
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
Published online 11 January 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3758

An implementation and evaluation of the MPI 3.0 one-sided
communication interface

James Dinan1,*,† , Pavan Balaji1, Darius Buntinas1, David Goodell1, William Gropp2

and Rajeev Thakur1

1Argonne National Laboratory, Lemont, IL, USA
2University of Illinois at Urbana–Champaign, Urbana, IL, USA

SUMMARY

The Message Passing Interface (MPI) 3.0 standard includes a significant revision to MPI’s remote memory
access (RMA) interface, which provides support for one-sided communication. MPI-3 RMA is expected to
greatly enhance the usability and performance of MPI RMA. We present the first complete implementation of
MPI-3 RMA and document implementation techniques and performance optimization opportunities enabled
by the new interface. Our implementation targets messaging-based networks and is publicly available in the
latest release of the MPICH MPI implementation. Using this implementation, we explore the performance
impact of new MPI-3 functionality and semantics. Results indicate that the MPI-3 RMA interface provides
significant advantages over the MPI-2 interface by enabling increased communication concurrency through
relaxed semantics in the interface and additional routines that provide new window types, synchronization
modes, and atomic operations. Copyright © 2016 John Wiley & Sons, Ltd.

Received 13 January 2013; Revised 30 September 2014; Accepted 22 November 2015

KEY WORDS: Message Passing Interface (MPI); one-sided communication; remote memory access
(RMA); MPICH

1. INTRODUCTION

One-sided communication has become an increasingly popular and important communication
paradigm, and its impact has been demonstrated through a wide variety of computational science
domains, including computational chemistry [1], bioinformatics [2], earthquake modeling [3], and
cosmology [4]. Unlike traditional two-sided and collective communication models, one-sided com-
munication decouples data movement from synchronization, eliminating overhead from unneeded
synchronization and allowing for greater concurrency. In addition, message matching and buffering
overheads that are required for two-sided communications are eliminated, leading to a significant
reduction in communication costs.

A variety of parallel programming systems, such as those in the one-sided [5–8] and partitioned
global address space families of programming models [9–13], provide a one-sided communication
interface to applications. The Message Passing Interface (MPI) Forum added support for one-sided
communication (also known as remote memory access, or RMA) in version 2.0 of the MPI standard
[14], to function alongside MPI’s traditional two-sided and collective communication models. Like
the rest of the MPI standard, the MPI-2 RMA model was designed to be performant and extremely
portable—even on systems that lack a coherent memory subsystem. While MPI-2 was effective for a
variety of applications and systems, it lacked various communication and synchronization features,

*Correspondence to: James Dinan, Argonne National Laboratory, Lemont, IL, USA.
†E-mail: dinan@mcs.anl.gov

Copyright © 2016 John Wiley & Sons, Ltd.



4386 J. DINAN ET AL.

and its conservative memory model limited its ability to efficiently utilize hardware capabilities,
such as cache coherence. Combined, these factors led some to conclude that MPI-2 RMA was not
capable of supporting important classes of higher-level programming models [15].

The MPI Forum recently ratified version 3.0 of the MPI standard [16]. MPI-3 includes a broad
update to the RMA interface that attempts to rectify the issues identified in the MPI-2 model. MPI-3
is backward compatible with MPI-2 and adds a variety of new atomic operations, synchronization
primitives, window types, and a new memory model that better exposes the capabilities of architec-
tures with coherent memory subsystems. It is believed that these features will address issues in the
MPI-2 model and greatly improve the usability, versatility, and performance potential of MPI RMA.

MPICH is one of the most widely used implementations of MPI, and it has been the first fully
compliant implementation of each version of the MPI standard. In November 2012, we created
and released the first fully MPI-3 compliant implementation in MPICH 3.0. This included a broad
renovation of the RMA infrastructure to incorporate the new functionality in MPI-3 and open new
opportunities for performance-focused communication runtime research. In this paper, we present
the design details of the MPICH implementation of MPI-3 RMA. We evaluate the performance
impact of new MPI RMA features, including those enabled by the MPI-3 interface itself (compared
with the MPI-2 RMA interface) as well as those enabled by the MPICH implementation of MPI-3
RMA. Early results indicate that MPI-3 provides significant improvements in performance over the
MPI-2 RMA interface.

The presentation of our work is organized as follows. In Section 2, we discuss the MPI RMA inter-
face, including its history and the new additions in MPI-3. The overall architecture of the MPICH
implementation of MPI is presented in Section 3. In Section 4, we present various design aspects of
the MPICH RMA implementation. A detailed performance evaluation using our implementation is
presented in Section 5.

We discuss existing research related to this effort in Section 6. In Section 7, we conclude with a
discussion of plans for future work.

2. THE MESSAGE PASSING INTERFACE REMOTE MEMORY ACCESS INTERFACE

The MPI-2 specification process started in March 1995 and culminated with the release of the MPI
2.0 document in July 1997. This document included the first version of the MPI RMA interface,
which added support for one-sided communication to MPI for the first time. The design and text
of the MPI specification included contributions from several of the authors of this paper. The goals
of the MPI-2 RMA interface included providing a portable interface for one-sided communication;
separating data movement from interprocess synchronization; and supporting cache-coherent and
non-cache-coherent systems.

In spite of achieving these objectives, the MPI-2 RMA interface has been found to be inad-
equate for many common one-sided use cases [15]. To correct these insufficiencies, the MPI
Forum substantially updated and revised the MPI RMA interface with the release of the MPI
3.0 standard in September 2012. This effort involved many organizations and individuals, includ-
ing the authors of this paper, over the span of several years. The update focused on addressing
issues that have prevented MPI RMA from providing a common, portable one-sided substrate
for higher-level one-sided and global address space models, as well as adding other features that
have been demonstrated to significantly benefit application developers. These features include
additional communication operations that more closely match traditional shared-memory pro-
gramming models, relaxed synchronization rules, lighter-weight mechanisms for controlling order-
ing of communication operations, and new ways to allocate and associate memory with MPI
one-sided windows.

2.1. Message Passing Interface-2 remote memory access

Message Passing Interface-3 RMA is a proper extension to MPI-2 RMA; as such it is backward
compatible. In this section, we describe the aspects of the MPI-3 RMA specification that are

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



MPI 3.0 RMA IMPLEMENTATION AND EVALUATION 4387

inherited from the MPI-2 RMA specification. At its core, the MPI-2 RMA interface is composed of
a set of communication operations and two data access synchronization schemes: ‘active target’ and
‘passive target’ synchronization.

2.1.1. One-sided communication operations. All MPI RMA communication operations occur in
the context of a window. A window is composed of a group of processes, specified at window-
creation time by a communicator and a contiguous region of memory at each process. The memory
region at each process may differ in size and address at each process. MPI window creation is a
collective, potentially synchronous operation over the input communicator that occurs via a call
MPI_Win_create. In addition to a communicator, buffer pointer, and buffer size parameter, the caller
must specify a ‘displacement unit’ and an optional set of MPI_Info hints used to enable potential
optimizations by the MPI implementation. Only the memory that has been exposed in a window can
be accessed by using one-sided communication operations.

