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Abstract In a cloud computing paradigm, energy efficient allocation of different vir-
tualized ICT resources (servers, storage disks, and networks, and the like) is a complex
problem due to the presence of heterogeneous application (e.g., content delivery net-
works, MapReduce, web applications, and the like) workloads having contentious
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allocation requirements in terms of ICT resource capacities (e.g., network bandwidth,
processing speed, response time, etc.). Several recent papers have tried to address
the issue of improving energy efficiency in allocating cloud resources to applications
with varying degree of success. However, to the best of our knowledge there is no
published literature on this subject that clearly articulates the research problem and
provides research taxonomy for succinct classification of existing techniques. Hence,
the main aim of this paper is to identify open challenges associated with energy effi-
cient resource allocation. In this regard, the study, first, outlines the problem and
existing hardware and software-based techniques available for this purpose. Further-
more, available techniques already presented in the literature are summarized based
on the energy-efficient research dimension taxonomy. The advantages and disadvan-
tages of the existing techniques are comprehensively analyzed against the proposed
research dimension taxonomy namely: resource adaption policy, objective function,
allocation method, allocation operation, and interoperability.

Keywords Cloud computing · Energy efficiency · Energy efficient resource
allocation · Energy consumption · Power management

Mathematics Subject Classification 68U01

1 Introduction

The most comprehensive, widely used and referred definition of cloud computing in
the literature is presented in [1] that defines cloud computing as “Amodel for enabling
convenient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management effort or service provider
interaction”.Cloud computing is a newcomputingmodelwhere amyriad of virtualized
ICT resources are exposed asweb utilities, which can be invoked and released in an on-
demand fashion by application programs over the Internet [2–4]. The concept of cloud
computing is an immediate extension ofmanywell researched domains such as virtual-
ization, distributed, utility, cluster, and grid computing. Cloud computing datacenters
employvirtualization technologies that allowschedulingofworkloads on smaller num-
ber of servers thatmay be kept better utilized, as differentworkloadsmayhave different
resource utilization footprints and may further differ in their temporal variations.

In the cloud computing paradigm, all ICT resources are “virtualized” as datacenter
facilities and are operated by third party providers [5–7]. Multiple commercial clouds
already alleviate different businesses from the burden ofmanagement andmaintenance
of different resources, and allow businesses to supplement their assets [8]. More and
more companies are offering cloud computing services as evident by the develop-
ment and expansion of commercial cloud infrastructures, such as Amazon, Microsoft,
Gogrid, Flexiant, Layered Technologies, vCloud Express and ENKI Prima Cloud.
From Google’s point of view [9], the five key characteristics of cloud computing are
task centric, user centric, intelligence, powerfulness, and programmability.

Moreover, cloud computing is based on a pay-as-you-go model, where the end-
users pay only for the number and type of services they purchase [10]. In cloud
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computing environments, increasing ICT resource capacity or removing an existing
resource capacity, etc. can be done via invocation of an SOAP/Restful API. Cloud
computing amortizes the ownership cost over distributed servers, shared system oper-
ators, and diversity of workloads and offers different services such as computation,
backup, data access, software and hardware services to end-users. The cloud providers
charge end-users based on service level agreements (SLAs) that account for the usage
or reservation of data center resources. The cloud computing infrastructure has sev-
eral important and unique key issues such as meeting performance constraints under
uncertainties, dynamic scalability, standardization, fault-tolerance, debugging, reduc-
ing operational costs, reducing carbon emission (focus of this paper) [11] and ensuring
security and privacy of hosted ICT resources and application data [12].

Reducing carbon emission by cloud computing datacenters has emerged as one the
dominant research topics both in industry and academia. This is due to the fact that the
energy required by the datacenters for its operation, illumination, power supply, and
cooling, contribute significantly to the total operational costs [13]. Therefore, reducing
the power consumption and energy dissipation had become important concerns for
making cloud services environmentally sustainable [14].

The growing transition to datacenter cloud computing systems is fuelling an increas-
ing concern about the growing demand for electricity and related carbon emissions
that will be caused by vast datacenter that are being constructed at a fast pace. In 2010,
electricity usage in global datacenter accounted for about 1.3 % of total electricity
usage worldwide. In the U.S. alone this figure is about 2.0 %. According to a McKin-
sey report, the total estimated electricity bill for datacenter in 2010 was $11.5 billion.
Energy costs in a typical datacentre doubles every 5 years. (Figure 1 shows the carbon
emission from all datacenter worldwide estimated by Stanford University, McKinsey

Fig. 1 Carbon footprint from datacenters worldwide
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study and Gartner research). Without serious efforts to curb electricity demand and
related emissions, current projections (see Fig. 1) show that by 2020worldwide carbon
emission from datacenter will quadruple (Commutative Average Growth Rate-CAGR
>11 %). These figures are expected to rise with our growing reliance on datacenter.

One of the major causes of energy inefficiency in datacenters is the wastage of
idle power when ICT resources such as servers providing computing and storage
capacities run at low utilization. For instance, even at a very low server load of 10 %
CPU utilization, the server consumes over 50 % of the peak power [15]. Similarly,
if the disk, network, or any such ICT resource becomes the performance bottleneck,
other ICT resources will consequently become idle and waste a lot of energy. Energy-
efficient management of ICT resources in datacenters for cloud computing systems
is an important concern for several reasons [16]. First, the electricity costs for pow-
ering ICT resources and cooling systems are starting to overtake the actual cost of
purchasing the ICT hardware. Second, increased datacenter energy usage and related
carbon emissions has prompted environmental concerns (leading governments across
the world are now seeking to regulate datacenter power usage). Finally, increased
energy usage and heat dissipation has negative impacts for density, reliability, and
scalability of datacenter hardware.

