
One-Sided Interface for Matrix Operations using
MPI-3 RMA: A Case Study with Elemental

Sayan Ghosh∗, Jeff R. Hammond†, Antonio J. Peña‡, Pavan Balaji§, Assefaw H. Gebremedhin∗, Barbara Chapman ¶

∗ School of Electrical Engineering and Computer Science,
Washington State University, Pullman, WA, USA {sghosh1, assefaw}@eecs.wsu.edu
† Parallel Computing Lab, Intel Corp., Portland, OR, USA jeff.r.hammond@intel.com

‡ Barcelona Supercomputing Center, Barcelona, Spain antonio.pena@bsc.es
§ Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA balaji@mcs.anl.gov

¶ Institute for Advanced Computational Science,
Stony Brook University, Stony Brook, NY, USA Barbara.Chapman@stonybrook.edu

Abstract—A one-sided programming model separates commu-
nication from synchronization, and is the driving principle behind
partitioned global address space (PGAS) libraries such as Global
Arrays (GA) and SHMEM. PGAS models expose a rich set
of functionality that a developer needs in order to implement
mathematical algorithms that require frequent multidimensional
array accesses. However, use of existing PGAS libraries in
application codes often requires significant development effort in
order to fully exploit these programming models. On the other
hand, a vast majority of scientific codes use MPI either directly
or indirectly via third-party scientific computation libraries,
and need features to support application-specific communication
requirements (e.g., asynchronous update of distributed sparse
matrices, commonly arising in machine learning workloads). For
such codes it is often impractical to completely shift programming
models in favor of special one-sided communication middleware.
Instead, an elegant and productive solution is to exploit the
one-sided functionality already offered by MPI-3 RMA (Remote
Memory Access). We designed a general one-sided interface using
the MPI-3 passive RMA model for remote matrix operations
in the linear algebra library Elemental; we call the interface
we designed RMAInterface. Elemental is an open source library
for distributed-memory dense and sparse linear algebra and
optimization. We employ RMAInterface to construct a Global
Arrays-like API and demonstrate its performance scalability and
competitivity with that of the existing GA (with ARMCI-MPI)
for a quantum chemistry application.

Keywords-Distributed-memory linear algebra, MPI-3, RMA,
one-sided communication, Global Arrays, PGAS

I. INTRODUCTION

Many scientific applications are a mixture of regular and
irregular computations. For example, in quantum chemistry,
methods such as density-function theory (DFT) are composed
of a highly irregular step of forming the Fock matrix, which
requires dynamic load balancing and unstructured communi-
cation in order to utilize all the processing elements, followed
by parallel dense linear algebra to diagonalize this matrix.
Other application domains have similar patterns of combining
domain-specific matrix-formatting steps with standard linear
algebra procedures. It is critical to allow application developers
to combine domain-specific code with the best available dense
linear algebra libraries without compromising performance by

restricting the data layouts or communication patterns they can
use in the domain-specific parts of their code.

Historically, the Global Arrays library (GA) [13] has met
this need in quantum chemistry applications by providing
a library that supports dense array data structures, a set
of one-sided communication primitives that support arbitrary
subarray access patterns, the necessary features for dynamic
load-balancing, and an interface to parallel dense linear al-
gebra capability from ScaLAPACK [5] (and, more recently,
ELPA [11]). Thus, the domain scientist is able to write an
efficient Fock matrix formation code by reading and up-
dating distributed arrays, then calling the dense eigensolver,
Cholesky, or other procedures from ScaLAPACK, without
having to know anything about the ScaLAPACK interface.

An alternative approach to using GA, which is implemented
in linear algebra libraries such as PETSc [1], PLAPACK [21],
and Elemental [14], involves queuing up updates to a dis-
tributed array locally, then completing them with a collective
operation. 1 This has the desirable property of being highly
portable, since it can be implemented by using two-sided mes-
saging, such as MPI Send-Recv. However, the distributed data
structure cannot be touched until the collective step happens,
and there is no opportunity for overlapping communication
and computation, because unlike one-sided operations in GA,
unmatched messages cannot complete asynchronously.2

With the release of the MPI-3 standard [12], the commu-
nication primitives required to implement GA have become
widely available in both open-source and proprietary imple-
mentations of MPI. Furthermore, new distributed dense linear
libraries such as Elemental and DPLASMA [3] have emerged
as modern alternatives to ScaLAPACK. These changes moti-
vate a fresh investigation of the interplay between irregular
computations and dense linear algebra computations. Can we

1See http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Mat/
MatSetValues.html and http://libelemental.org/documentation/0.81/core/
axpy\ interface.html for details on these interfaces.

2The MPI progress rules for Send apply only when a matching Recv
has been posted. In the case here, matching Recv can be posted only after
information about the local queue has been communicated with the destination
processes.

achieve performance similar to Global Arrays and ScaLA-
PACK while providing more flexible interfaces, support for
different matrix distributions, and greater portability through
MPI-3?

GA provides a convenient data access interface that uses
high-level array indices; it also provides a rich lower-level
interface for managing data distribution, exploiting locality,
and managing communication. GA is built on top of Aggregate
Remote Memory Copy Interface (ARMCI), which is a low-
level one-sided communication runtime system. ARMCI has
implementations for several vendor-specific network conduits
such as uGNI and LAPI. ARMCI is compared with MPI by
Dinan et al. [6]. Elemental has a similar interface for accessing
portions of matrices distributed in memory, called the AXPY
interface (named after the BLAS axpy routine, which performs
vector-vector multiplication and addition, i.e., a×x+y, where
a, x, and y are vectors). This interface provides a mechanism
by which individual processes can independently submit local
submatrices that will be automatically redistributed and added
to the global distributed matrix. The interface also allows for
the reverse: each process may asynchronously request an arbi-
trary subset of the global matrix. Both of these functionalities
are effected by a single AXPY routine.