The MPI-2 standard defines just three communication operations: MPI_Put, MPI_Get, and
MPI_Accumulate.

The process that invokes a communication operation is designated the origin, and the process
in which data is accessed is designated the target. The origin and target may be the same process,
although performing the corresponding role in each case. Origin communication buffers are spec-
ified by passing a hpointer; count; datatypei triple, whereas target communication buffers are
specified by passing a hdisplacement; count; datatypei triple. This displacement value is scaled
by the displacement unit value given by the target process at window creation time.

The put operation transmits data from the origin to the target. The get operation transmits data
from the target to the origin. The accumulate operation transmits data from the origin to the target,
then applies a predefined MPI reduction operator to reduce that data into the specified buffer at the
target. The target and origin data types used in the accumulate operation may be derived data types,
but they must be composed of only one distinct basic element type.

Each of these communication operations must occur in the context of either an active target
synchronization epoch or a passive target synchronization epoch. In MPI RMA, all communication
operations are nonblocking and are completed at the end of the synchronization epoch.

2.1.2. The Message Passing Interface-2 data consistency model. MPI-2 RMA defined the ‘sepa-
rate’ memory model, which specifies the consistency semantics of accesses to data exposed in an
RMA window. This model was designed to be extremely portable, even to systems without a coher-
ent memory subsystem. In this model, the programmer assumes that the MPI implementation may
need to maintain two copies of the exposed buffer in order to facilitate both remote and local updates
on noncoherent systems. The remotely accessible version of the window is referred to as the public
copy, and the locally accessible version is referred to as the private copy.

When a window synchronization is performed, the MPI implementation must synchronize the
public and private window copies. Thus, MPI-2 forbids concurrent overlapping operations when any
of the operations writes to the window data; the only exception is that multiple accumulate opera-
tions can perform concurrent overlapping updates when the same operation is used. Because RMA
communication operations are nonblocking, the programmer must ensure that operations performed
within the same synchronization epoch do not perform conflicting accesses. In addition, because the
MPI library is unaware of which locations are updated when the window buffer is directly accessed
by the hosting process, local updates cannot be performed concurrently with any other operations.
Any violation of these semantics is defined to be an MPI error.

2.1.3. Active target synchronization. In the active target mode in MPI-2, data is transmitted from
the memory of one process to the memory of another, with direct participation from both processes.

The simplest form of active target synchronization uses the concept of a ‘fence’. All processes in
the window collectively call MPI_Win_fence in order to demarcate the beginning and end of RMA
epochs. During these epochs, the application may issue zero or more MPI communication operations
or in some cases may perform direct load/store operations to that process’s portion of the window.
RMA operations issued before the fence call began will be completed before the call returns.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



4388 J. DINAN ET AL.

The simplicity offered by fences comes at a cost to application flexibility. To address this,
MPI offers a more versatile, more complex synchronization mode known as generalized active
target synchronization. This facility is sometimes also known as post/start/complete/wait, refer-
ring to the primary synchronization routines involved in this mode. This mode differentiates
between two different epoch types: an exposure epoch and an access epoch. Processes that will
be accessed as targets must invoke MPI_Win_post calls, supplying a group argument to indicate
the set of peer processes that will perform communication operations targeting the posting pro-
cess. Those origin processes must all correspondingly invoke MPI_Win_start to begin an access
epoch before issuing any communication operations. The start routine also takes a group argu-
ment indicating with which target processes the calling process will communicate. When the
accessing processes have posted all RMA operations, they must call MPI_Win_complete to end
the access epoch and force origin completion of the previously issued communication opera-
tions. Target processes call MPI_Win_wait (or MPI_Win_test repeatedly) in order to wait until
any communication operations initiated during the exposure epoch are completed at the target
(this process).

Generalized active target synchronization makes synchronization more flexible by making it pos-
sible to limit the number of processes with which any given process must synchronize to a minimal
subset (e.g., neighboring processes in a halo exchange operation). Only processes that actually
communicate with each other must synchronize. Furthermore, the synchronization pattern may be
asymmetric in some ways because of the separation of the exposure epoch from the access epoch.

2.1.4. Passive target synchronization. For applications where synchronization should be avoided or
the communication pattern is difficult to predict, MPI offers an alternative to active target synchro-
nization, known as passive target synchronization. Processes perform communication operations in
access epochs demarcated by MPI_Win_lock and MPI_Win_unlock calls. Despite the names, these
routines do not provide a traditional lock or mutex. Instead they serve two primary purposes: (1) to
group one-sided communication operations and certain load/store accesses that target a particular
process and (2) to ensure completion (i.e., visibility) of specific accesses relative to other accesses.

These purposes are compatible with a lock/unlock implementation based on strict mutual exclu-
sion. However, the lock routine is not required to synchronously block in order to acquire such a
lock and may instead synchronize in the background or defer synchronization and communication
altogether until the synchronizing unlock.

An RMA lock may be either exclusive or shared. Performing accesses in an exclusive lock epoch
ensures that no other lock/unlock epochs (of either type) will appear to occur concurrently. A shared
lock allows multiple origin processes to access the window at the target concurrently. If both shared
and exclusive epochs are requested, MPI ensures mutual exclusion of shared and exclusive epochs.
The application is responsible for ensuring that accesses in a shared lock epoch do not conflict with
accesses from concurrent shared lock epochs originated by other processes.

2.2. Message Passing Interface-3 remote memory access extensions

The MPI-3 standard extends the MPI-2 RMA functionality with improvements to the atomic opera-
tions interface, finer-grained control over operation completion and synchronization in passive target
epochs, relaxed access restrictions when hardware-assisted coherence is available, and new window
types that enable dynamic exposure of memory for RMA and interprocess shared memory.

2.2.1. One-sided atomic operations. Three new atomic operations were added in MPI-3 RMA:
MPI_Get_accumulate, MPI_Fetch_and_op, and MPI_Compare_and_swap. Get-accumulate and
fetch-and-op both provide atomic read-and-update operations; get-accumulate is general purpose
and allows the programmer to provide derived data types and differing communication parameters
for each buffer, whereas fetch-and-op restricts its use to a single element of a predefined MPI data
type. Because of these restrictions, fetch-and-op offers numerous optimization opportunities to the
MPI implementation, potentially reducing software overhead latencies and permitting direct use of
hardware-supported atomic operations.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



MPI 3.0 RMA IMPLEMENTATION AND EVALUATION 4389

Compare-and-swap atomically compares a ‘compare buffer’ at the origin with the target buffer
and replaces the target buffer contents with the (separate) origin data buffer contents if the values
are equal. The original value of the target buffer is always returned to the caller at the origin. This
operation is limited to the integer subset of predefined data types, and the same data type must be
used for all buffers.