Wedefine the energy efficient resource allocation problemas “the problemof select-
ing, deploying, and run-time management of datacenter resources in a way that hosted
application achieves their QoS constraints, while meeting providers’ objectives—
improved resource utilization with reduced financial and environmental costs”. The
foremost objective of cloud service providers is to have a cost effective and energy effi-
cient solution for allocating virtualized ICT resources to end-users’ application while
meeting the QoS (Quality of Service) level as per SLA (Service Level Agreement).
On the other hand, end-users are interested in minimizing the cloud investment while
meeting QoS constraints such as application response time, availability, and through-
put. Hence, the cloud datacenter service providers are eager to optimize the efficiency
of resource allocation because the requested resources are handled from a shared pool
of resources. By improving energy efficiency of datacenter, the service providers can
reduce the size and cost of the energy sources needed to power and cool the ICT
resources [17]. In the literature there are four well known approaches to design of an
energy efficient cloud computing datacenters: (a) reducing the energy dissipated in an
infrastructure through energy-efficient resource allocation and management of data-
centers, (b) ensuring permanence of infrastructure to reduce the need for equipment
replacement e.g., circumvent server breakdown by preserving safe operation tem-
perature, (c) increased equipment utilization as computational load is geographically
distributed to cater for the needs of end-users, and (d) minimizing self-management
and flexibility as cost is spread across a number of datacenter [18].

To be more specific, some of the recent research works have investigated the
optimization of energy utilization by monitoring the performance virtualized ICT
resources (server) and hosted workload under variable CPU frequency [19,20]. Some
other approaches have investigated techniques such as processor speed control, voltage
adjustments, switching off a display monitor, hibernate or sleep mode [21–23]. How-
ever, applying aforementioned techniques targeted single personal computing (PC)
devices; hence do not completely solve the problem of energy inefficiency in data-
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center. This is because the energy saved by scaling down the CPU voltage is far less
than powering off a physical server. An energy-saving approach for cloud datacenter
is different from that for a single PC. The cloud computing is a prototype shift from the
outdated uniprocessor computation approach of development to that of an accessible,
multi-tenant, and global infrastructure.

Many recent research works have proposed energy-aware resource allocation com-
puting methods for distributed and cloud computing [24–28]. Several surveys of
resource allocation of cloud computing have also been reported [29–33]. However,
none of them focus on the core challenges of energy efficient resource allocation in
clouds. Further, none of the previous works have clearly addressed the energy efficient
resource management problem from application engineering perspective.

In this paper we make following important contributions: (i) we clearly identify the
open research challenges associated with energy efficient allocation of ICT resources
in cloud computing datacenter; (ii) we present a novel research taxonomy (resource
adaption policy, objective function, allocation method, allocation operation, and inter-
operability) for classifying existing literature; and (iii) we apply the proposed taxon-
omy for critically surveying that existing literature anddiscussing their core advantages
and disadvantages.

Rest of this paper is organized as follows: Sect. 2 articulates the key concepts
concerning the issue of energy efficient resource allocation problem; Sect. 3 presents
the taxonomy based on research dimensions for classifying the existing literature in
the concerned research area; Sect. 4 classifies the existing state-of-the-art based on
proposed research taxonomy; Sect. 5 presents the summary and our plan for future
work; paper ends with some conclusive remarks in Sect. 6.

2 Key concepts

This section explores concepts related to energy efficient allocation of cloud computing
resources that forms the basics of our research work.

2.1 Energy efficiency

The fossil fuels are one of themajor sources of energy generation and use of fossil fuels
produce harmful carbon emissions. The issue of energy consumption across the ICT
infrastructure such as datacenter is important and has received wide recognition in ICT
sector [34–36]. A new scalable design for efficient cloud computing infrastructure is
required that can support the reduction inGreenhouseGas (GHG) transmissions in gen-
eral, and energy consumption in particular [35–39]. The increase in ICT resource num-
ber and density has direct impact on the user expenditure as well as cooling and power
management of datacenter infrastructures [40,41]. In cloud computing, two popular
schemes: (a) sleep scheduling and (b) resource virtualization had helped in improve-
ment of energy efficiency and power consumption within the datacenter [42,43].

A number of datacenter provider companies are persistent and dependent on the
use of “old dirty energy” equipment. GreenPeace [44] analyzed the datacenter invest-
ments of top cloud vendors including Amazon, Azure, and the like; and the results of
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their research revealed number of interesting facts, which are explained next. From
their report it was clear that most of the vendors do not take major steps towards clean
and renewable electricity. Only a few vendors have started to pay some attention to
observing the dirty energy and carbon footprints of their ageing ICT resources. How-
ever, precisely measuring the energy consumption and GHG emissions seems impos-
sible due to lack of transparency between energy consumption by ICT equipment
(resource) and environmental impact of equipment. The two percentage measures: (a)
coal intensity and (b) clean energy index were computed and compared with the max-
imum power demand of a datacenter. The coal intensity is an approximate measure
of electricity produced by coal for datacenter operations. The clean energy index is
computed based on the measure of electricity demand size and renewable energy used
to power the datacenter.

