa, S. Kumar, P. Balaji, D. Buntinas, D. Goodell, W. Gropp,
J. Ratterman, and R. Thakur, “Enabling concurrent multithreaded MPI
communication on multicore petascale systems,” in EuroMPI ’10, pp.
11–20.

[3] D. Dice, V. J. Marathe, and N. Shavit, “Lock cohorting: A general
technique for designing NUMA locks,” in PPoPP ’12, pp. 247–256.

[4] M. Chabbi and J. Mellor-Crummey, “Contention-conscious, locality-
preserving locks,” in PPoPP ’16, pp. 22:1–22:14.

[5] D. Dice, “Malthusian locks,” CoRR, vol. abs/1511.06035, 2015.
[6] A. Amer, H. Lu, Y. Wei, P. Balaji, and S. Matsuoka, “MPI+threads:

Runtime contention and remedies,” in PPoPP ’15, pp. 239–248.
[7] A. Amer, H. Lu, Y. Wei, J. Hammond, S. Matsuoka, and P. Balaji,

“Locking aspects in multithreaded MPI implementations,” Argonne
National Lab., Tech. Rep. P6005-0516, 2016.

[8] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable
synchronization on shared-memory multiprocessors,” ACM Transactions
on Computer Systems (TOCS), vol. 9, no. 1, pp. 21–65, 1991.

[9] T. Craig, “Building FIFO and priority-queuing spin locks from atomic
swap,” University of Washington, Tech. Rep. TR 93-02-02, 1993.

[10] “MPICH: A high-performance and widely portable implementation of
the MPI standard,” http://www.mpich.org/.

[11] P. Dhabaleswar, “OSU Micro-Benchmarks 5.3,” http://mvapich.cse.
ohio-state.edu/benchmarks/.

[12] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “HPCToolkit: Tools for performance anal-
ysis of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685–701, 2010.

[13] H. Dang, M. Snir, and W. Gropp, “Towards millions of communicating
threads,” in EuroMPI ’16.

[14] “TACC Stampede Cluster,” http://www.xsede.org/resources/overview.
[15] “Graph 500,” http://www.graph500.org/.
[16] A. Amer, H. Lu, P. Balaji, and S. Matsuoka, “Characterizing MPI and

hybrid MPI+Threads applications at scale: case study with BFS,” in
CCGrid ’15, 2015, pp. 1075–1083.

[17] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving performance via mini-applications,” Sandia
National Laboratories, Tech. Rep. SAND2009-5574, 2009.

[18] F. Garcia, A. Calderón, and J. Carretero, “MiMPI: A multithred-safe
implementation of MPI,” in EuroMPI ’99, pp. 207–214.

[19] A. Skjellum, B. Protopopov, and S. Hebert, “A thread taxonomy for
MPI,” in MPIDC ’96.

[20] C. Huang, O. Lawlor, and L. V. Kalé, “Adaptive MPI,” in LCPC ’03,
pp. 306–322.

[21] H. Tang, K. Shen, and T. Yang, “Compile/run-time support for threaded
MPI execution on multiprogrammed shared memory machines,” in
PPoPP ’99.

[22] E. D. Demaine, “A threads-only MPI implementation for the develop-
ment of parallel programs,” in HPCS ’97, pp. 156–163.

[23] E. R. Rodrigues, P. O. A. Navaux, J. Panetta, and C. L. Mendes, “A
new technique for data privatization in user-level threads and its use in
parallel applications,” in SAC ’10.

[24] M. Pérache, H. Jourdren, and R. Namyst, “MPC: A unified parallel
runtime for clusters of NUMA machines,” in Euro-Par ’08, pp. 78–88.

[25] L. V. Kale and S. Krishnan, “Charm++: A portable concurrent object
oriented system based on C++,” in OOPSLA ’93, pp. 91–108.

[26] K. Vaidyanathan, D. D. Kalamkar, K. Pamnany, J. R. Hammond, P. Bal-
aji, D. Das, J. Park, and B. Joó, “Improving concurrency and asynchrony

in multithreaded MPI applications using software offloading,” in SC ’15.

http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://www.xsede.org/resources/overview
http://www.graph500.org/