Unlike GA, however, one needs collective synchronization
before the global matrix or the local matrix—which is sub-
mitted to the global matrix or where a subset of the global
matrix would eventually reside—can be reused or accessed.
(A way to circumvent this for the local matrix would be to
allocate a new matrix for every AXPY call, but the approach
clearly is memory expensive.) This requirement is an artifact
of the underlying implementation of the API using MPI point-
to-point routines and in certain applications may require essen-
tially replicating the matrix on every process. We note that the
AXPY interface was developed at a time when the MPI RMA
model was restrictive in its offerings. Prior to the recent release
of MPI-3, MPI RMA lacked important atomic operations (e.g.,
fetch-and-add and compare-and-swap), had an inconvenient
synchronization model (including lack of separation of local
and remote completion), and had a memory model (especially
the notion of public and private windows) that made MPI
one-sided communication routines undesirable for one-sided
operations in applications. Bonachea and Duell [2] discuss
the limitations of MPI-2 RMA as compared to contemporary
PGAS models.

Therefore, we redesigned the Elemental AXPY interface in
a way that would reduce the amount of collective synchroniza-
tion and bring the interface semantically closer to GA. RMA
is a natural communication model for scientific applications
involving multidimensional array accesses, and some of these
applications have a need for robust Dense Linear Algebra
(DLA). We have created a “union” of RMA and DLA, much
as GA did, but we went in the opposite direction by building
RMA into DLA, rather than building DLA into RMA.

The remainder of the paper is organized as follows. In
Section II, we provide some background information and mo-
tivation for our work on Elemental. In Section III, we identify

C++ PythonRC

Core Interfaces
Memory management, data distribution,
index translation

BLAS-
like

LAPACK-
like

Optimization
problems

Control
theory

Special
matrices

Display
matrices

MPIExternal packages,
e.g, METIS, BLIS, OpenBLAS

Fig. 1. Overall structure of the Elemental library.

some limitations of the existing asynchronous matrix update
API of Elemental, and, propose a new set of API which aims to
improve the performance of the existing approach significantly.
In Section IV, we discuss our implementation of the new API
using MPI-3 RMA, and, establish the need for a distributed
arrays interface to increase productivity. In Section V, we
present performance evaluations using microbenchmarks and
a quantum chemistry application. In Section VI, we draw
conclusions and briefly discuss our future research plan.

II. BACKGROUND AND MOTIVATION

Elemental is a C++11 library for distributed-memory al-
gorithms for dense/sparse linear algebra and interior-point
methods for convex optimization. Similar to PLAPACK [21],
Elemental was designed around the idea of building different
matrix distributions and providing a simple API for moving
a matrix from one such distribution to another throughout a
computation. Elemental has a thin abstraction layer on top of
the necessary routines from BLAS, LAPACK, and MPI. Figure
1 shows the high-level organization of Elemental.

A. Data Distribution

One of the requirements for high performance dense matrix
computations is scalability. The way in which the data is
distributed (or decomposed) over the memory hierarchy is of
fundamental importance to scalability. Data distribution im-
pacts the granularity of the computation, which in turn impacts
load balance and scalability. Most distributed-memory dense
linear algebra packages differ in the way data distribution is
performed. Unlike linear algebra libraries that distribute con-
tiguous blocks of data to processes (e.g., PLAPACK [21] and
ScaLAPACK [5]), in Elemental the default matrix distribution
is designed to spread the matrix in an element-wise fashion.
As depicted in Figure 2, in Elemental, individual elements of
a matrix are distributed cyclically in column-major ordering
following the 2D process-grid layout. For example, if there are
4 processors in total, then a 2×2 grid is used, and, elements
are distributed in a round-robin fashion within each column/
row of the 2D process grid.

Elemental offers a number of element-wise distributions
over the process grid and provides a convenient mechanism

Logical DistMatrix,
matrix elements are color
coded according to their
distribution across processes

Actual/Physical DistMatrix
distribution across
4 processes

2D process grid,
each color corresponds
to a different process

2D Chunk spread
across the blocks
owned by individual
processes

Fig. 2. Elemental element-wise cyclic distribution (MC×MR) of an 8 × 8
matrix on a 2 × 2 process grid (4 processes). Dark borders indicate local/
physical chunks corresponding to a global chunk.

for performing basic matrix manipulations. The Matrix<T>
class builds a 2D matrix owned by only the process calling
it, and DistMatrix<T, U, V> class is the distributed-
memory variant of the former. Here, T stands for template
substitution for datatypes, including complex types, and U
and V signify the distribution pattern on each dimension.
The default matrix distribution is known as MC×MR (matrix
column by matrix row). This distributes the elements in the
first dimension in a round-robin fashion over each column of
the process grid, and in the second dimension in a similar way
over each row of the 2D process grid. The logical 2D process
grid is actually composed of different MPI communicators
(for instance, there are communicators for processes forming
the row of the process grid and that of the column) because
of the need for MPI collective communication to distribute
elements according to the specified distribution. Figure 2
shows the MC×MR logical and physical distribution of a matrix.
Elemental has around 10 such distributions (distributions can
also be paired). Throughout our work, we have used only the
MC×MR distribution because it leads to the best scalability for
a variety of cases.

B. Elemental AXPY Interface

We started the work by investigating the performance and
suitability of the Elemental AXPY interface, which offers
functionalities to perform operations on globally distributed
matrices. The AXPY interface is implemented by using MPI
point-to-point communication routines. This interface has the
look and feel (in terms of the API) of Global Arrays, which
is extensively used in the NWChem computation chemistry
package [20]. The AXPY interface has only three routines:
ATTACH, AXPY, and DETACH; the individual functionalities
are explained below.

1) ATTACH (collective) – Performs vector resizing, buffer
allocation.

2) AXPY (point-to-point) – Sends or receives data to/from
the globally distributed matrix based on the direction
parameter specified by the user (LOCAL TO GLOBAL

or GLOBAL TO LOCAL). This operation is analogous
to the ARMCI scaled accumulate – dst += scale * src
(where dst and src are the origin buffer or the target
buffer, depending on the direction).

3) DETACH (collective) – Finishes all outstanding commu-
nication and tracks progress.

We identified several issues with the existing AXPY interface
of Elemental that limit its capabilities considerably (these are
discussed in the next section in detail). Hence, we redesigned
the existing AXPY interface and created an entirely new
interface, which we have called RMAInterface, with the aim
of improving the asynchrony of remote operations and thereby
enhancing performance significantly.