The datacenter providers are now starting to realize the relationship between energy
consumed by their ICT resources and GHG emissions. The three areas where energy
is most consumed within a datacenter includes: (a) critical computational server pro-
viding CPU and storage functionalities; (b) cooling systems; and (c) power conversion
units. In the recent Google’s Green Data Centers report [9], three best practices and
five step approaches for cooling and reducing energy usage within a datacenter is pro-
posed. The best practices include (i) measuring performances such as ICT equipment
(resource) energy and facility energy overhead; (ii) optimizing air flow by prevention
of mixing hot and cold air and elimination of hot spots; (iii) turning up the thermostat
by elevated cold aisle and raising the temperature. A part from best practices, the
five steps of reducing energy usage are: (a) identifying critical monitoring points, (b)
efficient arrangement of vent tiles, (c) increase humidity and temperature settings, (d)
isolation of UPS, and (e) improving CRAC unit controller.

2.2 What is resource allocation problem?

Resource allocation is one of the challenges of cloud computing because end-users
can access resources from anywhere and at any time. The resources in a cloud cannot
be requested directly but can be accessed through SOAP/Restful web APIs that map
requests for computations or storage are mapped to virtualized ICT resources (servers,
blob storage, elastic IP, etc.). Since, cloud datacenter offer abundance of resources,
the cloud computing model is able to support on-demand elastic resource allocation.
However, such abundance also leads to non-optimal resource allocation.

In cloud computingparadigm, the key challenge is the allocation of resources among
end-users having changing requests of resources based on their application usage
patterns. The unpredictable and changing requests need to run on datacenter resources
across the Internet. The aim of resource allocation for any particular cloud provider
can be either optimize applications’ QoS or improve resource utilization and energy
efficiency. The main objective is to optimize QoS parameters (response time) that
measures the efficiency of resource allocation regardless of the type of ICT resources
allocated to end-users. The optimized QoS parameters can be any measure such as
time, space, budget, and communication delay. Some of the challenges associated with
energy efficient resource allocation policies that we have identified include:
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(1) Choosing workload type and interference between different workloads, such as
resource usage, performance, and power consumption.

(2) Provisioning of resource allocation and utilization at run time by evaluating the
possibility of centralized, federated, and standardized datacenter resources.

(3) Improving asset utilization, network accessibility, power efficiency, and reduction
in the time needed to recover from any failure.

(4) Improving cloud resources, topology, tools, and technologies by evaluating and
fine tuning the cloud infrastructure layout.

(5) Increasing performance and the return on investment by assessing application
inter-dependencies to facilitate resource consolidation.

(6) Supporting business security and flexibility for mission-critical applications
through practical cloud infrastructure planning.

The definition of resource is very important as anything, such as CPU, memory, stor-
age, bandwidth, and application can be termed an ICT resource in cloud computing
landscape. The important characteristic of a resource unit is abstracted by the cost of
operation and infrastructure. The problem of resource allocation is quite complex and
needs someassumptions including: (a) set ofworkflow tasks for resource requirements,
(b) set of operational servers, (c) task consolidation meeting SLA, and (d) reduction in
power wastage and resource usage costs. The resource allocation problem involves the
appropriate provisioning and efficient utilization of available resources for applications
to meet the QoS performance goals as per SLA. For cloud computing infrastructures,
the service providers also need to track the changes in resource demands. Moreover,
a cloud service provider allocates system resources to CPUs, and determines whether
to accept incoming requests according to resource availability. The factors, such as:
(a) monitoring the availability of system resources, (b) tracking QoS requirements,
(c) monitoring users’ service requests, (d) pricing the usage of resources, (e) tracking
execution improvement of the service requests, and (f) maintaining the actual usage
of resources make the resource allocation complex and complicated task. Moreover,
the resource allocation problem is also challenging due to the time-varying workloads
that cause different resource demands from service providers for the cloud computing
paradigm.

3 Taxonomy of resource allocation techniques

As we mentioned earlier, there are a number of resource allocation techniques that has
not yet surveyed with the focus on energy efficient resource management problem in
datacenter clouds. To do so, this section, makes a comparison based on the follow-
ing dimensions: resource adaption policy, objective function, allocation method, and
allocation operation.

3.1 Resource allocation adaption policy

This dimension refers to the degree towhich an energy-aware resource allocator is able
to adapt to dynamic or uncertain conditions. The uncertainties arise from a number
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Fig. 2 Resource adaption
policy taxonomy

of factors including resource capacity demand (e.g., bandwidth, memory, and storage
space), failures (e.g., failure of a network link and failure of the CPU hosting applica-
tion instance), and user workload pattern (e.g., number of users and location). In this
paper, the resource adaption policy is classified into three categories: (a) predictive, (b)
reactive, and (c) hybrid. Figure 2 depicts the pictorial representation of the proposed
classification.

Monitoring the status of cloud-based hardware resources (e.g., virtual machine
container or virtual server, storage, and network) and the software resources (e.g., web
server, application server, database server, etc.) that make-up the application is integral
to the functioning and implementation of the aforementioned resource adaptation
policies. Monitoring activity [45] involves dynamically profiling the QoS parameters
related to hardware and software resources, the physical resources they share, and
the applications running on them or data hosted on them. Monitoring services can
help resource allocator as regards to: (i) keeping the cloud resources and application
operating at peak energy efficiency levels; (ii) detecting the variations in the energy
efficiency of resources and QoS delivered by hosted applications; and (iii) tracking
the failure of resources and applications.