All three of these new operations are safe to use concurrently with each other and the MPI-2
accumulate operation. Atomicity for accumulate and get-accumulate operations with derived data
types or a count greater than one with predefined data type occurs elementwise, at the granularity of
basic, predefined MPI data types. The atomic and accumulate operations are not atomic with respect
to put and get operations. Instead, accumulate with the MPI_REPLACE operation may be used as an
atomic ‘put’, and get-accumulate with the MPI_NO_OP operation may be used as an atomic ‘get’.

2.2.2. Request-generating operations. All MPI RMA communication operations are nonblocking,
but MPI-2 operations do not return a request handle. Instead, completion is managed through syn-
chronization operations such as fence, post/start/complete/wait, and lock/unlock. MPI-3 adds ‘R’
versions of most of the communication operations that return request handles, such as MPI_Rput
and MPI_Raccumulate. In turn, these requests can be passed to the usual MPI request comple-
tion routines, such as MPI_Wait, to ensure local completion of the operation. This provides an
alternative mechanism for controlling operation completion with fine granularity. However, these
request-generating operations may be used only in passive target synchronization epochs (i.e., with
lock/unlock).

2.2.3. Message Passing Interface-3 RMA windows. MPI-3 adds three new window types: MPI-
allocated windows, dynamic windows, and shared-memory windows. MPI-allocated windows are
created by calling MPI_Win_allocate. In contrast to MPI-2 windows where the user supplied the
window buffer, MPI allocates the buffer for this window, enabling the MPI implementation to uti-
lize special memory (e.g., from a symmetric heap or a shared segment) or optimize the mapping
for locality.

All MPI windows are created collectively over the input communicator, and traditionally
each process could associate only one contiguous region of memory with the window. This
restriction posed significant challenges to applications that need to dynamically allocate and
deallocate memory.

Message Passing Interface-3 addresses this issue by providing a new dynamic window facil-
ity, which collectively creates a window with no initially associated memory. Memory can then
be asynchronously attached to (or detached from) this window by individual processes. The new
routines MPI_Win_create_dynamic, MPI_Win_attach, and MPI_Win_detach facilitate this new
functionality.

Shared-memory programming can provide an efficient means for utilizing on-node resources
[17]. To this end, many programmers combine MPI with OpenMP or a threading library, which
adds to the complexity of managing two parallel programming systems in the same program. MPI-3
adds a new shared-memory window, created via MPI_Win_allocate_shared, which allows processes
to portably allocate a shared-memory segment that is mapped into the address space of all pro-
cesses participating in the window. In addition, the new MPI_Win_sync routine that synchronizes
load/store operations and incurs less overhead than a full window synchronization. By using MPI
RMA synchronization and atomic operations, shared-memory windows provide programmers with
a complete, portable, interprocess shared-memory programming system.

2.2.4. Unified memory model. No coherence in the memory subsystem or network interface is
assumed by the MPI-2 RMA ‘separate’ memory model, resulting in logically distinct ‘public’ and
‘private’ copies of the window copies described in Section 2.1.2. This conservative model is a poor
match for computers with coherent memory subsystems, as it does not provide access to the sys-
tem’s full performance and programmer productivity potential. A new ‘unified’ memory model was
added in MPI-3 to address this shortcoming.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



4390 J. DINAN ET AL.

Figure 1. Valid concurrent (possibly overlapping) operations in the ‘separate’ and ‘unified’ memory models.
OV, overlapping permitted; NOV, only nonoverlapping permitted; BOV, overlapping permitted at single-byte

granularity; X, not permitted.

The unified model relaxes several restrictions present in the separate model by assuming that
the public and private copies of the window are logically the same memory. These restrictions and
relaxations are summarized in Figure 1. This figure shows which operations are permitted to occur
concurrently in the same window and whether those concurrent operations are permitted to access
overlapping regions of the window.

Support for the unified model is not required by the MPI-3 standard. Users must query the
implementation via the predefined MPI_WIN_MODEL attribute in order to ensure that a particular
window supports the unified model before taking advantage of its relaxed consistency semantics.

2.2.5. Passive target synchronization. New synchronization mechanisms were included in the MPI-
3 passive target synchronization mode. MPI-2 passive target mode was restricted to a simple
lock/unlock interface, where an origin process could lock only one target at a time. MPI-3 per-
mits locking multiple targets simultaneously. It also offers a new MPI_Win_lock_all routine that is
equivalent to locking each target in window with a shared lock.

When using lock-all, finer-grained synchronization can be achieved with the request-generating
operations discussed in Section 2.2.2. It can also be achieved with the new ‘flush’ routines:
MPI_Win_flush and MPI_Win_flush_local. These routines specify a particular target and ensure
that all operations initiated to that target before the flush are remotely complete at the target (in the
case of flush) or locally complete at the origin (in the case of flush-local). These routines also have
‘all’ variants, MPI_Win_flush_all and MPI_Win_flush_local_all, that are equivalent to flushing each
target in the window in sequence.

3. ARCHITECTURE OF MPICH

The MPICH is an implementation of the MPI standard developed at Argonne National Labora-
tory. A primary goal of the project is to provide a portable high-performance implementation that
can be ported and adapted as necessary by third-party developers to support various architectures
and interconnects. For example, IBM and Cray have ported and adapted MPICH to support their
supercomputers. To realize this goal, MPICH is designed with various internal portability interfaces
allowing third-party developers the flexibility to choose the best interface when porting MPICH for
their system. Figure 2 shows these interfaces and the internal layers of MPICH. The top layer in the
figure is the application that uses the MPI interface to communicate with MPICH. Below this layer
is the device-independent layer. This layer implements functionality such as object management
and error handler management that would be common to all derivatives of MPICH. This layer also
implements collective communication operations, which can be overridden by lower layers if needed
to provide implementations that are optimized to a particular platform. The device-independent
layer exposes the ADI3 interface to the device layer below it. A developer has the option to imple-
ment a device at this layer to support a particular platform. For example, the PAMID device supports
platforms using the PAMI interface, such as IBM’s Blue Gene/Q.

The ADI3 interface provides the greatest flexibility for the developer; however, implementing a
device using this interface also requires considerable effort because of the number of functions that
must be implemented. For this reason, MPICH has a default device called CH3. The CH3 device

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



MPI 3.0 RMA IMPLEMENTATION AND EVALUATION 4391

Figure 2. Internal interfaces and layers of MPICH.

implements functionality such as message matching, connection management, and handling of one-
sided communication operations and exposes a significantly simpler interface called the channel
interface. Developers can choose to implement a channel to support their platform. The figure shows
two channels: Nemesis and Sock. Although there is an additional layer between a channel and the
application as compared with a device, common cases are fast-pathed through CH3 by using func-
tion pointers or function inlining, so the overhead of the additional layer is minimized and in some
cases avoided entirely.