III. BEYOND THE ELEMENTAL AXPY INTERFACE

In this section, we offer general guidelines on designing
an interface for asynchronous matrix operations. We begin
by enumerating some of the notable issues with the existing
Elemental AXPY interface:

• Asynchrony: The existing interface does not allow over-
lapping of operations. When DETACH returns, all com-
munication to/from the distributed matrix completes. This
enforces a bulk synchronous model.

• Overallocation: Although one could issue multiple AXPY
calls within an ATTACH-DETACH epoch (note that these
are point-to-point nonblocking operations), different local
matrices would have to be allocated as well, because
local/remote completion of operations is not guaranteed
until DETACH is called.

• Restrictive synchronization: In DETACH, every process
must exchange “end-of-message” (EOM) messages to
mark communication end; also, the ATTACH-DETACH
pair of calls marks access epochs.

• Expression: The put/get/accumulate operations are all
expressed through a single function – AXPY, where one
must specify alpha (scale factor) and direction (local to
global or vice versa) to select the particular operation.

In Section III-A, we discuss a strategy to improve the perfor-
mance of existing Elemental AXPY interface and, in Section
III-B we discuss the design of RMAInterface.

A. Nonblocking Consensus

Since AXPY operations are point-to-point and nonblocking,
the communication may not even begin until DETACH is
called. Apart from ensuring MPI progress, DETACH also needs
a mechanism to mark the end of current data communication.
This is because there is no way of assessing in advance the
number of messages to be received. Hence, each process sends
an EOM message to every other process to complete the
ATTACH-DETACH epoch.

This mechanism poses a nonnegligible overhead. For in-
stance, in a simple test program, in which each MPI process
updates different locations of the distributed matrix, we found
that around 80% of the total time was spent on DETACH.

We can improve the performance of DETACH, how-
ever, if there is a way to improve the synchronization

logic. Fortunately, MPI-3 introduces nonblocking barriers
(MPI_Ibarrier3), which can be used to implement a syn-
chronization scheme for cases when the number of messages
to receive is not known in advance. This is facilitated by
alternately checking inside a loop for any incoming message
(via MPI_Iprobe) and testing whether the synchronous
sends have completed (via MPI_Testall).

In order to improve the performance of the end of data
communication, we introduced a consensus mechanism using
a nonblocking barrier (MPI_Ibarrier) instead of explicitly
sending messages to mark the end of communication (during
DETACH). This scheme is referred to as nonblocking consensus
and is inspired by prior research on data exchange protocols[9,
Algorithm 2]. By leveraging this protocol we were able to
significantly improve performance, but also to save memory
by not allocating buffers associated with EOM synchroniza-
tion. The pseudocode of the enhanced DETACH is listed in
Algorithm 1. The HANDLEDATA function handles the data
posted during the AXPY call.

Algorithm 1 DETACH: Nonblocking barrier for determining
end of communication

1: done ← false
2: while not done do
3: HANDLEDATA()
4: if nonblocking barrier is active then
5: done = test barrier for completion
6: else
7: if all sends are finished then
8: activate nonblocking barrier

We note that only MPI synchronous sends will work in
this particular case, because testing on an MPI request handle
associated with a nonblocking synchronous send returns only
when a corresponding MPI receive is posted. By completely
bypassing the requirement to send EOM packets, we were
able to save approximately 3 × p buffer allocations (where p
is the total number of processes) and obtain a performance
improvement of up to 14x (see Figure 7 in SectionV).

B. Introducing RMA Interface
The design of the existing AXPY interface offers little

possibility of overlapping computation and communication
within the application using it. We therefore designed a
new interface, RMAInterface, offering one-sided semantics
that overcomes the strict synchronization requirements in the
existing interface while expressing the required functionality
in a more natural manner. Following are the design highlights
of this new interface.

• ATTACH-DETACH should be required to be called only
once per distributed matrix, instead of every time we need
to (re)use the buffers in use by a prior AXPY call.

3A non-blocking barrier (MPI_Ibarrier) functions in the following way:
A request object associated with a barrier evaluates to true upon calling
MPI_Test only when all the processes in the communicator have started
the nonblocking barrier.

// Management
void Attach(DistMatrix<T,MC,MR>& Y);
void Detach();

// Remote Transfer
void Put(Matrix<T>& Z, Int i, Int j);
void Acc(Matrix<T>& Z, Int i, Int j);
void Get(Matrix<T>& Z, Int i, Int j);

// Synchronization
void Flush(Matrix<T>& Z);
void LocalFlush(Matrix<T>& Z);

Fig. 3. Elemental RMAInterface API. Locally nonblocking remote transfer
APIs begin with an I, such as IPut, IAcc and IGet.

• We expose remote operations in the API, such as PUT/
GET/ACCUMULATE.

• Instead of bulk synchronization facilitated through DE-
TACH, we introduce operation-wise (noncollective) syn-
chronization functions. We add a number of synchroniza-
tion API routines (referred to as Flush operations), for
enforcing local/remote completion.

We will henceforth refer to the Elemental AXPY interface as
AxpyInterface and the new RMA interface using MPI-3 RMA
as RMAInterface.

IV. PROPOSED ONE-SIDED APIS

We begin this section by discussing the implementation de-
tails of RMAInterface using MPI-3 RMA. Then we introduce
the Distributed Arrays interface (we refer to it as EL::DA)
that we designed on top of RMAInterface. Distributed Arrays
expose an interface similar to Global Arrays, but with the
ability to extend the functionality of GA significantly because
of being tightly integrated to Elemental. By having EL::DA
similar to GA, we enable the application programmers to
easily develop GA-based applications using EL::DA.

A. RMAInterface Design and Implementation

1) Design Overview: The basic idea behind RMAInterface
is to expose a set of one-sided communication and synchro-
nization functions to enable fetching and updating portions of a
distributed matrix. A distributed matrix is semantically similar
to a global array, but is laid out across processes according
to Elemental’s MC×MR distribution. Low-level details such as
processes involved in communication and MPI-related types
are abstracted away from the API. RMAInterface users will
only need to specify the local and distributed matrix handles
and the (2D) coordinate axes of the distributed matrix, in order
to fetch or update a part of the globally distributed matrix.