Using past knowledge-driven machine learning techniques, predictive resource
allocation policy can dynamically anticipate and capture the relationship between
applications QoS targets, energy efficiency objective function, and current hardware
resource allocation and user workload patterns in order to adjust the resource alloca-
tion. The past knowledge is derived from the monitoring service, which continuously
profiles information in a searchable database (e.g., MySQL and NoSQL databases).
The resource capacity planning is done at prior and allocations are approximated based
on resource performance models and application workload models. Both of the afore-
mentioned models leverage past monitoring knowledge for training machine learning
techniques. The output of the machine learning techniques such as neural networks
[46], genetic algorithms [47], reinforcement learning [48], etc. is the feedback to the
resource allocator.

Workload prediction models forecast workload behavior across applications in
terms of CPU, storage, I/O, and network bandwidth requirements. On the other hand,
resource performance model predict the performance of CPU, storage, and network
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resources based on their past performance history, and anticipated workload patterns.
For example, the predictive technique proposed in [49] can tackle unprecedented
sharp changes in application workloads. Predictive allocation handles the estimated
base workload at coarse time scales (e.g., hours or days) maintaining long term work-
loads [50]. The predictive resource allocation suffers from limitation when there is
no sufficient workload and resource performance data available to train the machine
learning technique. For example, such a scenario can arise when deploying a new
application on cloud resources, which does not have any past performance or work-
load history. Predictable approaches can also fail under situations when the workload
and resource performance data do not have any specific distributions. This affects the
accuracy of prediction. In addition, resource allocation predictions have been proven
to be expensive in terms of storage cost (main memory processing) and processing
time complexity [49].

Reactive techniques [51] rely on monitoring the state of cloud resources and trig-
gering hard-coded, pre-configured corrective actions when some specific even occurs
such as utilization of the CPU resource reaches certain threshold or energy consump-
tion of a CPU resource goes beyond threshold. The efficiency of reactive allocation
depends on the ability to detect fluctuations. Besides handling temporary changes of
workload, the allocations are adjusted in a timely manner by minimizing the deviation
from the QoS performance goals during and after the workload change [49]. Reactive
resource allocation adapts to service requirements and resource availability, and opti-
mize for long term resource allocation. The reactive approach changes allocation of
resources in short intervals (e.g., every few minutes) in response to workload surges
and is computationally attractive because no extensive knowledge of the application’s
resource and workload demands is needed. Reactive policies react quickly to changes
in workload demand but have limited significance because the policies suffer from
issues such as: (a) lack of predictability, (b) instability, and (c) high provisioning costs
[50].

Pure reactive resource allocation delays workload and operates over time scale
of a few minutes. Pure predictive resource allocation preserves long-term work-
load statistics besides envisaging and allocating for the next few hours. Therefore,
hybrid resource allocation combines predictive with reactive allocation techniques
and accomplishes substantial improvements in: (a) meeting SLAs, (b) conserving
energy, and (c) reducing provisioning costs. In hybrid resource allocation approach, a
predictive (reactive) allocation switches the underline workload (handles any excess
demand) at granular (finer) time scales. A coordinated management among predictive
and reactive approaches achieves a significant improvement in energy efficiency with-
out sacrificing performance [52]. Hybrid allocation approaches outperforms predictive
and reactive resource allocation strategieswhen performance, power consumption, and
number of changes in resource allocation are considered [50].

3.2 Objective function

The objective function can be amathematical expression,metric, or function that needs
optimization with conditions subject to system constraints [50]. Energy optimization
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Fig. 3 Objective function
taxonomy

Fig. 4 Allocation method
taxonomy

objective function, which is also referred as cost function and energy function in the
literature, would be either single or composite respecting to the number of parameters
considered for optimization. For instance, a cost function which aims at minimizing
energy consumption is considered as single objective function; hence if it deals with
minimizing both energy consumption and SLA violation, the cost model would be
composite. Figure 3 represents the taxonomy of objective function considered for
classification of different approaches present in literature.

In cloud computing, for the increasing cost and shortage of power, an objective
function is the measure of increase power usage for a resource allocation. Moreover,
the objective function changes with the implementation of the algorithm for specific
system architecture under specified user requirements [53].

3.3 Allocation method

The energy conservation in hosting centers and server farms is of increasing impor-
tance. In the paper, we have broadly classified the allocation method in power-aware
and thermal-aware allocation methods. Figure 4 presents the allocation method tax-
onomy considered for the study.

3.3.1 Power-aware

In the context of cloud computing, power-aware design techniques aim to maximize
service-level performance measures (e.g. SLA violation rate, SLA accomplishment
rate, waiting time, etc.) under power dissipation and power consumption constraints
[54,55]. Moreover, a power-aware technique can also help to reduce the energy cost.
Power-aware strategies can be activated either in hardware or software level [56]. For
instance, dynamic component deactivation (DCD) strategy at hardware level is applied
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Fig. 5 Taxonomy of power management techniques [48]

along with Advanced Configuration and Power Interface (ACPI1) strategy at software
level, since even with optimized hardware, poor software level design or optimization
can lead to extensive power losses [30].