The Sock channel uses TCP exclusively for communication, whereas the Nemesis channel uses
shared memory for intranode communication and a network for internode communication. Nemesis
exposes the netmod interface that allows the developer to implement a network module to support a
particular interconnect. As with CH3, although Nemesis adds an additional logical layer between the
network module and the application, common cases are fast-pathed to avoid performance overhead.
In fact, the Nemesis TCP network module outperforms the Sock channel despite the additional
logical layer.

We implemented our messaging-based one-sided implementation in CH3 because (1) at this layer,
all channels and network modules will be able to use the one-sided operations without having to
reimplement them; (2) functionality that is needed by the one-sided implementation, such as pro-
cessing of MPI data types and handling of packets, is available in CH3 but not at a higher level;
and (3) an implementation of MPI-2 one-sided operations has previously been implemented in
CH3, so we can reuse some of the existing functionality. Next, we briefly describe three aspects of
the CH3 architecture that are relevant to the implementation of messaging-based one-sided opera-
tions: data type processing, sending and receiving messages, and allocating and attaching to shared
memory regions.

3.1. Data type processing

Message Passing Interface data types are descriptions of the layout of data in memory. A simple
data type may describe a contiguous buffer, whereas a more complicated data type may describe
a section of a multidimensional matrix. While the data types are defined by the application in a
recursive manner, CH3 processes the data types in an iterative manner to improve performance. In
MPI, a buffer is described by a pointer, a data type, and a count specifying the number times the data
type repeats. CH3 internally defines a segment object, which consists of a buffer pointer, data type,
and count tuple to identify the data to by sent or received, as well as an offset specifying a location in
the stream of bytes defined by the tuple. Once a segment is constructed, it can be passed to various
data type processing functions either to pack the data into or unpack the data from a contiguous
buffer or to generate a different representation of the buffer (e.g., an input/output (I/O) vector).

3.2. Sending and receiving messages

While the channel is responsible for actually putting bytes into and pulling bytes out of the network,
CH3 assembles packets for sending and processes received packets. To send a packet, CH3 creates
the packet header, then calls a channel send function passing a pointer to the header and a description
of the data to be sent. If the data is contiguous, the description is simply a pointer to the buffer and

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



4392 J. DINAN ET AL.

the size. For noncontiguous data, the description consists of a data type segment. The channel uses
the data type processing engine either to convert the description into a form usable by the underlying
network (e.g., an I/O vector) or to pack the data into contiguous buffers. The send functions are
nonblocking and therefore need to queue packets that cannot be immediately sent.

The CH3 uses packet handler functions to process incoming packets. Once an entire header has
been received from the network, the packet handler function is determined based on the packet type
and is called with a pointer to the buffer where the packet is stored along with the number of bytes
that have been received. The channel does not need to know the size of the packet, only the size
of the header. If the buffer contains the entire packet, the handler will process the packet and then
return the size of that packet. If the buffer does not contain the entire packet, the handler will process
as much of the packet as possible and then return a request indicating where the channel should put
the remainder of the packet when it is received, along with a handler function to call when the data
has been received.

3.3. Allocating and attaching to shared memory

The CH3 provides functionality for allocating and attaching to shared-memory regions. The shared-
memory allocation function takes the size as an input parameter and returns a pointer to the allocated
region along with the a handle. The handle can be serialized into a character string that can then
be communicated to other processes. The serialized handle can be sent by using CH3 messages or
using an out-of-band communication mechanism such as the process management interface (PMI)
[18]. When the serialized handle is received by another process, it can be used to attach to the
shared-memory region allocated by the other process.

4. DESIGN OF MESSAGE PASSING INTERFACE-3 REMOTE MEMORY ACCESS IN MPICH

We have extended the MPICH RMA implementation with support for new MPI-3 RMA function-
ality. Our implementation is integrated in CH3 and can be used with a variety of networks that
are supported as CH3 channels and Nemesis network modules, as described in Section 3. The
MPI-2 RMA design focused on a messaging-based design, and we have developed MPI-3 RMA
within this design space; in the near future, we plan to extend this design to leverage one-sided
network capabilities.

4.1. Message Passing Interface-3 remote memory access windows

In the MPICH RMA design, a window object contains base pointers and displacement units for all
processes in the window’s group. When an RMA operation is issued, the origin process calculates
the effective address at the target process and transmits this in the packet header. This approach
reduces the work that the target must do and in some cases, avoids a window object lookup at the
target. However, the use of an O.P / structure can limit scalability. In the future, we will investigate
other approaches, such as transmitting the displacement instead of the effective address, in order to
improve scalability.

Message Passing Interface-3 defines several new RMA window types, referred to as window fla-
vors: MPI-allocated windows, dynamically allocated windows, and MPI-allocated shared-memory
windows. MPI-allocated windows allow MPI to map the memory that will be targeted by RMA
operations, potentially enhancing performance. In CH3, MPI-allocated windows allocate memory
using the device’s memory allocator, which can be used to allocate memory that is associated with
the device.

Dynamically allocated windows enable a powerful new usage pattern where memory can be asyn-
chronously attached to and detached from the window by the origin process. The address of the
memory is used directly as the window displacement argument to RMA operations, obviating the
need for O.P / structures. In the MPICH design, we expose all local memory in every dynamic
window, effectively making attach and detach operations no-ops. One could validate that operations
target only attached memory; however, this check has a significant performance penalty and is not
required by the MPI standard.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



MPI 3.0 RMA IMPLEMENTATION AND EVALUATION 4393

4.2. Window synchronization

The MPICH maintains RMA operation queues, which are flushed when an access epoch is com-
pleted [19]. When a given window is in active target mode, all operations are batched in a single
queue, because the completion of any active target access epoch will require the completion of
all operations. When a window is accessed by using passive target mode, individual operation
queues are created to manage communication with each target. We distinguish active and pas-
sive target access epochs through the state tracking discussed in Section 4.4. This permits more
efficient synchronization with individual targets, for example, flushing or unlocking an individual
target process.

Message Passing Interface-3 introduced several significant changes to passive target synchroniza-
tion, including new flush and lock-all operations, as well as the ability to perform passive target
epochs at multiple target processes concurrently. Active target synchronization was unchanged in
the MPI-3 specification, and the existing MPI-2 design has changed very little. In addition to adding
support for per target operation queues, the MPICH MPI-3 implementation separates release of a
passive target lock from completion of operations in order to facilitate flush and request-generating
operations.

Passive target lock and lock-all operations utilize the same locking facility in the MPICH design.
Lock-all is a one-sided operation that requests a shared lock and it must be compatible with (possibly
exclusive mode) lock operations issued by other processes. Rather than performing a nonscalable
lock operation at all targets, the lock-all implementation relies on the synchronization state track-
ing (Section 4.4) to indicate that all processes can be targeted by RMA operations. We track the
synchronization state of each target and issue a lock request on the first synchronization with the
given process.

