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Abstract—In this paper, we analyze and optimize the most
time-consuming steps of the SWAP-Assembler, a parallel genome
assembler, so that it can scale to a large number of cores
for huge genomes with sequencing data ranging from terabyes
to petabytes. Performance analysis results show that the most
time-consuming steps are input parallelization, k-mer graph
construction, and graph simplification (edge merging). For the
input parallelization, the input data is divided into virtual
fragments with nearly equal size, and the start position and end
position of each fragment are automatically separated at the
beginning of the reads. In k-mer graph construction, in order to
improve the communication efficiency, the message size is kept
constant between any two processes by proportionally increasing
the number of nucleotides to the number of processes in the input
parallelization step for each round. The memory usage is also
decreased because only a small part of the input data is processed
in each round. With graph simplification, the communication
protocol reduces the number of communication loops from four
to two loops and decreases the idle communication time.

The optimized assembler is denoted SWAP-Assembler 2
(SWAP2). In our experiments using a 1000 Genomes project
dataset of 4 terabytes (the largest dataset ever used for as-
sembling) on the supercomputer Mira, the results show that
SWAP2 scales to 131,072 cores with an efficiency of 40%. We
also compared our work with both the HipMer assembler and
the SWAP-Assembler. On the Yanhuang dataset of 300 gigabytes,
SWAP2 shows a 45 times faster than the SWAP-Assembler. The
SWAP2 software is available at https://sourceforge.net/projects/
swapassembler.

I. INTRODUCTION

Whole Genome sequencing has two main steps. The first
step is to obtain the sequence of short reads. It needs amplify-
ing the DNA molecule (multiples of amplification is referred to
as coverage) first, and then these DNA molecules are randomly
broken into many small fragments (each fragment is referred
as a read), the short read is then determined by sequencing
devices, which is illustrated in Figure 1. The second step is
to reconstruct genome sequence from these short reads, which
is usually referred as genome assembly. Genome assembly
problem is proved to be is NP-hard, reduced from the Shortest
Common Superstring(SCS) problem.

There are two types of sequence assembly algorithms. one
is called overlap graph model. On an overlap graph, each
vertex corresponds to a read. There is a directed edge between

two reads if overlap exists between them and the overlapping
length exceeds a certain threshold. Therefore, sequence assem-
bly problem is converted into finding a Hamilton path through
each node in the overlap graph, which is NP-hard. Another
model is based on De Bruijn graph. In a De Bruijn graph,
each read is cut into small fragments of length k, called k-
mer. Each k-mer contributes a node in the graph. If there are
k − 1 characters overlapping between two adjacent k-mers,
then a directed edge exists between the two corresponding
nodes. In this way, each read can produce a corresponding
path in the graph. So the sequence assembly problem has
been transformed into finding the shortest tour of the De
Bruijn graph that include all the read path. The problem is
extremely difficult because repeat fragments of various lengths
exist in the original sequence. Also, sequencing machines will
introduce errors into these reads, where the error rate is about
1% 3% in modern sequencing machines. These two issues
make the sequence assembly more complicated.

Scientists increasingly want to assemble and analyze very
large genomes [1], metagenomes [2], [3], and large numbers
of individual genomes for personalized healthcare [4], [5], [6],
[7]. In order to meet the demand for processing these huge
datasets [8], parallel genome assembly seems promising, but
in fact the genome assembly problem is very hard to scale for
the following reasons [9], [10].

First, most state-of-art parallel assembly solutions utilize the
de Bruijn graph (DBG) strategy [11]. This strategy is a variant
of the traveling salesman problem or equivalent to the Euler
path problem, a well-known NP-hard problem [12]. Second,
the number of nodes in the graph representing the genome
data is enormous. One base pair in the sequencing data can
generate a k-mer (node) in the de Bruijn graph. For example,
a 1000 Genomes dataset [13], [14] with 200 terabytes of data
can generate about 247 k-mers (or nodes), 128 times larger
than the problem size of the top result in the Graph 500 list
(as of March 2016) [15]. Third, sequencing machines are not
accurate: about 50% to 80% of k-mers are erroneous [16], [17].
Thus, the nodes and edges in the graph may not be considered
trustworthy, depending on what error the user is willing to
tolerate. Fourth, k-mers located in the low-coverage gaps are



hard to distinguish from erroneous k-mers, making it difficult
to recover DNA in the gap. Fifth, species-related features, such
as repeats, GC distribution, and polyploids, make the genome
assembly itself more complex and even harder to parallelize.

Previously we developed the SWAP-Assembler [10], which
can assemble the Yanhuang genome [18] in 26 minutes using
2,048 cores on TianHe 1A [19]. The work in this paper
improves the SWAP-Assembler, with the goal of producing
a much faster assembly tool that can scale to hundreds
of thousands of cores and can assemble enormous genome
datasets. To achieve this goal, we analyze and optimize the
SWAP-Assembler’s most time-consuming steps—input paral-
lelization, k-mer graph construction, and graph simplification
(edge merging). Our objective is to keep the percentage of time
usage in each step constant as the number of cores increases.