Since temperature is closely related to the power density, the power/energy factor
is involved in the process of calculating dynamic criticality in power-aware alloca-
tion and scheduling. Power-aware technologies either use low power energy-efficient
hardware equipment (e.g., CPUs and power supplies) to reduce energy usage and
peak power consumption, or reduce energy usage based on the knowledge of cur-
rent resource utilization and application workloads. Power-aware scheduling process
works at circuit, device, architectural, compiler, operating system, and networking
layers [57]. The most efficient and direct method is to use more power efficient com-
ponent in the hardware design phase. Other approaches include developing algorithms
for scaling down power or even turning down a system for unused resources [56]. In
this regard, Beloglazov et al. [30] proposed a high-level taxonomy of power and energy
management, Fig. 5.

3.3.2 Thermal-aware

Thermal-aware management predicts the thermal effects of a task placement and the
resource allocation is based on the predicted thermal effect [30,58]. The thermal-
aware approaches take the temperature as one of the major considerations for resource
allocation. The temperature depends on the power consumption of each processing
element, dimension, and relative location on the embedded system platform [60]. The
goal of thermal-aware allocation is to minimize peak air inlet temperature resulting in
minimization of the cost of cooling. Thermal-aware scheduling approaches keep the

1 http://www.acpi.info/.
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Fig. 6 Allocation operation
taxonomy

temperature of all the data processing equipment below a certain threshold and at the
same time maximize the energy efficiency of the system [61].

3.4 Allocation operation

In this paper, we have broadly classified the allocation operation for optimizing energy
efficiency of cloud resource into following categories: (a) service migration and (b)
service shutdown. The details of service migration and service shutdown allocation
operations are provided below. Figure 6 presents the allocation operation taxonomy
considered for the study.

3.4.1 Service migration

The transferring of process states and local data of an application component instance
(e.g. web server and database server) to a newCPU resource (virtualmachine container
or virtual server) is called service migration. The service migration process enables:
(a) dynamic load distribution by migrating processes from overloaded CPU or storage
resources to less loaded ones, (b) fault resilience by migrating processes from cloud
resources that may have experienced a partial failure, (c) eased system administration
by migrating processes from the cloud resources that are about to be shut down or
otherwise made unavailable, and (d) data access locality bymigrating processes closer
to the source of some data [60]. The major decision concerns of a service migration
process are the time when a migration will occur, the selection process of the service
which will migrate, and at which destination resource a service will move.

Although, there are different power-aware algorithms for thehost overload/underload
detection, CPU selection, and CPU placement, the service migration has still a lot of
complexities. For instance, consider an application component migration from small
instance to medium instance or large instance. These instances vary in their hard-
ware configuration such as RAM, cores, local storage size, addressing bits and I/O
performance. This issue will be more complicated in case of service migration to het-
erogeneous resources such as CPU in which, for example, Amazon EC2 offers more
than 10 types of CPU resources2 and also migrating across diverse cloud providers.
In this regard, a sample scenario would be migration of a service from a server with

2 http://aws.amazon.com/ec2/instance-types/.
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Fig. 7 Interoperability
taxonomy

32 virtual cores in GoGrid provider to a server with extra-large CPU instance (which
has 40 virtual cores) in Amazon.

3.4.2 Service shutdown

Service shutdown refers to automatic switching/powering off the system, hardware
component, or network on the failure or abnormal termination of the previously active
resource allocation. Service shutdown can be automatic or might require human inter-
vention [62]. One of the major reasons for service shutdown is to conserve energy.
However, before shutting down a server, all the running services have to be con-
solidated and migrated to other nodes power and migration cost aware application
placement algorithms in virtualized systems [15,63,64].

3.5 Interoperability

The Interoperability refers to the applicability domain of energy optimization tech-
nique. In fact, they can be applied to single, multiple, or both cloud resource types, in
which they are called homogeneous and generic respectively. A generic resource allo-
cation has ability to operate across multiple cloud resource types including hardware,
software, and application. With implementation of generic technique, a datacenter
vendor can actuate the energy efficiency operations across multiple ICT resources
during the resource allocation phase. On the other hand, a homogeneous resource
allocation technique is only capable of effecting the energy efficiency operation on a
single datacenter resource type (Fig. 7).

Table 1 summarizes the energy-efficient resource allocation approaches evaluated
with the dimensions of adaption policy, type of resource, objective function, allocation
method, allocation operation, and Interoperability constraints.

4 State of the art in resource allocation mechanisms

Lee and Zomaya [65]. The authors proposed two energy-aware task consolidation
mechanisms (ECTC and MaxUtil). The goal of the aforementioned heuristics was
to maximize resource utilization, taking into consideration active and idle energy
consumption. The energy consumed by a task was calculated based on an objective
function. The objective function was derived through number of experiments. The
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performance evaluation of ECTC and MaxUtil heuristics were carefully evaluated
with number of experiments with a diverse set of tasks. Both algorithms are similar
in nature but the main difference is the computation of the cost function. The authors
assumed that relocation of running tasks can reduce energy consumption. Therefore,
the variants of the aforementioned algorithmswere further implemented to incorporate
task migration.

Lee and Zomaya also suggested that the total energy utilization can considerably
be reduced by combining more than one task instead of assigning it individually to a
server. Moreover, the authors also focused on the characteristics and issues of resource
management. The underline assumption of energy model was the incorporation of the
resources in the target system with an effective power-saving mechanism. Moreover,
the energy model had a direct relationship with processor utilization. The ECTC and
MaxUtil algorithms assign each task to the minimum energy consumption resource
without any degradation in performance. The results of experiments reveal promising
energy-savings.