4.3. Implementation of communication operations

The MPICH RMA implementation uses the message processing capabilities to perform RMA oper-
ations in the target process’ address space. We define new CH3 packet types, packet handlers, and
request handlers for each new MPI-3 RMA operation. When performing an operation, the origin
process generates a packet header with the corresponding operation type; populates the header with
the communication parameters; and sends the header, any data types, and the data payload to the
target. When the packet header is received by the target, CH3 dispatches the packet handler corre-
sponding the packet type field in the message header, and the packet handler performs the operation
at target and sends a response to the origin, if needed.

If a derived data type is specified for the target, an additional step is required to transmit the
serialized data type, whereas predefined data types are compact and can be embedded in the packet
header. The derived data type is serialized at the origin and transmitted following the packet header;
the size of the derived data type is contained within the packet header and used by the target to
determine when the full data type has arrived. Once the target has processed the packet header, it
may need to wait for the arrival of the data type. To facilitate this process, it generates a request and
registers the operation’s request handler, which the CH3 progress engine will use to continue the
RMA operation when additional data type data has arrived.

The receipt of user data is also facilitated by the progress engine, through the use of requests.
For put and accumulate operations, once the data type information has arrived in the data stream,
the remaining data forms the data payload and it is received and processed by using an additional
request handler. For get operations, the origin transmits a reference to its receive request in the packet
header. This reference is included in the target’s response and is used to match the get operation
with the corresponding local request that contains the origin’s communication parameters.

The new MPI_Fetch_and_op and MPI_Compare_and_swap operations restrict the data types that
can be used to ensure higher performance. For these operations, the RMA communication protocol
is simplified significantly. Because fewer communication parameters are needed, surplus space is
available in the packet header. We use this space to embed the origin data and avoid additional steps
required to transmit the payload data.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



4394 J. DINAN ET AL.

Message Passing Interface-3 also introduced request-generating operations, which return a
request to the user that can be used to wait for completion of a specific RMA operation. In the
MPICH implementation, we use the MPICH extended generalized request framework to support
these operations. We enqueue request-generating operations in the corresponding RMA operations
queue and return a request handle that contains a reference to the window. When the user completes
the request, we perform a local flush of the window to the target process. We plan to improve this
design by enabling completion of only the operation corresponding to the request.

4.4. Efficient synchronization state tracking and error detection

Message Passing Interface-3 added several refinements to passive target synchronization, including
a lock-all passive target communication mode, request-generating operations, and flush operations.
In addition, MPI-2 allowed only one passive target epoch at a time using lock/unlock operations;
MPI-3 has lifted this restriction and allows a process to initiate one passive target epoch to every
process in the window’s group.

We have redesigned the RMA error detection in MPICH to detect incorrect use of RMA syn-
chronization operations. An important design goal was that error checking add no more than several
tens of cycles of overhead. To achieve this, we took a state machine approach to defining correct
use of RMA synchronization calls at each process. The corresponding state transition diagram we
developed is shown in Figure 3. This diagram captures all correct uses of MPI calls; any devia-
tion is erroneous and is reported by the MPI implementation. Examples of incorrect usage include
unmatched lock/unlock calls, mixing of passive and active target synchronization, use of flush
or request-generating operations in active target, and mixing of passive target lock and lock-all
synchronization.

As shown in the diagram, fence operations require additional state to track. The fence_called
state changes only during collective calls to fence. If fence has been called without the
MPI_MODE_NOSUCCEED assertion, it is possible to enter into a fenced active target access
epoch. However, it is also valid to ignore the call to fence (i.e., it may have closed an active target
phase in the program) and perform a different RMA access type. It is invalid to perform a fenced
active target access epoch if another synchronization mode is used on the window; however, we do
not currently detect this error because of the state tracking complexity.

4.5. Shared-memory windows

The unified memory model introduced in MPI-3 allows for efficient one-sided operations on systems
with coherent memory. In [17], we described the design and implementation of shared-memory

Figure 3. Remote memory access synchronization state tracking diagram. Dashed lines indicate that a
particular state is bypassed, depending on the fence state of the process.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



MPI 3.0 RMA IMPLEMENTATION AND EVALUATION 4395

windows that can use the unified memory model. In this section, we briefly summarize the design
and implementation of shared-memory windows in MPICH.

When a shared-memory window is created, the processes perform an all-gather operation to col-
lect the sizes of the individual window segments of each process. The total size of the window
is computed, and the root process (the process with rank 0 in the communicator associated with
the window) allocates a shared memory segment of that size as described in Section 3.3. The root
then broadcasts the serialized window handle, and the other processes attach to the shared-memory
region. Because each process knows the size of every other process’s window segment, each pro-
cess can compute the offset into the shared-memory region where any process’s window segment
begins. The pointer to the beginning of each process’s window segment is stored in an array.

If alloc_shared_noncontig info argument is specified when the window is created, the individual
process’s window segments are not required to be contiguously arranged, and the implementation is
free to allocate them in a more optimal manner; for example, each window segment may be aligned
on a page boundary. Rather than allocating a separate shared-memory region for each window seg-
ment, a single shared-memory region is allocated as before, except that the size of each window
segment is rounded up to the next page size. In this way, only a single shared-memory region needs
to be created and attached, but each window segment is aligned on a page boundary.

Put and get operations are implemented by having the origin process directly access the memory
of the target process in the shared-memory region. Accumulate operations are required to be atomic
for a given basic data type and operation, so an interprocess mutex is created for each window to
serialize accumulate and atomic operations. In the future, native atomic operations will be used for
data types and operations supported by the processor (e.g., MPI_SUM on integer data). Because
processes are directly accessing the memory of other processes, window synchronization operations
include appropriate memory barriers to ensure the proper ordering of memory accesses between
the processes.

5. EXPERIMENTAL EVALUATION

We use our implementation of MPI-3 RMA to evaluate the performance impact of new functionality
and semantic changes introduced in MPI-3. Our RMA implementation has been integrated into
MPICH 3.0.1 and is publicly available. We evaluate the effectiveness of several major changes in the
MPI RMA specification: the new unified memory model, new atomic communication operations,
new passive target synchronization operations, and new window types.

We conducted our experiments on the Eureka cluster at the Argonne Leadership Computing Facil-
ity. This cluster is configured with 100 nodes, each with two quad-core Intel Xeon processors and
32 GB of memory. Nodes are connected by using Myricom 10 Gb/s CX4 Myrinet network inter-
faces, configured with a 5-stage Clos topology. MPICH was configured to use the Myrinet MX
network module.

5.1. Impact of the unified memory model

Message Passing Interface-3 RMA defines the unified memory model, which relaxes window access
semantics for systems where hardware can provide the needed level of data consistency. A key
difference between the unified and separate memory models is that the unified model permits RMA
operations concurrent with nonoverlapping load/store operations.