To familiarize the readers with the RMA interface function-
ality, we list the definitions of some of its basic functions in
Figure 3.

To demonstrate the efficacy of RMAInterface, we explore a
common parallel programming motif – distributed blocked ma-
trix multiplication. We will show that such a programming task
could be easily developed using RMAInterface, whereas the
existing AXPY interface or any bulk-synchronous mechanism
will not work in this case. Figure 4 includes the corresponding

*

*

*

*

=

=

=

=

DistMatrix A DistMatrix B DistMatrix C (= A x B)

Get A

Get blocks
of B

Reuse
blocks of A

Accumulate
local blocks
to C

for i in I blocks:
 for k in K blocks:
 if (load_balancer == me):
 get (a, i, k)
 for j in J blocks:
 get (b, k, j)
 // local gemm
 c(i,j) = a(i,k) * b(k,j)
 accumulate (c, i, j)

Fig. 4. Logical diagram of a 2D blocked distributed matrix multiplication
using RMAInterface. Each block of DistMatrix<T, MC, MR> A, B and
C contains non-contiguous elements. a, b and c are local matrices (i.e,
Matrix<T>).

pseudocode and a schematic diagram. As shown in the figure,
in carrying out a matrix-matrix multiplication, an MPI process
acquires a 2D tile of the distributed matrices, performs a
local GEMM on the tile it owns, and asynchronously modifies
the distributed matrix with the locally updated values. A
distributed counter serves as a load balancer by mapping tasks
to processes, and ensuring that no two processes access the
same tile. Load imbalance occurs if there are more processes
than tiles—some of the processes need to wait on a barrier for
others to finish. This type of communication pattern, involving
asynchronous updates to different portions of a distributed
matrix, is not possible in the existing AXPY interface. This
is because, AXPY (which simulates put/get/accumulate oper-
ation) is not locally complete unless DETACH is called. Since
DETACH is a collective operation, it cannot be invoked (inside
the innermost loop in Figure 4) if there is no guarantee that
every process will obtain a task. Even if this were true, every
AXPY call would need to be placed in the middle of ATTACH-
DETACH functions in order to ensure local completion as the
local matrix c is reused.

2) Implementation Details: RMAInterface is implemented
on top of the MPI-3 RMA API. By MPI-3 RMA/one-sided,
we always mean passive target communication in which
only the origin process—that is, the process initiating RMA
calls—is actively involved in data transfers at the user level.
This is in contrast with active target communication in MPI
RMA, wherein both processes, origin and target, are explic-
itly involved in the RMA communication at the user level.
Implementing PGAS concepts into RMAInterface using MPI-
3 RMA was a straightforward exercise, as has also been
demonstrated in prior research projects of ARMCI-MPI [6]
and OSHMPI [8].

ATTACH initializes the RMAInterface environment for a

Actual DistMatrix
distribution
across 4 processes

1. Calculate owners of
DistMatrix chunks from
{i, j} to
{(i + M.Height()), (j + M.Width()}

5. Flush ensures
remote/local
completion

(I)Acc/Put (Matrix<T>& M,
 Int i, Int j)

2. Calculate displacement
from MPI_Window base of
remote process holding a
chunk of DistMatrix

4. A process issues
multiple MPI_Put/
Accumulate to send
matrix chunks to
owners of distributed
matrix patches

3. Create derived type
(MPI_Type_vector) for
non-contiguous blocks

{count, stride, blocklength}

Fig. 5. Steps involved in a put/accumulate operation of RMAInterface. An
8×8 distributed matrix (as shown in Figure 2) is updated starting at position
(3, 3) by a local 5× 5 matrix M . A get operation would show the arrows in
the opposite direction. Step 3 (MPI DDT creation) is optional.

particular distributed matrix, starts an MPI RMA epoch
(by invoking MPI_Win_lock_all), and creates the nec-
essary buffers. We support either MPI_Win_allocate or
MPI_Win_create for creating MPI windows for RMA
communication in ATTACH, as per user configuration. While
supporting MPI_Win_create just requires associating a
pointer to a data buffer with the RMA window, most
of the core Elemental interfaces had to be modified to
support MPI_Win_allocate. Like most modern C++
projects, core data structures in Elemental are resized dy-
namically as needed. This situation had to be prevented
when MPI_Win_allocate was used, because a prede-
fined amount of memory needs to be available for RMA
operations. However, one can dynamically attach memory to
an MPI window object via MPI_Win_create_dynamic.
Although MPI_Win_create_dynamic allows exposing
memory without needing an explicit remote synchronization,
this usually results in low performance. The use of C++
makes the design more expressive, since ATTACH and DE-
TACH can be realized as constructors and destructors of an
RMAInterface object, respectively. We denote Put as locally
blocking (when the function returns, the input matrix may
be reused), whereas IPut is locally nonblocking (the input
matrix cannot be reused upon return until a synchronization
call is properly performed). The underlying interface uses
the input coordinates axes (passed to the put/get/accumulate
functions) to determine the target process for the individual
elements in the input Matrix<T> object. The coordinate axes
are also used to calculate the displacement (from the window
base) in the MPI window of the determined target process
(steps 1 and 2 in Figure 5 depict these operations). Therefore,
a single put/get/accummulate call usually results in a number
of MPI_Get/Put/Accumulate calls to fetch/update data
from/to the memory of several remote processes.

Figure 5 shows the various steps involved in a remote

 0

 100

 200

 300

 400

 500

 600

500.0 kB 1.0 MB 1.5 MB 2.0 MB

B
a

n
d

w
id

th
 (

M
B

/s
)

Get

w DDT
w/o DDT

 0

 100

 200

 300

 400

 500

 600

500.0 kB 1.0 MB 1.5 MB 2.0 MB

Put

 0

 100

 200

 300

 400

 500

 600

500.0 kB 1.0 MB 1.5 MB 2.0 MB

Accumulate

Fig. 6. Bandwidth of put/get/accumulate operations with/without MPI DDT on 16 processes (n=4:ppn=4) on Cori (higher is better). The X-axis shows the
size of the data transferred.

operation until completion (effected by calling the appropri-
ate synchronization functions). Since the target data layout
(chunks of distributed matrix in individual processes) consists
of contiguous blocks separated by fixed strides, we found the
usage of MPI derived data types (DDT) to be appropriate in
this case. We use MPI_Type_vector to designate the target
data layout, which helps limit the number of RMA operations.