Srikantaiah et al. [15]. The authors evaluated the relationship between resource and
energy consumption. Moreover, the performances of consolidated workloads were
evaluated. The authors used two main features including CPU cycles, and disk usage
in a bin-packing problem for task consolidation. The authors merged tasks and balance
energy consumption by computing optimal points based on Pareto frontier algorithm.
There are twomajor steps incorporated in the proposed technique. The first step was to
compute optimal points from profiling data. The profiling step was used by an energy
aware resource allocation mechanism. For each server, the mechanism computes the
Euclidean distance measure between the current and the ideal point.

Based on the experimental results, the authors concluded that the outcome of energy
expenditure per transaction is a “U” shaped curve, and they have figured out the opti-
mal utilization point from the curve. The experiments computed energy usage, perfor-
mance changes, and resource utilization as multiple workloads with varying resource
usages are combined on common servers. The study revealed the energy performance
trade-offs for consolidation and indicated that optimal operating point. The paper
focused only on a practicable but vital domain covered by CPU and disk resource
combinations. The paper focused on some of the intricacies involved in performing
consolidation for power optimization and proposed practical directions to address the
challenges involved.

Tang et al. [57]. The authors proposed a utility analytic model to represent the inter-
action between computing servers arrival requests based on the queuing theory. The
implemented model considered real time tasks as a request. The authors combined
a linear and low complexity heat recirculation power model for the modeling inlet
temperatures. The model also considered the impact factor measure to reflect the task
performance degradation. Moreover, the distribution of incoming task to maximize
the supply temperature while respecting the redline temperatures was also modeled in
the paper.

The authors used task assignment approaches to address the issue of minimizing
the cooling cost as the problem of reducing the peak inlet temperature. The exper-
iments were conducted on a real world e-book database and e-commerce web ser-
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vice. The main performance objective was to have the: (a) same QoS guarantee like
present in dedicated servers, and (b) maximize resource utilization along with reduced
energy consumption. Some of the features of proposed algorithms are cooling-oriented
thermal-aware assignment, no performance negotiation, uniformity of equipment, and
low-complexity heat recirculation model.

Torres et al. [66]. The authors proposed a technique to minimize the total number
of active servers to process heterogeneous workload without performance penalties
in terms of degradation of the QoS. The proposed technique also considered a real
workload of a case study (a national travel website) for experiments. The algorithm
combined two interesting techniques: (a) request discrimination and (b) memory com-
pression. The request discrimination blocked unnecessary requests to eliminate unfa-
vorable resource usage. The memory compression allows more tasks consolidation
by converting power consumed by CPU into memory capacity. The results show the
effectiveness of the proposed approach because the task was accomplished with 20 %
less computations.

The algorithms decrease the number of nodes required for a certain service level
criteria. The main contribution of the research was to reflect and validate that the
consolidation through virtualization of heterogeneous workloads is not only the major
factor to save energy. Moreover, the authors presented alternate procedures of rescu-
ing resources through reducing the resource wasted. The authors also identified new
prospects to improve the energy efficiency and reducing the resources required with-
out negatively influencing the performance and user satisfaction. The obtained results
show that the combined use of memory compression and request discrimination can
dramatically boost the energy savings.

Nathuji and Schwan [64]. The authors proposed a virtual power approach that com-
bined ‘hard’ and ‘soft’ scaling methods and integrated task consolidation into power
management. The technique had a comprehensive virtualization methodology to pro-
vision effective policies of power management. Both of the algorithms proposed in the
paper were based on power management services of DVFS and resource usage control
made with CPUs and physical processors. The experiments demonstrated the benefits
of active power management with the use of multiple processors. The techniques were
deployed on power-efficient Intel core micro-architecture and system utilization is
improved by up to 35 % using Qstates.

In particular, the consolidation of multiple customer applications onto multicore
servers introduces performance interference between collocated workloads, signifi-
cantly impacting application QoS. To address this challenge, the authors advocate that
the cloud should transparently provision additional resources as necessary to achieve
the performance that customers would have realized if they were running in isolation.
Accordingly, Q-Clouds was developed [8] that is a QoS-aware control framework
that tunes resource allocations to mitigate performance interference effects. Q-Clouds
uses online feedback to build a multi-input multi-output (MIMO) model that captures
performance interference interactions, and uses it to perform closed loop resource
management. In addition, the authors utilize this functionality to allow applications
to specify multiple levels of QoS as application Q-states. For such applications, Q-
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Clouds dynamically provisions underutilized resources to enable elevated QoS levels,
thereby improving system efficiency.

Subrata et al. [67]. In the paper a cooperative, for web-scale systems a power-aware
scheduling framework was proposed. The proposed scheduling scheme includes Nash
Bargaining Solution and maintains a specified QoS measure among all the service
providers to reduce energy usage. The level of energy usage was under controlled at
a certain threshold limit to maintain the desired QoS measure dictated by SLA. The
proposed algorithm fairly allocates the resources among all end-users and shows robust
performance improvements against all the performance inaccuracies in prediction of
information. The experiments revealed the significant energy savings for a targeted
QoS level.

In this paper, the authors proposed a cooperative power-aware scheduling algo-
rithm for web-scale distributed systems. The proposed algorithm directly takes into
account the multitude of ownerships of providers and incentives for cooperation, and
simultaneously maximizes the utility of the providers. The schemes can be considered
semi-static, as they respond to changes in system states during runtime. However,
they do not use as much information as traditional dynamic schemes; as such, they
have relatively low overhead, are relatively insensitive to inaccuracies in performance
prediction information, and are stable.