In the input parallelization step, a fragment adjustment
algorithm (FAA) and an adjustable I/O data block size are used
to explore the largest I/O efficiency and at the same time keep
a balance between the memory usage and I/O efficiency. In k-
mer graph construction, two methods are used to prevent com-
munication efficiency from degrading with increasing numbers
of cores. One method keeps the message size independent of
the varying number of cores in order to prevent communication
with tiny messages. The other method is a data pool designed
to separate the I/O process in the input parallelization and
communication process in the k-mer graph construction step.
With graph simplification, the communication protocol of the
lock-compute-unlock mechanism in the SWAP-Assembler is
optimized by minimizing the number of communication loops
from four loops to two loops, which helps to keep the idle
time constant with increasing numbers of cores.

The optimized assembler is called SWAP-Assembler 2
(SWAP2) in this work. In our experiments, we use a 1000
Genomes dataset of 4 terabytes [13], [14]—the largest ever
used for assembly. Before our work, the record for the largest
assembly had been held by Kiki [20], which has assembled
nearly 2.3 terabytes. Results on the supercomputer Mira show
that SWAP2 scales to 131,072 cores (the highest scalability
ever reached) with an efficiency of 40%. The total execution
time is about 2 minutes (including 51 seconds I/O time).

The rest of the paper is organized as follows. Section II
briefly introduces the problem of genome assembly. Sec-
tion V discusses previous works on parallel genome assembly.
Section III presents the optimization methods for each time
consuming step. The evaluation results for SWAP2 are given
in Section IV. Section VI summarizes the conclusion.

II. BACKGROUND: GENOME ASSEMBLY

Given one biological genome sample with a reference se-
quence w ∈ Ng , where N = {A, T,C,G} and g = |w|, a large
number of short sequences called reads, S = {s1, s2, ..., sh},
are sequenced by the sequencing machines. We use si to
denote a substring of w with some editorial errors introduced
by the sequencing machines; here 1 ≤ i ≤ h. The genome
assembly problem is to recover the reference sequence w with
S.

Fig. 1: Workflow of genome assembly using the de Bruijn
graph strategy.

In genome assembly, graphs are used to represent the
genomic data. A directed graph G = (V,E) consists of a set
of vertices (k-mers) V and a set of arcs (directed relationships)
E = (V ×V ). The k-mers are generated by cutting the reads S
with a sliding window of length k. The arcs are used to connect
any two k-mers cut by two continuous sliding windows on
some read si ∈ S.

Genome assembly with the de Bruijn graph strategy involves
reconstructing the reference genome sequence from these
reads using the directed graph with the set of k-mers (Fig-
ure 1). As noted in the introduction, this strategy is a variant
of traveling salesman problem or equivalent to the Euler path
problem, which is an NP-hard problem [12]. Therefore, finding
the original reference sequence from all possible Euler paths
cannot be solved in polynomial time. Moreover, gaps and
branches caused by uneven coverage as well as erroneous
reads and repeats prevent the user from obtaining a full-length
genome. In real cases, a set of shorter genome sequences called
contigs are generated by merging unanimous paths instead.
Thus, our work focuses on finding a scalable solution for the
following genome assembly problem.

Problem of Genome Assembly

Input: A set of reads without errors S = {s1, s2, ..., sh}
Output: A set of contigs C = {c1, c2, ..., ct}
Requirement: Each contig corresponds to an unanimous path
in the de Bruijn graph constructed from the set of reads S

III. OPTIMIZATIONS

We first evaluate the SWAP-Assembler to identify its perfor-
mance bottlenecks. We examine every time-consuming step,
find the bottlenecks, and discuss the reasons for these per-
formance degradations. Optimization methods and strategies
are then presented to resolve these problems. Experiments



Fig. 2: Time usage for a weak-scaling test of the SWAP-
Assembler on processing the data from the 1000 Genomes
project. Here each computing node has been allocated 4
processes, and each process has been allocated 256 megabytes
of input data. The supercomputer Mira at Argonne National
Laboratory was used in this test.

are presented later in order to confirm the efficiency of these
strategies.

Based on multistep bidirected graph and the SWAP compu-
tational framework [10], the major time usage of the SWAP-
Assembler can be divided into five steps: input parallelization,
k-mer graph construction, k-mer filtering, MSG graph con-
struction, and graph simplification (edge merging). Figure 2
shows the time (in seconds) consumed by each step of the
SWAP-Assembler when assembling a test genomic dataset
from the 1000 Genomes project [13], [14]. This project
has more than 200 terabytes of sequencing data from 1,000
people from all over the world. The results show that the
most time-consuming steps are input parallelization, k-mer
graph construction, and graph simplification. In particular, the
most time-consuming step—input parallelization—uses more
than half the total time. The time usage of the k-mer graph
construction step increases steadily with an increasing number
of cores, thus seriously impacting the scalability of SWAP.
The time usage of the graph simplification step decreases
slightly with the number of cores. To further improve both
the efficiency and scalability of the SWAP-Assembler, we
optimize the three steps by keeping the percentage of time
usage in each step constant with an increasing number of cores
and input data size (or weak-scaling test).