We measure the performance impact of the unified memory model through a simple benchmark
where rank 0 directly accesses its window data while other processes are attempting to write to
a nonoverlapping location in rank 0’s window. This scenario frequently arises in applications that
operate directly on data exposed in a window, for example, by performing a matrix multiplication
operation on a matrix that is exposed for RMA. In the separate (MPI-2) memory model, rank 0 must
use an exclusive access epoch in order to avoid conflict between its load/store operations and remote
RMA operations; in MPI-3, the unified model enables all processes to use shared access epochs.

We show the result of this benchmark in Figure 4. The figure shows the average time to write
data in the separate (MPI-2) and unified (MPI-3) memory models. With MPI-2, because exclu-
sive locks are used, operations from different processes are serialized causing the average write

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



4396 J. DINAN ET AL.

Figure 4. Average time for remote processes to write to process 0, which directly accesses the window
buffer. The direct access interval length at rank 0 is varied, and timings are shown for the separate (MPI-2)

and unified (MPI-3) memory models, for 2 (2 nodes), 16 (2 nodes), and 32 (4 nodes) processes.

time to increase fairly linearly with computational cost. With MPI-3, because shared locks can be
used, operations are not delayed by rank 0’s direct access interval, and the average write time stays
fairly constant.

5.2. Impact of atomic operations

Message Passing Interface-3 introduced several new atomic operations, including compare-and-
swap, fetch-and-op, and get-accumulate. These operations greatly increase the capabilities of MPI,
especially in the construction of higher-level synchronization operations. A significant limitation in
MPI-2 was that the construction of a high-level mutex library required the use of nonscalable data
structures [20, 21]. Mutexes are required by a variety of higher-level one-sided libraries, including
shared file pointer I/O [21, 22] and partitioned global address space models [23]. In this experiment,
we demonstrate the use of MPI-3 atomic operations through the creation of a mutex library that uses
the MCS algorithm [24], which provides better scalability and significant performance gains in the
presence of lock contention.

5.2.1. Message Passing Interface-2 mutex algorithm. The best-known mutex algorithm for MPI-2
RMA [21] uses a byte vector B of length nproc located on the process hosting the mutex; the i th
entry in this vector indicates whether process i has requested the lock. InitiallyBŒ0 : : : nproc�1� D
0. A lock operation from process i performs several nonoverlapping communication operations in a
single MPI RMA exclusive access epoch: entry BŒi� is set to 1, and all other entries are fetched. If
all other entries are 0, the lock operation has succeeded; otherwise the lock operation has effectively
enqueued process i in the waiting queue for the mutex. Once enqueued, the process waits on an
MPI_Recv operation from a wildcard source.

When process i performs an unlock operation, it again performs an exclusive RMA access epoch
onB that setsBŒi� D 0 and fetches all other entries.B is then scanned for an enqueued request start-
ing at entry i C 1, which ensures fairness. If a request is found in the queue, a zero-byte notification
message is sent to this process, forwarding the lock. If no request is found, the unlock is finished.

This algorithm has two significant drawbacks. It allocates an array of size O.P / bytes at the
process that hosts the mutex. In addition, it requires the use of an exclusive access epoch in order to
access the mutex structure.

5.2.2. Message Passing Interface-3 mutex algorithm. We have created a new mutex library, which
uses the MCS algorithm [24]. Like the MPI-2 algorithm, this is also a fair, queueing mutex. Rather
than storing the queue on a single process, as was the case in the MPI-2 algorithm, the MCS algo-
rithm creates a distributed linked queue. A shared tail pointer is created on the process that hosts the
mutex and all processes allocate one list element, which holds the next pointer, an integer value that
indicates the next process waiting on the mutex.

Initially, the tail pointer contains �1, indicating that the mutex is available. When processes
request the mutex, they perform an atomic swap to exchange their rank for the value in the tail

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



MPI 3.0 RMA IMPLEMENTATION AND EVALUATION 4397

Figure 5. Average time per lock-unlock cycle for a mutex on rank 0, requested by all processes 10,000 times.

pointer. If the swap operation returns �1 the process has obtained the mutex; otherwise, it is the
new tail of the list and it updates the next pointer of the previous tail process’s list element. In order
to ensure data consistency, list elements are updated by using the fetch-and-op operation, where the
MPI_REPLACE operation is used to write to the shared location, and the MPI_NO_OP operation
is used to read it. Once they have updated their ancestor’s next pointer, enqueued processes wait in
an MPI_Recv operation for the previous process to forward the mutex.

When releasing the mutex, the last process must reset the tail pointer to �1. An atomic compare-
and-swap is performed on the tail pointer; if the process releasing the mutex is the tail, it replaces the
old tail pointer with �1. Otherwise, the process polls for its next pointer to be updated and forwards
the mutex to the next process.

In contrast with the MPI-2 algorithm, the MCS algorithm in MPI-3 uses a distributed queue,
which allocates space for one integer value per process. In addition, it utilizes new atomic compare-
and-swap, update, and read operations that enable processes to use the shared lock access mode.

5.2.3. Performance comparison. Figure 5 shows the average time to acquire and release the mutex
in the MPI-2 and MPI-3 mutex libraries. A single mutex is created, and all processes perform 10,000
lock and unlock operations. While both mutexes use a queueing algorithm that does not poll over
the network, the MPI-3 MCS algorithm uses a shared lock that enables a greater amount of concur-
rency and better tolerance of contention. For smaller process counts, there is roughly an order of
magnitude difference in lock–unlock latency, which grows to nearly two orders of magnitude with
256 processes.

5.3. Impact of accumulate operation ordering

Message Passing Interface-3 introduced an optional capability that orders accumulate operations
issued by a particular origin process, at each target. This has a direct impact on programming models
and algorithms that require location consistency—which a given process observes the results of its
own operations in the order in which they were issued. Models such as ARMCI [8] and GA [11]
utilize this consistency model. This model is believed to be convenient because it resembles shared
memory programming and is easier to utilize at an application level.

In Figure 6, we show pseudocode for a simple benchmark that performs a write operation fol-
lowed by a read to the same process. Location consistency can be achieved by using individual
epochs (the approach needed in MPI-2) or by using ordered accumulate operations. Accumulate
operations are ordered by default in MPI 3.0; to improve performance, this behavior can be disabled
using an info argument when the window is created.

Figure 7 shows the latency for location consistent read-after-write between two processes
using the ordered epochs (MPI-2) and ordered accumulates (MPI-3) approaches. MPICH includes
an optimization that merges the lock, RMA operation, and unlock operations into a single

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



4398 J. DINAN ET AL.

Figure 6. Pseudocode for the location consistent read-after-write benchmark. In MPI-2, separate epochs are
needed to order operations; in MPI-3, ordering is provided for accumulate operations.

Figure 7. Average time per write followed by read between processes on two nodes, using MPI-2 with and
without the lock-op-unlock optimization, and MPI-3 with ordered accumulate operations.

one-way communication for writes and a single round-trip communication for reads [19]. We show
the MPI-2 implementation with and without this optimization; when the optimization is disabled,
the protocols shown in Figure 12(a and d) are used. From this data, we see that accumulate order-
ing results in a significant reduction in latency, because of the reduction in RMA synchronization
overheads.