Csorba et al. [74]. This paper proposed a virtual power approach that supports the
isolated and independent operation running on virtual machines. The virtual power
technique self-organized the placement of CPU images onto physical servers in a cloud
infrastructure. The goal of the algorithm was to improve scalability. The algorithm
also handled the dynamism of resources by using Cross-Entropy Ant system [75].
The Ant system also calculated the best placement mappings of CPUs to the servers
present within the cloud infrastructure. The experiments were conducted on a real
world scenario for a large number of virtual machine image replicas that are deployed
concurrently. The results revealed that without performance penalties, application
requirements can be met and resulting in power consumption reduced up to 34 %.

This paper conjectures that using self-organizing techniques for system (re)config-
uration can improve both the scalability properties of such systems as well as their
ability to tolerate churn. Specifically, the paper focuses on deployment of virtual
machine images onto physical machines that reside in different parts of the network.
The objective is to construct balanced and dependable deployment configurations that
are resilient. To accomplish this, a method based on a variant of Ant Colony Opti-
mization is used to find efficient deployment mappings for a large number of virtual
machine image replicas that are deployed concurrently. The method is completely
decentralized; ants communicate indirectly through pheromone tables located in the
nodes.

This paper examines the effects of a hybrid environment in which services are
deployed in the private cloud, public clouds, or both depending on the present usage
pattern. Such a scenario is especially interesting with respect to handling load over-
shoots that may be caused by dependability and/or performance requirements. For
example, as the service usage pattern change, CPU instancesmay be added or removed
from the public cloud, while retaining the same number of CPU instances within the
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private cloud. During execution in such a hybrid cloud environment, a plethora of
highly dynamic parameters influence the optimal deployment configurations, e.g. due
to the influence of concurrent services and varying client load. Ideally, the deployment
mappings should minimize and balance resource consumption, yet provide sufficient
resources to satisfy the dependability requirements of services.

Fujiwara et al. [24]. A market-based framework for allocation of different resource
requests in a cloud computing infrastructure has been presented by Fujiwara et al. [24].
The resources were virtualized and delivered to end-users as different set of services.
The approach allowed end-users to request an arbitrary combination of services to dif-
ferent providers. The mechanism utilized the forward and spot market independently
to make predictable and flexible allocations at the same time. The proposed technique
considered the massive amount of providers’ ownership incentives for cooperation.
The algorithmmaximized computing as a utility from the service providers. The exper-
imental results showed that the proposed mechanism scale up to a feasible allocation
for resources in cloud infrastructures.

The authors used mixed integer programming method to strictly maximize the eco-
nomic efficiency. Moreover, the proposed mechanism employed dual market mecha-
nisms, the forward market for advance reservations of resource and the spot market
for immediate reservations. The proposed mechanism accepts combinational bids,
with which the user can express complemental requirements for resource allocation.
Moreover, both resource providers and users compete to offer/receive resources and
the algorithm employed the double-sided auction model. The proposed mechanism is
characterized by three properties: (a) the bidding language, (b) the allocation scheme,
and (c) the pricing scheme.

Mazzucco et al. [68]. The authors proposed an energy aware resource allocationmech-
anism to maximize the profits incurred by service providers. The resource allocation
methods that were introduced and evaluated are based on the dynamic states such as
on and off of powering servers during experiments. The goal was to minimize the
amount of electricity consumed and to maximize the user experience. This is achieved
by improving the utilization of the server farm, i.e., by powering excess servers off.
The policies are based on (a) dynamic estimates of user demand, and (b) models of
system behavior.

The proposed technique was not appropriate for scheduling applications having
critical performance requirements. The development model scheduled the servers for
completing customer jobs with deadlines. The emphasis of the latter is on generality
rather than analytical tractability. Someapproximations are done to handle the resulting
models. However, those approximations lead to algorithms that perform well under
different traffic conditions and can be used in real systems. The authors used a data
center composed of 25,000 machines and assume a server farm with a Power Usage
Effectiveness (PUE) of 1.7. Moreover, the power consumption of each machine used
ranges between 140 and 220 W and the cost for electricity, r, is 0.1 $ per kWh.
The results of the experiments and simulations revealed the effectiveness of proposed
approach under different traffic conditions.
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Raghavendra et al. [69]. The authors explored a combination of five dissimilar power
management policies in a data center environment. In the proposed framework, to
coordinate controllers’ actions, the authors applied a feedback control loop mecha-
nism. The approach adopted is independent of different workload types and was based
on the similar assumption made by Nathuji and Schwan [64]. The authors only con-
sidered CPU allocation as the resource for the experiments. Moreover, the authors
claimed that with different types of workload the actual power savings change. How-
ever, the benefits of the approach were similar for all different types of workloads.
The disadvantage of the approach was failing to support strict and variable SLAs for
number of applications in cloud infrastructures.

The authors proposed and evaluated a coordinated architecture for peak and aver-
age power management across hardware and software for complex enterprise envi-
ronments. The proposed approach leverages a feedback mechanism to federate multi-
ple power management solutions and builds on a control-theoretic approach to unify
solutions for tracking, capping, and optimization problems, with minimal interfaces
across controllers. Simulation results, based on server traces from real-world enter-
prises, demonstrate the correctness, stability, and efficiency advantages. Second, the
authors perform a detailed quantitative evaluation of the sensitivity of such a coor-
dinated solution to different architectures, implementations, workloads, and system
design choices. The five solutions that we considered in our proposed architecture are
representative of the key attributes and challenges in previously proposed power man-
agement solutions, e.g., average versus peak, local versus global, per-server versus
cluster, power versus performance, and fine-grained versus coarse-grained.