A. Input Parallelization

Loading the terabytes to petabytes of genomic data into
memory with multiple processes faces significant challenges
[9], [21]. The SWAP-Assembler [10] adapted a strategy similar
to that of Ray [22] and YAGA [23], [24], [25]. Given input
reads with n nucleotides from a genome of size g, we divide
the input file equally into p virtual data blocks, where p is the
number of processes. Each process reads the data located in
its virtual data block only once. The computational complexity
of this step is bounded by O(n/p). However, two restrictions

Algorithm 1: Fragment Adjustment Algorithm.
Input: Dataset S in FASTA or FASTQ format, the rank of local

process procID and the total number of processes p.
Output: Virtual fragments S1, S2, . . . , Sp.
begin

size = the file size of dataset S;
step = size/p;
start = procID ∗ step;
end = (procID + 1) ∗ step;
end = end < size ? end : size;
readBuf = Read one data block∗ starting from start;
i = 0;
while readBuf [i] 6= ‘>’ do

i++;

sendAdjustDelta = i;
if procID 6= 0 then

Send sendAdjustDelta to process procID − 1;

if procID 6= p− 1 then
receive recvAdjustDelta from process procID + 1;

start += sendAdjustDelta;
end += recvAdjustDelta;
SprocID = (start, end);

* Here the data block size will be larger than the length of
reads to ensure that every data block contains at least one start
symbol of the read ‘>’.

affect the performance of this step. One is that there is no
format-sensitive partition strategy for the biology data; the
other is that no adjustable parameters are available to boost
the I/O performance close to the system limit.

Previous data partition methods can possibly divide the data
fragment in the middle of some DNA reads in FASTA or
FASTQ format in the SWAP-Assembler [9], [22], [23]. In
order to resolve this problem, a location function is used to
check the start symbol one by one after reading each byte
from the beginning point of each fragment [10]. However, this
method has an additional I/O overhead on reading the data.

To overcome this drawback, we propose a fragment adjust-
ment algorithm (FAA) in Algorithm 1 to replace the current
location function. Every process reads one data block and
adjusts the start and end position of its own data fragment
in the beginning. Each process with rank procID updates the
starting point of its fragment to the position of the beginning
points of any reads and sends this value to the process
procID− 1. Then process procID− 1 updates the end point
of its fragment to this value. After this operation, each DNA
read is automatically allocated to only one process in FASTA
or FASTQ format without spanning multiple fragments. The
FAA algorithm keeps its I/O overhead and the communication
overhead constant. Moreover, the size of the data block used
in our algorithm is an additional parameter for tuning the I/O
performance; specifically, by adjusting the data block size, the
I/O efficiency can be maximized to approach the system limit.

To evaluate the I/O performance improvement with the FAA
algorithm and data block size tuning, we created a weak-
scaling dataset from the 1000 Genomes project [13], [14]. The
input data increases proportionally from 256 GB to 4,096 GB



Fig. 3: Time usage statistics of input parallelization using FAA
with varying data block sizes and numbers of cores.

Fig. 4: I/O efficiency of FAA with varying data block sizes
and numbers of cores. The blue bar is the I/O efficiency of
the SWAP-Assembler.

as the number of cores increases from 1,024 to 16,384 cores;
the problem size for each process is kept constant at 256 MB.
The time usage results are shown in Figure 3. As one can see,
compared with the SWAP-Assembler, FAA generally saves
more than 60% of the time usage on the input parallelization.
By increasing the data block size from 4 MB to 64 MB, the
time usage is further decreased with increasing data block size.
The results also confirm that the larger block size in Mira
can benefit the performance with fewer I/O operations and
better streaming effect, but the larger block size also causes
several times larger memory usage in the postprocessing steps.
Therefore, to balance between memory usage and efficiency,
we will fix the block size to be 64 MB in the following test.
With 16,384 cores, SWAP2 achieves 16X speedup with the
optimization of the input parallelization.

The I/O efficiency of the input parallelization is presented in
Figure 4. Each I/O drawer in Mira has an I/O bandwidth of 32
GB/s [26], [27], [28], [29]; the I/O efficiency of one rack can
be estimated by dividing the real I/O bandwidth with 32 GB/s.
Figure 4 shows that with 16,384 cores, the I/O efficiency of
SWAP2 achieves about 16.5% of the system efficiency.

Fig. 5: Time usage statistics for the three phases of the k-mer
graph construction step.

B. K-Mer Graph Construction

The second step in the SWAP-Assembler constructs a graph
with vertices that are k-mers or k-molecules (containing two
complementary k-mers) [10]. This step has three phases: k-
molecule generation, k-molecule distribution, and k-molecule
storage. In the first phase, input sequences are broken into
overlapping k-molecules by sliding a window of length k
along the input sequence. In the k-molecule distribution phase,
each nucleotide can generate one k-molecule. Because the
input involves terabytes of data, the number of generated k-
molecules is huge for distribution and communication. In the
third phase, each process allocates a container to store these
k-molecules according to a given hash function.