MPI implementations have been known to suffer from
performance penalties when working with DDT, even though
a substantial body of research has focused on improving
them [19], [15], [4], [7]. Therefore, we made it user config-
urable for the code path to use MPI DDT in RMA operations,
which otherwise would fall back to the version that uses MPI
standard data types. To assess the benefit of using MPI DDT,
we use a simple test case that performs a number of one-sided
put/get/accumulate operations on varied data sizes, from 8 B
to 2 MB, with increments of 128 B on 16 processes. Figure 6
shows the comparative bandwidth (in MB/s) of RMAInterface
put/get/accumulate functions with and without MPI DDT. We
observe an improvement of up to 20% in bandwidth on average
for the NERSC Cori platform (see Section V for platform
details) as a result of using MPI DDT. This improvement is
due to the reduction in the number of overall RMA operations.
In terms of synchronization, a flush operation ensures remote/
local completion of all outstanding operations initiated from
(or targeted toward) the current process. Flush translates to
MPI_Win_flush_all, while LocalFlush enforces the
local completion of all operations (i.e., LocalFlush trans-
lates to MPI_Win_flush_local_all). A relevant distinc-
tion between RMAInterface and the original AXPYInterface is
that DETACH is no longer responsible for collective synchro-
nization, as a flush will complete outstanding operations in an
asynchronous fashion. In RMAInterface, DETACH marks the
end of an RMA epoch (by issuing MPI_Win_unlock_all)
and clears the associated buffers.

B. Distributed Arrays Interface (EL::DA)

We create the Distributed Arrays interface (EL::DA) on top
of the Elemental DistMatrix and RMAInterface interfaces.
Both regular and irregular (GA) distributions internally map
to Elemental’s cell-cyclic data layout. EL::DA supports the
most fundamental GA operations, and hence most applica-

tions written in GA may be easily ported to EL::DA. We
also created a C interface to EL::DA (although Elemental
is written in C++11, it offers C interfaces for almost all
core modules), which allows it to be used with applica-
tions written in C as well. In EL::DA, one-sided functions
(such as NGA_Put or NGA_Acc) are implemented by using
RMAInterface, whereas for any other collective operation
(such as GA_Add or GA_Symmetrize), the core Elemental
API is used. However, supporting GA local access functions
(e.g., NGA_Access) is not possible in an efficient manner
because of the underlying element-cyclic data distribution. For
example, consider the case of NGA_Access, which returns
a pointer to the local portion of the global array. In EL::DA,
NGA_Access is no longer a local operation; it requires a
remote get to pull the relevant portions of data from the global
array to a local buffer. The reason is that the local portion of an
Elemental DistMatrix contains elements that are globally
noncontiguous (see Figure 2), and hence it cannot be used for
performing computations that expect elements to be in their
logical order.
NGA_Release_update is another case when EL::DA is

nonconformant to the original GA. NGA_Release_update
releases access to a local copy (owned by a particular process)
of a GA, in case the local copy was accessed for writing. For
cache-coherent machines, NGA_Release_update is essen-
tially a no-op. Nevertheless, since the local buffer (exposed
by NGA_Access) was updated, it needs to be sent back to
the global array distributed in Elemental’s cell-cyclic fashion.
Therefore, for EL::DA, NGA_Release_update is a remote
put operation to update the global matrix with local data.
Since Elemental offers an unparalleled range of functionality
pertaining to linear algebra and optimization, a rich set of
the Elemental framework is exposed to the Distributed Arrays
interface. In contrast, this is not possible in the existing GA,
which offers limited linear algebra functionality.

V. EXPERIMENTAL EVALUATION

Our experiments are motivated by operations frequently
arising in quantum chemistry applications. Quantum chemistry
simulation of small or large molecular systems requires sub-
stantial computation resources and suitable parallel program-
ming models for scalability. In practice, quantum chemistry

codes are not perfectly scalable, because of the significant
volume of communication that dominates the total time.

A. Experimental Setup

We used two platforms for our experiments.
1) Argonne’s Blues – 310-node cluster with dual-socket

Intel R© Xeon R© E5-2670 processors per node and a
QLogic InfiniBand QDR interconnect.

2) NERSC Cori (Phase 1) – 1,630-node Cray XC40 ma-
chine with dual-socket Intel R© Xeon R© E5-2698v3 CPUs
per node and the Cray XC series interconnect (Aries).

We used MVAPICH2 (version 2.2.1) on Blues and Cray MPI
(version 7.2.5) on Cori (both of them are MPICH derivatives).
MVAPICH2 uses hardware for contiguous put/get operations
and implements accumulate and strided one-sided operations
using software. Following the vendor recommendations, we
use the regular mode of Cray MPI, where RMA operations
are implemented in software (as opposed to the DMAPP
mode [18], which implements one-sided contiguous Put/Get
operations in hardware). We found no noticeable difference in
the performance of Cray MPI runs with or without DMAPP
for our test cases (all of which use accumulate operations).
We compare EL::DA with Global Arrays (version 5.4). The
native communication conduit of GA is ARMCI, which uses
low-level network APIs for point-to-point communication and
MPI for collective operations. ARMCI-MPI [6] is a completely
rewritten implementation of the original ARMCI using MPI
RMA (specifically, it supports both MPI-2 RMA and MPI-
3 RMA) for one-sided communication. We used ARMCI-
MPI with MPI-3 RMA (referred as GA in the plots) for
our evaluations. Also, Cray Aries (Cori’s interconnect) cannot
perform accumulate or atomic update operations in hardware
and must use software. The MPI standard does not mandate
RMA to be asynchronous: although there is no need for remote
processes to be involved in passive RMA communication, in
practice the remote/target process may issue calls to the MPI
runtime system to ensure progress in communication.