Kusic et al. [70]. The powermanagement was sequentially optimized and addressed
using Limited Look ahead Control (LLC) technique for virtualized heterogeneous
environments. This approach allows for multi-objective optimization under explicit
operating constraints and is applicable to computing systemswith non-linear dynamics
where control inputs must be chosen from a finite set. The major goal was to: (a)
maximize the profit of the resource provider, (b) decrease SLA violations, and (c)
minimize power consumption. The approach predicted the forthcoming state of the
system and performed necessary reallocations by the use of Kalman filter [76]. The
proposed approach also required simulation-based learning mechanisms instead of
relying on heuristics for the application specific adjustments.

The revenue generated by each service is specified via a pricing scheme or service-
level agreement (SLA) that relates the achieved response time to a dollar value that
the client is willing to pay. The control objective is to maximize the profit generated
by this system by minimizing both the power consumption and SLA violations. The
LLC formulation models the cost of control, i.e., the switching costs associated with
turning machines on or off. The aforementioned model was quite complex and had
several steps that resulted in severe degradation of performance with varyingworkload
demand. The running time of the controller used during experiments was 30 min
for running 15 nodes that was not appropriate for running applications on real-time
systems.

Cardosa et al. [71]. For virtualized heterogeneous computing environments, the prob-
lem of power efficient resource allocation was also addressed by Cardosa et al. [71].
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The authors proposed a group of procedures in data centers for dynamic placement and
power amalgamation of CPU. The aforementioned algorithms controlled minimum
and maximum percentage of the CPU utilization for the virtual machines having sim-
ilar workload. The resource allocation uses application heterogeneity and ensures the
high application utility. The technique suits only enterprise environments and requires
the knowledge of application priorities [69]. The allocation of Virtual Machines is
static and only CPU is used as a resource during reallocation.

Verma et al. [63]. The problem of power-aware dynamic application placement as
continuous optimization problem was investigated in virtualized heterogeneous envi-
ronments by Verma et al. [63]. In the proposed model titled “pMapper”, at any time
instant, the problem of placement of CPUs on physical servers is addressed and opti-
mized to maximize performance issues and minimize total power consumption. The
authors also used a heuristic similar to [15]. The authors also used a similar live migra-
tion algorithm of virtual machines [64]. The experimental evidence was established
to show the efficiency of pMapper. The proposed algorithms were unable to handle
strict requirements of SLAs because of the different violations in the workload.

5 Discussion and future directions

We identified some key problems that can be addressed for energy aware resource
allocation in clouds. The concept of virtualization offers the capability to transferCPUs
from physical servers to the cloud infrastructure. The mechanism of static or dynamic
clustering of different CPUs on a physical server depending upon varying resource
requests can be used. During the process, some idle servers can be either switched off,
put to sleep, or in hibernatingmode so that the total energy consumption is reduced.We
already discussed several resource allocation techniques. However, forceful clustering
of CPUs will result in performance penalties due to SLA violation. For this reason,
earlier resource allocation approaches effectively addressed the balancing of factors
such as, performance measures and energy usage.

The cloud computing paradigm offers services that provide the ability to assign vir-
tual machines and provision a number of applications to the cloud users. By employing
the aforementioned technique, the different types of applications can be consolidated
on a physical computer server. The applications may not be related to one another
because of static or variable workload. One of the research problems is to figure out
what type of applications can be consolidated to a single working server. A simi-
lar research direction is also reported in [29–31,33]. The aforementioned technique,
results in efficient resource allocations and consolidation for maximizing throughput.
Moreover, the focus of such consolidation is on uniform types of workload on servers
and the servers do not take in to consideration divergent types of the applications
running on the virtual machines.

The virtual machines communicate with one another in a network of different
topologies. If the allocation of resources is not done in an optimized way, then many
migrations of processes will occur. A similar research direction is also presented in
[29–31]. The result of such a scheme is an expensive data transfer because CPUs are
logically hosted on distant physical servers. With this scheme, the communication
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is a bottle neck and involves switches, access-points, and routers that also consume
power. The aforementioned schemewill also result in delaying packets because packets
need to travel across the network. To eliminate the data transfer delays and reduce
power consumption, observing the communication pattern among CPUs is important.
Therefore, more work is needed to place CPUs on the same or closely located servers.

In addition to energy efficient allocation of resources, application interface may
offer different levels of performance to end-users. Therefore, in Cloud computing QoS
aware resource allocation policies also plays an important role. A comprehensive study
of services offered by cloud and workload distribution is needed to identify common
patterns of behaviors. A similar research direction is also presented in [31,32]. More
efforts are needed to study the relationship between varying workloads, while an
attempt should be made to build frameworks that can minimize the trade-offs between
SLA and provide energy efficiency in algorithms.

6 Conclusion

In recent years, energy efficient resource allocation of datacenter resources has evolved
as one the critical research issue.We have identified power and energy inefficiencies in
hardware and software, and categorized existing techniques in the literature alongwith
the summary of their benefits and limitations. We have discussed the resource allo-
cation problem in general along with associated challenges and issues. Moreover, we
discussed the advantages and disadvantages of various resource allocation strategies
in literature, and highlighted open issues and future directions.
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