Figure 5 shows the time usage of these three phases in
processing the data from the 1000 Genomes project with
SWAP-Assembler. The results show that the bottleneck is the
k-molecule distribution; the percentage of time usage used in
distribution increases from 53% to 97% when the number of
cores increases from 1,024 to 16,384. The dominant workload
in the distribution phase is communication, during which each
process needs to send the k-molecules to the remote process
according to a given hash function and receives all the k-
molecules belonging to it. In SWAP-Assembler, the total data
volume of messages communicated between all processes
is fixed; but when the number of processes doubles, the
message size between each pair of processes is reduced by
half. Communication with tiny messages thus will induce low
efficiency and directly affect the performance of this step [30],
[31].

To improve the communication efficiency and prevent com-
munication with tiny messages, we include three optimization
strategies in this step.

Data compressing In the k-molecule generation, we have
compressed two arcs sharing the same k-molecule into one,
thus reducing the communication data volume and memory
usage by half.

Initial message size tuning To prevent communication with



tiny messages, we have to keep the message size independent
of the increasing number of cores. In each communication
round, the number of nucleotides (in DNA reads) processed
in every process is fixed to be L. The data thus can generate
at most L k-molecules distributed across p processors. The
number of nucleotides L is designed to increase proportionally
with the number of processers; in this case, the number
of generated k-molecules or message size between any two
processers is a constant of L× Bk/p0, where Bk is the data
structure size of k-molecules and p0 is the number of cores
used for the performance baseline. In our case, p0 = 1024.

With this method the message size between any two pro-
cessers is constant at runtime. However, the initial message
size can be adjusted with the number of nucleotides L,
enabling higher communication efficiency. Arbitrarily vary-
ing the number of nucleotides and the I/O data block size,
however, can induce interference between these two steps.
For example, if the I/O block size is set to 1 MB and the
number of nucleotides L is set to 1K, when the number
of processes increases beyond 1,024, the total number of k-
molecules needed for communication will be more than 1
million. In this case, the data is not enough, and the message
size will decrease.

I/O and communication isolation To fix the cited problem,
we used a data pool, shown in Figure 6, to separate the I/O
process in the input parallelization step and the communication
process in the k-mer graph construction step. The data pool is
a shared-memory space for the two steps. The communication
phase can continuously read data from this data pool, and
the data pool will be large enough to keep the message size
constant. Here the data pool acts as a blocking queue, the I/O
process in the input parallelization step acts as a producer, and
the communication process acts as a consumer. With this data
pool, the communication part and the I/O part are isolated,
and the input data (reads) can be automatically refilled from
disk to the data buffer by calling the I/O functions. The
communication process automatically reads these reads from
this pool. The advantage is that we can select the best message
size and I/O data block size to achieve peak performance in
both steps.

We designed a weak-scaling experiment to find the best
value for the initial number of nucleotides L processed in one
round. Here we increased L from 512 bytes to 16,384 bytes. To
collect the time usage on data communication, we inserted tags
before and after the MPI communication routines delivering
the data. The results are plotted in Figure 7. As the figure
shows, for a fixed number of nucleotides L the running time
increases with the increasing number of cores. For a run using
more CPU cores (in this case 16,384 cores), the efficiency is
decreased. Increasing the initial number of nucleotides L can
save running time, but this trend is weakened by the increasing
number of cores. The best value, 8,192 bytes, is used as the
initial number of nucleotides L in the following experiments.

The time usage for these three phases before and after
optimization is presented in Figure 8. For the first phase,
compared with the original version, the running time on cutting

Fig. 6: Data pool designed to separate the I/O process in
the input parallelization step and communication in the k-mer
graph construction step.

Fig. 7: Time usage of the communication routines for k-mer
graph construction step on processing data from the 1000
Genomes project.

reads decreases steadily with the increasing number of cores,
and a 5.2X speedup is achieved. The time usage in distribution
is almost fixed when the data size increases with the number
of cores. With 16,384 cores, the speedup is about 64X that of
its previous version. In the last phase, the time usage in these
two subfigures share the same trends.

We also evaluated the communication efficiency of the
optimized SWAP. The peak all-to-all bandwidth of a 5D-torus
network is limited by the length of its longest dimension
[30], [31]. Because the longest dimension Dim in Mira with
4,096 nodes is 16, the peak user data communication per node
for all-to-all bandwidth is 8/Dim ∗ 1.8 GB/s, which is 0.9
GB/s [30], [31]. The time usage for data communication and
the communication efficiency was calculated and is plotted in
Figure 9. The results show that the communication bandwidth
has improved slightly by increasing the number of nucleotides
L processed in each round. With the increasing number of
cores from 1,024 (1/4 rack) to 16,384 (4 rack), however,
the communication efficiency decreases from 50% to 15%,
which follows the general trend of decreasing efficiency with
increasing number of cores.



Fig. 8: Time usage statistics for the three phases of the k-mer
graph construction step before and after optimization.

Fig. 9: Communication efficiency of the k-mer graph con-
struction step on processing the 1000 Genomes project dataset.
Here the theoretical peak communication performance of Mira
is 0.9 GB per node per second.