Asynchronous progress in MPI implementations is typically
enabled by using a communication helper thread per process to
handle messages from other processes or by utilizing hardware
interrupts. Both MVAPICH2 and Cray MPI (in regular mode)
implement asynchronous progress using a background thread
per process as an optional feature. Because of requiring
deployment of as many helper threads as MPI processes,
this scheme leads to either processing core oversubscription
or devoting half the cores to ensuring MPI progress. Both
approaches result in losing a considerable amount of compute
power in polling for incoming messages.

To maximize the benefits of the performance potential
of leveraging MPI RMA communication instead of its two-
sided counterpart, we use Casper [17], a new process-based
progress engine for MPI one-sided operations, which aims
to alleviate most of the crucial drawbacks of thread-based
or hardware interrupt-based communication progress and to
favor scalability [16]. Casper decouples the number of helpers
devoted to progressing MPI RMA communications from the

 1

 10

 100

 1000

 10000

 100000

2k-8k(16)

1k-8k(64)

512-8k(256)

512-16k(1024)

256-8k(1024)

128-8k(4096)

64-8k(16384)

32-8k(65536)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Matrix-DistMatrix Dimensions

ORIG
ORIG-NBX

RMA
RMAB

RMA-CSP
RMAB-CSP

Fig. 7. Hartree-Fock proxy microbenchmark comparing the Elemental AXPY
interface versions on 256 processes of Blues. The number inside braces
denotes the number of tasks.

number of MPI processes—the optimal number of helper
(ghost) processes is application dependent and currently is
specified by the user at launch time. We leverage Casper in
our evaluations involving MPI-3 RMA (both Elemental and
GA with ARMCI-MPI) and observe significantly improved
performance with respect to the cases based on the original
thread-based asynchronous progress models.

B. Microbenchmark Evaluation

We use two microbenchmarks to evaluate the performance
of RMAInterface. The first microbenchmark loosely simulates
a Fock matrix construction used commonly for electronic
structure calculation. This microbenchmark is designed to
compare RMAInterface with the original and improved Axpy-
Interface. The second microbenchmark is a distributed matrix-
matrix multiplication, to compare the performance of EL::DA
with that of GA.

1) Hartree-Fock Proxy: This microbenchmark features two
phases. In the first phase, each process requests a task, and
upon receiving a task it issues a remote accumulate operation
to different tiles of a 2D matrix distributed in Elemental’s
element-wise cyclic fashion. In the second phase, each process
requests a task again, and upon receiving a task it issues a
remote get from a different tile of the global matrix to a
local matrix. Processes that do not receive a task (because of
insufficient tasks) just wait on a barrier. Accesses to different
blocks are made possible via a distributed global counter,
which ensures that at a time only a single process is accessing
a tile of the global array. We compare the performance of six
AxpyInterface versions in Figure 7. In this microbenchmark,
we fix the number of processes to 256 and vary the workload
(expressed as number of tasks, each task involving exactly one
accumulate or a get operation). The various versions in Figure
7 are defined as follows.

1) ORIG – Original Elemental AXPY interface.

2) ORIG-NBX – Original Elemental AXPY interface with
a nonblocking consensus mechanism to test communi-
cation completion in DETACH.

3) RMA – Locally nonblocking API of RMAInterface (e.g.,
IPut/IAcc, see Figure 3).

4) RMAB – Locally blocking API of RMAInterface (e.g.,
Put/Acc, see Figure 3).

5) RMA-CSP – RMA with Casper.
6) RMAB-CSP – RMAB with Casper.

With fewer than 256 tasks (the number of processes),
all versions suffer from load imbalance, since some of the
processes do useful work while the others wait on a barrier.
With a larger number of tasks, the performance of the original
AxpyInterface (ORIG) suffers because of the large number of
messages to mark the end of communication. We improve the
performance of these situations by modifying the DETACH
to use a nonblocking consensus mechanism (ORIG-NBX)
using MPI_Ibarrier (see Section III-A). This improved the
performance of the original AxpyInterface significantly—up to
40x for a large number of tasks and on average by 5x. The
AXPY function of the AxpyInterface (which is analogous in
terms of functionality to IPut/IAcc in the RMAInterface)
issues synchronous nonblocking sends to the target process
that owns a patch of noncontiguous elements. The target
process handles the sends by posting matching receives (when
DETACH is called) and places each element at its correct
position with respect to the Elemental cyclic distribution.
Because of the active participation of the target process, AXPY
is able to pack all the (noncontiguous) elements in a single
MPI_Issend. In the case of RMAInterface, since we use
MPI-3 passive RMA, we cannot involve the remote process in
the communication. Hence, the origin process has to calculate
the displacement in the remote process MPI window and issue
multiple RMA operations. Therefore, the RMA versions issue
many one-sided accumulates (with comparatively small data
size as compared with ORIG/ORIG-NBX) over the network,
when ORIG/ORIG-NBX could essentially pack elements to
limit the number of messages. With an increasing number
of tasks, the number of one-sided operations also increases,
and RMA/RMAB suffer. In particular, the performance of
the RMA versions starts degrading significantly because of
the lack of progress of one-sided operations, especially for
greater than 4K tasks; and in the worst case it is 5x slower
than ORIG-NBX. In contrast, version RMAB is around 10x
better on average (for tasks greater than 4K), because it
enforces local completion (via MPI_Win_flush_local).
Hence, we assert the importance of asynchronous progress in
RMA communication. The performance of RMAB increases
significantly when a number of “ghost” processes are used for
asynchronous progress (for Figure 7 we use 4 ghost processes
per node). A performance improvement of up to 4x is observed
with the use of the RMAInterface locally blocking API in
combination with the Casper progress engine (referred as
RMAB-CSP in Figure 7) as compared with the optimized
AxpyInterface (i.e., ORIG-NBX).

2) Distributed Matrix-Matrix Multiplication: The matrix-
matrix multiplication operation, that is, C = A × B, en-
tails multiplying matrices (A and B) and storing the result
on a third matrix (C). Since AxpyInterface cannot be used
to simulate truly one-sided operations because of its bulk-
synchronous nature (see Section IV-A), we compare only
RMA approaches for this microbenchmark. Specifically, we
compare the relative performance (demonstrated by an average
of a million floating point operations per second, or MFLOPS)
of a distributed matrix multiplication microbenchmark written
in GA and EL::DA in Figure 8. We emphasize that the data
distribution of Elemental is element-wise cyclic, whereas GA
in this case uses a regular distribution (each PE or process
receives contiguous chunks of the global array). We use square
matrices as input, with all (four) combinations of transpose
operations for A and B matrices. For instance, in Figure 8,
“8192-NT” corresponds to a matrix multiplication version
where the input matrix dimensions are 8192×8192 and “NT”
indicates A was not transposed (N), whereas B was transposed
(T).