5.4. Impact of synchronization operations

Message Passing Interface-3 has introduced new synchronization operations for passive target
communication, including lock-all and flush operations. These operations provide lighter-weight
synchronization than MPI-2 lock/unlock epochs do. In addition, MPI-3 accumulate operations allow
concurrent overlap of accumulate calls with get-accumulate calls that perform a no-op (i.e., atomic
read). This allows applications to perform concurrent reads and writes to overlapping locations
in the window, with well-defined results. The combination of these new semantics and operations
allows applications to express many algorithms by using MPI shared locks, which greatly increases
the concurrency with which data can be accessed.

5.4.1. Dynamic linked-list construction benchmark. We have created a linked-list construction
benchmark that can benefit from several of these new MPI-3 semantics. This benchmark uses a
dynamic window; processes dynamically create new list elements, attach them to the window, and
append them to the list. Creation of such a dynamic, distributed data structure is not possible in
MPI-2, because windows are fixed in size and must be created collectively. Rather than storing the
tail pointer in a fixed location, all processes traverse the list to locate the tail. Thus, this benchmark
captures an application behavior where processes traverse a dynamically growing linked list—for
example, a work list in a producer–consumer computation.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



MPI 3.0 RMA IMPLEMENTATION AND EVALUATION 4399

Figure 8. Structure of the linked list created by the dynamic linked-list construction benchmark.

Figure 9. Pseudocode for linked-list traverse-and-append loop in each idiom.

In order to produce a deterministic result, each process p appends a new element only when the
tail pointer points to an element at process p � 1, as shown in Figure 8. This process repeats until
each process has appendedN elements. Initially, process 0 creates the head of the list and broadcasts
the pointer to all other processes. Pointers in MPI dynamic windows are represented by using the
tuple hrank; d isplacementi, and we use a rank of �1 to indicate a NULL next element pointer.
When the next element pointer of the current list item is NULL, processes poll on the location of
the next pointer until it is updated.

The dynamic linked-list construction benchmark can be expressed by using three different syn-
chronization idioms that utilize varying degrees of MPI-3 synchronization. Pseudocode for each
idiom’s linked-list traverse-and-append loop is shown in Figure 9. The exclusive lock/unlock
implementation uses only MPI-2 communication and synchronization operations (but uses MPI-3
dynamic windows). The shared lock/unlock implementation uses MPI-3 accumulate operations to
enable the use of MPI-2 shared-mode locks. The lock-all implementation adds the use of flush to
complete communication and avoid repeated calls to lock.

5.4.2. Performance evaluation. In Figure 10, we compare the performance of the MPI-2 and MPI-
3 implementations of the linked-list construction benchmark. A key factor in the performance of
this benchmark is the ability to deal with high amounts of reader–writer contention as each element
is appended to the list. If we assume first-come first-served processing of RMA operations at target
processes, each writer that appends an element to the list must wait for an average of P=2 read-
ers to complete polling read operations before the write succeeds. For a list of N elements and a

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



4400 J. DINAN ET AL.

Figure 10. Distributed linked-list creation and traversal time, for a N D 10; 000 element list.

Figure 11. Linked list read and write operation latency on the Eureka cluster.

communication latency of L, the expected execution time is O.N � P=2 � L/. Under high amounts
of contention, the latency of read and write operations L increases proportional to the number of
processes, P . Thus, the expected execution time is O.N � P 2/.

From this figure, we see that the MPI-2 exclusive lock communication mode provides the least
tolerance in the presence of contention. In comparison, the MPI-3 implementations use the new
accumulate operations that enable both to use a shared lock, providing greater concurrency and less
overhead. At 256 processes, the MPI-3 implementation provides a more than an order of magnitude
improvement in performance.

Comparing the MPI-3 shared lock and lock-all implementations, we see the additional protocol
overhead reduction that is provided by the MPI-3 lock-all mode of operation. We measure this
gap directly in Figure 11, which shows that lock-all provides a significant latency reduction by
eliminating the communication involved in the lock operation. The corresponding protocol for each
operation is shown in Figure 12. For the experiments in this section, we have disabled the lock-op-
unlock merging optimization to provide a fair comparison, because it is not yet implemented for
get-accumulate or flush operations.

Comparing Figure 12(a and b), we see that exclusive write epochs can have a lower protocol
overhead than shared write epochs. The added overhead in the case of shared access is to ensure
remote completion, in case of third-party communication. When exclusive access epochs are used,
the target ensures that all operations from an epoch are complete before granting access to another
process. In Figure 10, we see the benefit from the reduced protocol on up to four processes, but

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



MPI 3.0 RMA IMPLEMENTATION AND EVALUATION 4401

Figure 12. Communication protocols used for linked-list pointer update and chase operations.

Figure 13. Time required to double the size of a window, by reallocating the window (MPI-2) versus
attaching an additional buffer to a dynamic window (MPI-3).

the serialization of exclusive access epochs quickly overcomes the performance advantages of the
simpler protocol.

5.5. Impact of window types

Many applications generate and operate on data that mutates in size or layout during execution.
To accommodate these types of algorithms, MPI-3 has added a dynamic window that allows pro-
cesses to asynchronously add and remove memory to and from their window. In contrast, under
MPI-2, windows are immutable and are created collectively. Thus, resizing a window required the
programmer to collectively create a new window, copy data, and destroy the old window.

Figure 13 shows the time required to double the size of an RMA window using the MPI-2
approach and using MPI-3 dynamic windows. The figure shows traces for windows with an initial
size ranging from 1 kB to 16 MB. For each window size, we vary the number of processes. Creating
a window requires several collective operations, including an all-gather operation, whose overhead
increases with the number of processes. In contrast, attaching memory to a dynamic window is a
local operation with a fixed cost, regardless of the buffer sizes and the number of processes.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



4402 J. DINAN ET AL.

6. RELATED WORK

A variety of low-level one-sided communication systems have been created, including Shmem [6],
ARMCI [8], and GASNet [5]. These systems have been used independently and as runtime systems
to support higher-level global address space models, such as Global Arrays [11], UPC [13], Co-
Array Fortran v1.0 [12], Coarray Fortran v2.0 [10], Chapel [9], and X10 [25].

The UPC implementers were unable to utilize MPI-2 RMA as a runtime system because of a
semantic mismatch between MPI and UPC that could not be overcome at the runtime level [15].
Instead, an active message runtime was built on top of MPI two-sided messaging [26]. It is hoped
that MPI-3 has addressed this gap and that it will be suitable as a low-level, portable runtime system
for a variety of one-sided and global address space models.

The MPI-2 RMA interface has existed for over a decade, and significant effort has been invested
in improving its performance [19, 27–35] and in building higher-level libraries using MPI RMA
[22, 23]. MPI RMA has been demonstrated to be effective in a variety of applications, including
earthquake modeling simulations [3] and cosmological simulations [4].