C. Graph Simplification

In the graph simplification step, the SWAP computational
framework with two user-defined functions is used to merge
edges into contigs. Algorithm 2 describes the lock-computing-
unlock schedule in the SWAP computational framework [10].

In Algorithm 2, the communication protocol is divided into
two routines: one in the SWAP thread and the other in the
service thread. In the SWAP thread, a vertex needs to send
a lock message to its neighbors. This vertex can move to the
notify stage only after it collects all lock replies. In the notify
stage, this vertex sends computing commands and associated
data to its neighbors if all these lock replies have success tags;
otherwise, the protocol will send unlock messages to release
the lock for all its neighbors automatically. In the service
thread, a while loop is used to detect the completion of the
communication and revoke the computing work or restart the
routine in SWAP thread.

Figure 10 illustrates how the communication protocol in
Algorithm 2 works. Node 0 sends a lock message to node 1
and waits for its reply. After that, another lock message is
sent to node 2 for its reply. Here two communication loops
are used for node 1 to communicate with node 2 and node 3.
After receiving the two reply messages with lock success tags,
node 1 sends the notify message together with the related data

Algorithm 2: Communication protocol for lock-
computing-unlock schedule in SWAP. Here the protocol
is divided into two routines: one in the SWAP thread and
the other in the service thread [10].

begin
Routine in SWAP thread;
Lock Stage:
Post MPI Isend(compReq);
Post MPI Irecv(compReq + 1);
Reply Call RecvProc(2, compReq);
Notify Stage:
Post MPI Isend(compReq);
Post MPI Isend(compReq + 1);
Call RecvProc(2, compReq);

Routine in service thread;
while true do

Post MPI Testall(2, compReq, &flag);
if flag then

break;

Post MPI Test(&globalReq, &flag);
if flag == 0 then

continue;

Doing computation work here . . . ;
Post MPI Irecv(&globalReq);

Fig. 10: Two neighbors sharing the same loop in both the
lock and notify stages. Here node 1 has two neighbors, node2
and node 3. Node 1 is going to lock its two neighbors, and
then send out the command and the required data to its two
neighbors for computation and modification. In the end of
each round node 2 and node 3 will release the lock after the
completion of its computationand modification.

to node 2 and node 3 in two communication loops. Overall,
Algorithm 2 needs four loops to complete the schedule in
SWAP. The overall time usage of Algorithm 2 is affected by
two factors: the waiting time of a round-trip reply message
in one loop and the number of communication loops. In
Algorithm 2, the service routine is active only after receiving
the reply message. For large supercomputers such as Mira
[28], [29], more cores indicate longer latency, as confirmed by
the left graph of Figure 11, where the waiting time increases
steadily with the increasing number of cores.

To minimize the number of communication loops and
provide possibilities for sharing the idle time in Algorithm 2,



we introduced an optimized communication protocol in Algo-
rithm 3. In this algorithm, node 1 can send two lock messages
to node 2 and node 3 and receive the replies at the same time.
After collecting all the replies, node 1 can send the notify
message and data to node 2 and node 3 at the same time.
Only two loops therefore are needed for the communication
protocol of SWAP.

Algorithm 3: Optimized communication protocol for lock-
computing-unlock schedule. Here the calls to the compute
routine on two vertices have been integrated into one
routine.

begin
Routine in SWAP thread;
Lock Stage:
Post MPI Isend(compReq) ;
Post MPI Irecv(compReq+1) ;
Post MPI Isend(compReq+2) ;
Post MPI Irecv(compReq+3) ;
Call RecvProc(4,compReq) ;
Notify Stage:
Post MPI Isend(compReq);
Post MPI Irecv(compReq+1);
Post MPI Isend(compReq+2);
Post MPI Irecv(compReq+3);
Call RecvProc(4, compReq);

Routine in service thread;
while true do

Post MPI Testall(2, compReq, &flag);
if flag then

break;

Post MPI Test(&globalReq, &flag);
if flag == 0 then

continue;

Doing computation work here . . . ;
Post MPI Irecv(&globalReq);

We conducted an experiment to test the improvement of the
optimized protocol for SWAP. A weak-scaling data from the
1000 Genomes project is used in this experiment. The input
data increases proportionally from 512 GB to 4,096 GB with
the increasing number of cores in order to keep the problem
size for each process constant. The time usage results are
shown in Figure 11. The left panel in the figure shows that the
idle time in the communication protocol of SWAP increases
with the increasing number of cores and reaches 85% of the
total time at 32,768 cores. The right panel shows that with the
optimization on the communication protocol, the idle time is
kept constant at about 40% in all cases.

IV. PERFORMANCE EVALUATION

SWAP2 has integrated all the cited optimization methods
and is available online in SourceForge [32]. For performance
evaluation, Mira at Argonne National Laboratory [28] was
used as the test cluster; 32,768 computing nodes were allo-
cated for this experiment. Each compute node is equipped with
16 cores and 16 GB of memory; all nodes are connected with a

Fig. 11: Graphs showing constant idle time after the commu-
nication optimization.