An important factor for scalability in DLA computation
for distributed-memory architectures is the matrix distribution
over processes. Predicting the best distribution is challenging
because on the one hand we want the tile size per process
to be sufficiently large for BLAS efficiency and, on the other
hand, to be sufficiently small to avoid load imbalance due to
communication. Elemental tries to attain a good compromise
by removing the constraint on deciding the block sizes per
process by making it 1, which means essentially that each
process gets a noncontiguous element of the input matrix.
Element-wise cyclic data distribution has been proven to be
more scalable than previous approaches that partition the
matrices into contiguous blocks and distribute the block to
the processes [14]. As shown in Figure 8, the performance of
EL::DA suffers when the cost associated with communication
exceeds the cost associated with arithmetic operations (for
instance, when 512 processes are used for multiplying 8K
matrices, particularly with A/B transposed). Because of the
data distribution, however, EL::DA shows scalability for large
(16K) matrices and is 6%–40% better than GA in terms of
performance.

C. Application Evaluation – GTFock

In computational chemistry, the Hartree-Fock (HF) or SCF
(Self-Consistent Field) method is used in approximating the
energy of a quantum many-body systems in a stationary state.
This is an iterative method; in each SCF iteration, the most
computationally intensive part is the calculation of the Fock
matrix. GTFock [10] is a new parallel algorithm for Hartree-
Fock calculations that uses fine-grained tasks to balance the
computation. It also enables dynamically assigning tasks to
processes to reduce communication. GTFock is an excellent
application candidate because it exploits domain (MPI and
GA), thread (OpenMP), and data (vector loops) parallelism,
which are necessary to achieve effective parallel efficiency on
the next generation of supercomputers. Because of the simi-

 8000
 10000
 12000
 14000
 16000
 18000
 20000
 22000
 24000
 26000
 28000
 30000

8192-NN

8192-TN

8192-NT

8192-TT

16384-NN

16384-TN

16384-NT

16384-TT

M
F

L
O

P
S

/P
ro

c
e

s
s

128 processes (nodes=16:ppn=12)

GA
EL::DA

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

8192-NN

8192-TN

8192-NT

8192-TT

16384-NN

16384-TN

16384-NT

16384-TT

256 processes (nodes=16:ppn=20)

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

8192-NN

8192-TN

8192-NT

8192-TT

16384-NN

16384-TN

16384-NT

16384-TT

512 processes (nodes=32:ppn=20)

Fig. 8. Performance comparison of EL::DA and GA for the distributed matrix-matrix multiplication microbenchmark on Cori. Four processes per node are
used by Casper for asynchronous progress.

 10

 100

 1000

 10000

16 32 64 128
256

512
1024

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

10 iterations of 1hsg28

GA
EL::DA

 10

 100

 1000

32 64 128
256

512

1 iteration of 1hsg38

 100

 1000

 10000

32 64 128
256

512

1 iteration of 1hsg45

Fig. 9. GTFock execution on Cori (X-axis: Number of processes). Two processes per node are used by Casper for asynchronous progress.

TABLE I
TEST MOLECULES

Molecule No. of Atoms No. of Shells No. of Basis Functions
1hsg 28 122 549 1159
1hsg 38 387 1701 3555
1hsg 45 554 2427 5065

larity of GA and EL::DA APIs, the EL::DA port of GTFock
was straightforward, and essentially a drop-in replacement for
GA functions.

Table I lists the molecules that we used in our experiments,
and some of their properties that have a direct correlation with
the input data size. All the molecules that we used as input
are provided with the GTFock package as part of the cc-pVDZ
basis set. Figure 9 shows the total execution time of only a sin-
gle iteration for the 1hsg 38 and 1hsg 45 molecules, whereas
the execution time of 10 iterations is reported for 1hsg 28. In
Figure 9, we observe that for all inputs, EL::DA shows consis-
tently around 20% improvement over GA up to 128 processes.
However, with increasing number of processes, the volume
of remote communication increases significantly in the Fock
matrix building stage, which negatively affects the overall scal-
ability of EL::DA. This is because in EL::DA, local accesses
to a global array (via NGA_Access/NGA_Release) entail
extra MPI_Get calls to bring elements distributed across
the processes (in Elemental cell-cyclic fashion) into a local
buffer of the current process. Therefore, NGA_Access is
not a local operation for EL::DA, which in case of GA is a
simple pointer assignment to a contiguous buffer (local portion

of a global array), due to its data layout. Unfortunately, the
design of GTFock relies on frequent local accesses to global
arrays, which affects the performance of EL::DA over 256
processes. To maintain the integrity of the solution, EL::DA
has to issue extra remote operations. Upon profiling GTFock
with EL::DA on 512 processes, we found that more than 40%
of the total execution time is spent on two functions that
initialize and update the local portion of the global arrays
(through NGA_Access-NGA_Release) before and after the
Fock matrix computation, in every SCF iteration. On the other
hand, in case of GTFock with GA, those functions merely
contribute with around 1% to the entire execution time. If
remote accesses to distributed arrays dominate an application
(i.e., more NGA_Acc/Put/Get and less NGA_Access), then
EL::DA will be more scalable and efficient than GA, as we
demonstrated in the matrix multiplication microbenchmark.
Parallel HF computations benefit (in terms of scalability) from
an irregular data layout, where each process holds nonuniform
data points. Elemental is a general purpose library and does not
support the special layout that HF needs, while GA supports
it because it was designed to support NWChem.