Fig. 12: Time usage for each step of SWAP2 in processing the
data from the 1000 Genomes project. Here each computing
node has been allocated 4 processes.

high-speed 5D-torus network with the bidirectional bandwidth
of 10 GB/s. The I/O storage system of Mira uses the IBM
GPFS system; it supports parallel file I/O defined in MPI-3.

First, a weak-scaling comparison between SWAP-
Assembler (SWAP for short) and SWAP2 was made with
the data selected from the 1000 Genomes project. In this
experiment the data size was increased from 256 GB to 4
TB as the number of cores increased from 1,024 to 16,384.
Figure 2 and Figure 12 show that SWAP2 has the following
three performance improvements over SWAP.

Scalability: SWAP2 scales to 16,384 cores, whereas SWAP
scales only to 4,096. We can see that excluding the time

TABLE I: Time usage (seconds) of SWAP2 on weak-scaling
test with the data from the 1000 Genomes project.

Data Size 256 GB 512 GB 1 TB 2 TB 4 TB
No. Cores 1024 2048 4096 8192 16384
Input Parallelization 138.27 145.2 154.81 183.35 208.41
K-mer Graph Const 139.62 136.67 129.68 119.39 177.87
K-mer Filtering 20.88 14.46 15.78 12.6 13.41
MSG Graph Const 174.37 98.3 54.23 30.28 15.73
Graph Simplification 1443.87 843.64 438.9 231.33 123.88
Total Time Usage 1948.77 1256.13 803.57 582.59 543.58



used in graph simplification and distributed MSG graph con-
struction, the time usage for the other three steps by SWAP2
increases only slightly with the increasing number of cores.
The data in Table I also confirms that the percentage of time
usage on these three steps is almost constant. Because the
1000 Genomes project has a fixed genome size of 3 billion
nucleotides, after the k-mer filtering step, the de Bruijn graph
has approximately the same number of nodes with the genome
size. With a fixed problem size, the time usage of the last two
steps is decreased almost in half when the number of cores
doubles.

Speedup: The time usage of SWAP2 is orders of magnitude
smaller than that of SWAP. With the fragment adjustment algo-
rithm and I/O data block size tuning, the input parallelization
step gains a 15X speedup over its previous version. In the
k-mer graph construction step, the communication efficiency
degradation has been resolved with a fixed communication
message size and a data pool isolating the communication
and I/O process. With these two solutions, a 23X speedup is
achieved. In the graph simplification step, by compressing the
communication protocol of SWAP’s lock-computing-unlock
schedule from 4 loops to 2 loops and sharing the idle time
between these loops, the time usage is 1.75 times less than
that of the previous version. The overall speedup of SWAP2
is 14 times faster than that of SWAP.

Efficiency: In order to evaluate the performance improve-
ments after optimization, the percentage of I/O bandwidth,
communication bandwidth, and memory usage compared with
the system’s peak performance are illustrated in Figure 13.
Here, the peak performance of I/O bandwidth and communi-
cation bandwidth are 32 GB/rack/s [28], [29], [26], [27] and
0.9 GB/node/s, respectively [30], [31]. Each computing node
equipped with 16 GB memory has been allocated 4 processes;
the percentage of memory usage therefore is calculated by the
memory usage of each process divided by 4 GB. In Figure 13,
the I/O bandwidth of SWAP2 has been improved from 1%
to 18% on 4,096 cores (one rack), and the communication
bandwidth has been improved from 5% to 47%. Room for
improvement remains, however, particularly in memory usage,
which shows the same trend as does SWAP.

To evaluate SWAP2’s strong-scaling scalability, we per-
formed an experiment with fixed problem size and increasing
numbers of cores. Here we selected 4 terabytes of data from
the 1000 Genomes project, and the number of cores was
increased from 1,024 (or 512 nodes) to 131,072 (or 16,384
nodes). The time usage results are plotted in Figure 14. In
the figure, each step keeps a fixed proportion of time usage
as the number of cores increases; all five steps are highly
parallelized and scale at almost the same ratio. The runtime
results also are presented in Table II. SWAP2 takes 2 minutes
with 131,072 cores to assemble the 4 terabytes of sequencing
data, the largest dataset ever tested. The speedup of SWAP2
increases steadily and reaches 8.8 when the number of cores
is 131,072, corresponding to an efficiency of about 40%.

Although the work in this paper on SWAP2 is optimized
based on Mira, the strategies used are general and only focused

Fig. 13: Ratio of I/O bandwidth, communication bandwidth,
and memory usage with the system peak performance in
theory.

on the algorithm level. We use no special instructions designed
for any special CPU or network architectures. Therefore
SWAP2 can also scale well on other supercomputers with a
particular value for the data block size and initial message size
L. Here we used Tianhe 2 as our second supercomputer in the
evaluaton, 800 computing nodes has been allocated for this
experiments. In Tianhe 2, each computing nodes has 24 cores
and 64G memory, all computing nodes are connected within a
two layer fat-tree [33], [34], [35]. Note that in Tianhe 2 each
rack has 128 computing nodes, communication between the
nodes in one rack will not cross the top layer swith. In this
experiment, the Yanhuang dataset is selected, and the number
of cores was increased from 64 cores to 16,384 cores. The time
usage is presneted in Table IV and also plotted in Figure 15.

In this figure, the proportion of these five steps’ is not fixed,
and the speedup curve of SWAP2 turns to have two different
trends. Because of the memory limitation issues, when the
number of processes is less than or equal to 512, 32 computing
nodes is allocated, and all the processes are uniformly dis-
ployed among these 32 nodes. When the number of processes
is larger than 512, the number of processes per node is set to
be 24. when the number of processes is less than 3072 (128
nodes in one rack), all these processes will be disployed in one
rack, and the inter-processes communication will be handle by
the swith in the rack. But when the number of processes large
than 3072, the inter-processes communication will use the top
layer swith and the point to point network bandwith will be
droped to one quarter and the collective all-to-all network will
be droped to one half. Affected by the process disployment,
network archtecture and other runing jobs in the same machine
may bring disorder into our figure. So each test was taken 10
times, and the average results is reported. In Figure 15 one
can see that when the number of processes is less than or equal
to 512, the proportion of these five steps’ is fixed. when the
number of processes larger than 2048, the proportion of these
five step’s is almost fiexed. But the proportion of the Input
parallelization part suffering the performance degeneration,



Fig. 14: Time consumption results for the strong-scaling
experiment.

Fig. 15: Time consumption results for the strong-scaling
experiment on Tianhe 2 for Yanhuang dataset.

which need more details on Tianhe2’s IO archtechture and
special performance analysis. Finally we can concluded that
SWAP2 still achieved a speedup of 51.8 (with an efficiency
of 20.2%) when using 16,384 cores compared with the time
usage of 64 cores.

We also compared our work with another highly parallel
assembler, HipMer. The Yanhuang dataset of about 300 GB
was used [18], [36]. The runtime results in Table III show that
SWAP2 can assemble the dataset in 163 seconds using 16,384
cores on Mira. Because the Berkeley UPC language employed
by HipMer is not suppored by both in Mira and Tianhe
2, so we directly took the results in [37] for comparison.
In their paper, Cray Edison [38], [39] is used by HipMer
[37]. Compared with Mira, Edison is 7.8 times faster with
its dragonfly network, and its single CPU core is 1.5 times
faster [38], [39]. Using about 15,000 CPU cores on Edison,
HipMer assembled (including scaffolding) the Human dataset
(which is about the same size with Yanhuang dataset) in

8 minutes. For the Yanhuang dataset, SWAP2 can further
scale to 65,536 cores on Mira and assemble the dataset in
64 seconds with a parallel efficiency of 55%. The scalability
of HipMer depends on the effectiveness and scalability of its
graph partition mechanism, whereas SWAP2 is optimized with
a fully parallelized algorithm in every step, resulting in better
scalability and system efficiency than achieved by HipMer.

V. RELATED WORK

Several state-of-art parallel assemblers have been proposed
[9], [10], [22], [21], [23], [24], [25], [40], [37]. Most of them
follow the DBG strategy proposed by Pevzner et al. in 2001
[11].

In ABySS [9], the parallelization is achieved by distributing
k-mers to multiservers in order to build a distributed de Bruijn
graph. Error removal and graph reduction are implemented
over MPI communication primitives.

Ray [2], [41] is a general distributed engine proposed by
Boisvert for traditional de Bruijn graphs, that extends k-mers
(or seeds) into contigs with a heuristically greedy strategy by
measuring the overlapping level of reads in both directions.
Performance results on the Hg14 dataset [42], however, indi-
cate that Ray is 12 times slower than the SWAP-Assembler
on 512 cores [10].

PASHA [22] focuses on parallelizing k-mer generation and
distribution and DBG simplification in order to improve its
efficiency with multithreads technology. However, PASHA
allows only a single process for each unanimous path, thus
limiting its degree of parallelism. Performance results [21]
show that PASHA can scale to 16 cores on a machine with
32 cores on three different datasets.

YAGA [23], [24], [25] constructs a distributed de Bruijn
graph by maintaining edge tuples in a community of servers.
Reducible edges belonging to one unanimous path are grouped
into one server with a list ranking algorithm [43]. These
unanimous paths are reduced locally on separate servers. The
recursive list ranking algorithm used in YAGA has a large
memory usage of O(n× log(np)), however, which causes low
efficiency. Here n is the input data size, and p is the number
of processes.

HipMer [40], [37] is an efficient end-to-end genome as-
sembler by parallelizing the Meraculous code with both MPI
and UPC language [44]. In their work, the optimizations in-
clude improving scalability of parallel k-mer analysis, a novel
communication-avoiding parallel algorithm in the traversal of
the de Bruijn graph of k-mers and parallelizing the Meraculous
scaffolding modules by leveraging the one-sided communica-
tion capabilities of UPC. Finally, HipMer achieves a scalability
of 15,360 cores on both human genome sequencing data (290
Gbp) and wheat genome sequencing data (477 Gbp).