VI. CONCLUDING REMARKS

We presented a case study in designing a one-sided in-
terface within a high-performance linear algebra and opti-
mization framework. Our work started with improving the
existing interface for updating distributed matrices in Ele-
mental (AxpyInterface), and we justified the need for a new
API (RMAInterface) for applications that require asynchronous

one-sided operations on distributed arrays. We built a Dis-
tributed Arrays interface (EL::DA) using the RMAInterface
and Elemental DistMatrix to enhance the productivity of
developers requiring optimized one-sided operations and a
high-performance linear algebra framework. Integrating such
an interface into Elemental opens up interesting possibilities
in directly accessing a rich set of scientific algorithms, which
is otherwise not possible from a standalone API such as GA.
Overall, we demonstrated that our proposed RMAInterface is
an effective programming model for asynchronous distributed
matrix update delivering competitive performance results com-
pared with those of existing MPI point-to-point APIs and GA.
We saw that the general-purpose cyclic distribution used by
Elemental is not optimal for HF computations, at least as
implemented in GTFock, but Elemental and RMAInterface are
designed to be general-purpose, not specifically to support a
particular quantum chemistry method. Our future work plans
include enhancing RMAInterface to support the different data
structures (e.g., graphs) and distributions offered by Elemen-
tal.

ACKNOWLEDGEMENTS

We thank Jack Poulson, the original author of Elemental, for
his support, Min Si for Casper related queries, and, Gail Pieper
for reviewing the paper. We used resources of the NERSC
facility, supported by U.S. DOE SC under Contract No. DE-
AC02-05CH11231. We gratefully acknowledge the computing
resources provided on Blues, a HPC cluster operated by
the LCRC, ANL. We used resources of ALCF, which is a
DOE SC User Facility supported under Contract DE-AC02-
06CH11357. Assefaw Gebremedhin and Sayan Ghosh were
supported in part by NSF CAREER award IIS-1553528.

REFERENCES

[1] S. Balay, W. Gropp, L. C. McInnes, and B. F. Smith. Petsc, the
portable, extensible toolkit for scientific computation. Argonne National
Laboratory, 2:17, 1998.

[2] D. Bonachea and J. Duell. Problems with using MPI 1.1 and 2.0 as
compilation targets for parallel language implementations. International
Journal of High Performance Computing and Networking, 1(1-3):91–99,
2004.

[3] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault,
J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, et al. Flexible develop-
ment of dense linear algebra algorithms on massively parallel architec-
tures with dplasma. In Parallel and Distributed Processing Workshops
and Phd Forum (IPDPSW), 2011 IEEE International Symposium on,
pages 1432–1441. IEEE, 2011.

[4] S. Byna, W. Gropp, X-H. Sun, and R. Thakur. Improving the perfor-
mance of MPI derived datatypes by optimizing memory-access cost.
In International Conference on Cluster Computing (CLUSTER), pages
412–419. IEEE, 2003.

[5] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK: A portable linear
algebra library for distributed memory computers — design issues and
performance. In Applied Parallel Computing Computations in Physics,
Chemistry and Engineering Science, pages 95–106. Springer, 1996.

[6] J. Dinan, P. Balaji, J. R. Hammond, S. Krishnamoorthy, and V. Tippa-
raju. Supporting the global arrays PGAS model using MPI one-sided
communication. In 26th International Parallel & Distributed Processing
Symposium (IPDPS), pages 739–750. IEEE, 2012.

[7] W. Gropp, T. Hoefler, R. Thakur, and J. L. Träff. Performance
expectations and guidelines for MPI derived datatypes. In Recent
Advances in the Message Passing Interface, pages 150–159. Springer,
2011.

[8] J. R. Hammond, S. Ghosh, and B. M. Chapman. Implementing
openshmem using mpi-3 one-sided communication. In OpenSHMEM
and Related Technologies. Experiences, Implementations, and Tools,
pages 44–58. Springer, 2014.

[9] T. Hoefler, C. Siebert, and A. Lumsdaine. Scalable communication
protocols for dynamic sparse data exchange. ACM Sigplan Notices,
45(5):159–168, 2010.

[10] X. Liu, A. Patel, and E. Chow. A new scalable parallel algorithm for
Fock matrix construction. In 28th International Parallel and Distributed
Processing Symposium, pages 902–914. IEEE, 2014.

[11] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler,
A. Heinecke, H. Bungartz, and H. Lederer. The elpa library: scalable
parallel eigenvalue solutions for electronic structure theory and compu-
tational science. Journal of Physics: Condensed Matter, 26(21):213201,
2014.

[12] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard Version 3.0. www.mpi-forum.org/docs/mpi-3.0/mpi30-report.
pdf, 2012.

[13] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global Arrays: A
nonuniform memory access programming model for high-performance
computers. The Journal of Supercomputing, 10(2):169–189, 1996.

[14] J. Poulson, B. Marker, R. A. Van de Geijn, J. R. Hammond, and N. A.
Romero. Elemental: A new framework for distributed memory dense
matrix computations. ACM Transactions on Mathematical Software
(TOMS), 39(2):13, 2013.

[15] R. Reussner, J. L. Träff, and G. Hunzelmann. A benchmark for MPI
derived datatypes. In Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pages 10–17. Springer, 2000.

[16] M. Si, A. J. Peña, J. Hammond, P. Balaji, and Y. Ishikawa. Scaling
NWChem with efficient and portable asynchronous communication in
MPI RMA. In 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pages 811–816. IEEE, 2015.

[17] M. Si, A. J. Peña, J. Hammond, P. Balaji, M. Takagi, and Y. Ishikawa.
Casper: An asynchronous progress model for MPI RMA on many-
core architectures. In International Parallel and Distributed Processing
Symposium (IPDPS), pages 665–676. IEEE, 2015.

[18] M. ten Bruggencate and D. Roweth. DMAPP - An API for one-sided
program models on baker systems. In Cray User Group Conference,
2010.

[19] J. Träff, R. Hempel, H. Ritzdorf, and F. Zimmermann. Flattening on
the fly: Efficient handling of MPI derived datatypes. Recent Advances
in Parallel Virtual Machine and Message Passing Interface, pages 678–
678, 1999.

[20] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma,
H. J.J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus,
et al. NWChem: A comprehensive and scalable open-source solution for
large scale molecular simulations. Computer Physics Communications,
181(9):1477–1489, 2010.

[21] R. A. Van de Geijn. Using PLAPACK: Parallel Linear Algebra Package.
MIT Press, 1997.