Spaler [45], a Spark and GraphX based de novo genome
assembler using de Bruijn graph. In Spaler, the authors par-
allelize the de novo genome assembly problem with spark on
distributed memory systems. Spaler used an efficient algorithm
based on an iterative graph reduction technique in order
to generate contigs from the DBG with a random merging



TABLE II: Time usage of SWAP2 collected for the strong-scaling test on a 4-terabyte dataset from the 1000 Genomes project.
Each computing node was allocated 4 processes (ppn = 4); time is measured in seconds.

No. Cores Input K-mer Graph K-mer MSG Graph Graph Total
Parallelization Construction Filtering Construction Simplification Time Usage

1,024 681 880.54 14.85 18.73 130.12 1725.24
2,048 1372.33 1268.96 61.33 140.66 850.58 3721.01
4,096 691.88 633.04 53.35 70.28 446.68 1906.96
8,192 346.23 328.91 26.61 23.79 240.32 972.55
16,384 207.15 184.86 13.2 17.33 115.43 541.46
32,768 114.26 107.16 6.6 6.06 60.57 297.38
65,536 56.2 70.76 3.28 3.1 28.24 165.01
131,072 51.53 64.71 1.63 1.62 14.22 138.39

TABLE III: Time usage of SWAP2 collected for the strong-scaling test on MIRA for the human genome (Yanhuang genome
dataset) [18]. Each computing node was allocated 4 processes (ppn = 4); time is measured in seconds.

No. Cores Input K-mer Graph K-mer MSG Graph Graph Total
Parallelization Construction Filtering Construction Simplification Time Usage

1,024 117.55 281.44 19.08 185.05 1630.32 2266.72
2,048 59.81 140.56 9.63 92.56 838.18 1157.72
4,096 20.81 71.77 6.1 46.3 429.71 583.51
8,192 13.46 39.29 3.15 22.49 223.92 307.06
16,384 8.35 23.9 1.55 11.39 115.44 163.36
32,768 5.08 18.99 0.88 5.71 63.77 96.51
65,536 6.5 20.85 0.67 2.92 27.74 64.55

TABLE IV: Time usage of SWAP2 collected for the strong-scaling test on Tianhe 2 for the human genome (Yanhuang genome
dataset) [18]. Each computing node was allocated 4 processes (ppn = 4); time is measured in seconds.

No. Cores Input K-mer Graph K-mer MSG Graph Graph Total
Parallelization Construction Filtering Construction Simplification Time Usage

64 1718.98 354.191 69.318 283.9 2724.4 5150.789
128 939.45 182.074 42.366 147.54 1480.1 2791.53
256 588.788 94.927 23.118 80.226 811.9 1598.959
512 464.54 50.602 12.318 41.197 530.659 1099.316
1,024 514.25 26.813 5.934 20.212 272.75 839.959
2,048 482.407 14.253 2.723 9.868 144.258 653.508
4,096 199.882 7.093 1.273 4.889 91.186 304.322
8,192 95.038 6.812 0.53 2.37 57.91 162.66
16,384 52.864 20.046 0.34 1.15 25.04 99.44

approach. The authors also showed the effects of partitioning
size on the running time and solving complex structure to
increases the quality of the results. Comparing results shows
that Spaler scales better than SWAP-Assembler, RAY, and
ABySS with 256 cores.

The SWAP-Assembler [10] that we previously developed
presents a multistep bidirected graph (MSG), a variant of the
de Bruijn graph, to resolve the computational interdependence
on merging edges that belong to the same path. A scalable
computational framework SWAP [17], [10] was developed to
perform the computation of all edge-merging operations in
parallel. Experimental results show that the SWAP-Assembler
can scale up to 2,048 cores on Yanhuang dataset (300 Gbp).
The SWAP-Assembler is demonstrated to have the lowest
communication complexity of the cited assemblers. It is also
the first assembler using more than 1,000 CPU cores. But
with challenge of assembling larger genomes, such as plants
and special vertebrata for BGI, we need to develop a much
more effcient and powerful tools.

VI. CONCLUSION

In this paper, the most time-consuming steps of the SWAP-
Assembler—input parallelization, k-mer graph construction,
and graph simplification—were optimized in order to keep
the percentage of time usage in each step constant when the
number of cores increases. With these optimizations, the ratio
of I/O bandwidth with the GPFS’s peak performance on Mira
has improved from 2% to 18% on 4,096 cores (one rack), and
the ratio of communication bandwidth with the peak all-to-
all bandwidth of 5D-torus network has improved from 5% to
47%. In the experiment on the 1000 Genomes project dataset,
the weak-scaling results show that newly optimized assembler,
called SWAP2, scales to 16,384 cores; and the strong-scaling
results show that SWAP2 scales to 131,072 cores. The total
assembly time with 131,072 cores is about 2 minutes. The
experiments show that the optimized SWAP2 can both scale
up (assembly Yanhuang dataset in 64 seconds) and scale out
(to 131,072 cores). The program can be downloaded from
https://sourceforge.net/projects/swapassembler.
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