7. OUTLOOK AND FUTURE WORK

Message Passing Interface-2 RMA defined a conservative but extremely portable system for one-
sided communication. The MPI-2 memory model, termed the ‘separate’ model in MPI-3 RMA,
provided an efficient and portable interface on systems such as the Earth Simulator then the world’s
fastest machine. However, the separate model did not exploit hardware that provided stronger
guarantees about memory coherence (the MPI-3 ‘unified’ model) or remote atomic operations; in
addition, the completion models limited some of the common uses of one-sided programming.
The enhancements provided by MPI-3 RMA have addressed these and other limitations and have
resulted in a powerful, well-defined RMA model that fits within the MPI environment and can
perform efficiently on current and future systems.

In this work, we have presented the first complete implementation of the MPI-3 RMA spec-
ification. While our implementation is feature complete, many opportunities for performance
optimization and system integration still remain.

7.1. Management of remote memory access communication and synchronization operations

A particularly important area for performance optimization is the management of RMA operations
and synchronizations. Two key areas of future work are (1) piggybacking and merging synchroniza-
tion messages with RMA operations and (2) efficiently managing RMA operations to optimize for
short, latency-sensitive epochs, and long, bandwidth-bound epochs.

The design of MPI RMA synchronization gives the implementation great flexibility in deciding
when to issue RMA operations. The most obvious approach is an eager approach, where operations
are issued as they are encountered; and for large transfers, this is often an efficient choice. However,
for short updates such as a single word put or accumulate, this approach generates a significant
amount of network traffic as well as large latencies while waiting for operations to complete. As
shown in Figure 12, epoch synchronization operations can result in several additional messages.

An alternative lazy approach to synchronization queues all operations and waits until the unlock
call to process them. When this approach is used, synchronization operations can be piggybacked,
merged, or in some cases eliminated, yielding significant communication latency improvements. In
the case of active target synchronization, it is possible to eliminate one of the barriers within the
fence operations in exchange for a single reduce-scatter operation [19, 28].

The lazy approach is advantageous when epochs contain few operations and perform short data
transfers. However, when there are either large numbers of RMA operations or the operations
involve large amounts of data, it is often better to issue those operations as they are encountered.
Thus, neither the eager nor lazy methods are always the best choice.

Until recently, MPICH implemented only the lazy synchronization method. We are currently
implementing an adaptive method, described in [36], that can automatically switch from the lazy to

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe



MPI 3.0 RMA IMPLEMENTATION AND EVALUATION 4403

the eager algorithm with low overhead, providing the benefits of both approaches transparently to
the user. In addition, once both methods are implemented, it is easy to support user-supplied hints
(e.g., through an ‘info’ key when the MPI RMA window is created) on the type of data transfers
that will occur.

7.2. Extensions for one-sided networks

The current messaging-based implementation of MPI RMA provides good performance for net-
works that do not natively support one-sided operations. However, many modern networks provide
one-sided and RDMA support, which can yield considerable performance benefits.

We are currently investigating an extension to CH3 to better support devices that provide
one-sided primitives. Such support would require the addition of function-pointers for network-
supported one-sided operations to CH3’s per connection data structure, the virtual channel structure.
In addition, a channel can provide different function pointers per connection, depending on whether
shared-memory or network communication should be used to perform one-sided accesses at the
target. Significant challenges in this work will include the maintenance of data consistency and oper-
ation ordering when multiple communication mechanisms are used, for example, when put/get use
RDMA, but long-double-precision accumulate requires the use of messaging.

ACKNOWLEDGEMENTS

This study was supported by the U.S. Department of Energy and Argonne Leadership Computing Facility
(DE-AC02-06CH11357).

REFERENCES

1. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJJ, Wang D, Nieplocha J, Apra E,
Windus TL, de Jong WA. NWChem: a comprehensive and scalable open-source solution for large scale molecular
simulations. Computer Physics Communications 2010; 181(9):1477–1489.

2. Oehmen C, Nieplocha J. ScalaBLAST: a scalable implementation of BLAST for high-performance data-intensive
bioinformatics analysis. IEEE Trans. on Parallel and Distributed Systems 2006; 17(8):740 –749.

3. Cui Y, Olsen KB, Jordan TH, Lee K, Zhou J, Small P, Roten D, Ely G, Panda DK, Chourasia A, Levesque J,
Day SM, Maechling P. Scalable earthquake simulation on petascale supercomputers. Proceedings of the IEEE/ACM
International Conference for High Performance Computing, Networking, Storage and Analysis, New Orleans, LA,
November 2010; 740–749.

4. Couchman HMP, Thacker RJ, Pringle G, Booth S. HYDRA-MPI: an adaptive particle-particle, particle-mesh code
for conducting cosmological simulations on mpp architectures. Proceedings of the 17th Annual International Sympo-
sium on High Performance Computing Systems and Applications and the OSCAR Symposium, Sherbrooke, Quebec,
Canada, 2003; 23–29.

5. Bonachea D. GASNet specification, v1.1. Technical Report UCB/CSD-02-1207, U.C. Berkeley, 2002.
6. Community SHMEM. OpenSHMEM specification v1.0, 2012. (Available from: http://www.openshmem.org)

[Accessed on January 2013].
7. Hammond J, Dinan J, Balaji P, Kabadshow I, Potluri S, Tipparaju V. OSPRI: an optimized one-sided communication

runtime for leadership-class machines. Proceedings Sixth Conf. on Partitioned Global Address Space Programming
Models, PGAS ’12, Santa Barbara, California, USA, October 2012.

8. Nieplocha J, Carpenter B. ARMCI: a portable remote memory copy library for distributed array libraries and compiler
run-time systems. Lecture Notes in Computer Science 1999; 1586.

9. Chamberlain BL, Callahan D, Zima HP. Parallel programmability and the chapel language. Intl. J. High Performance
Computing Applications (IJHPCA) 2007; 21(3):291–312.

10. Mellor-Crummey J, Adhianto L, Scherer WN, Jin G. A new vision for Coarray Fortran. Proceedings of the Third
Conf. on Partitioned Global Addr. Space Prog. Models, PGAS ’09, ACM, Ashburn, Virginia, USA, 2009; 5:1–5:9.

11. Nieplocha J, Palmer B, Tipparaju V, Krishnan M, Trease H, Aprà E. Advances, applications and performance of the
global arrays shared memory programming toolkit. Int. J. High Perform. Comput. Appl. 2006; 20(2):203–231.

12. Numrich RW, Reid J. Co-array Fortran for parallel programming. SIGPLAN Fortran Forum 1998; 17(2):1–31.
13. UPC Consortium. UPC language specifications, v1.2. Technical Report LBNL-59208, Lawrence Berkeley National

Lab, 2005; 1–20.
14. MPI F. MPI-2: extensions to the message-passing interface. Technical Report, University of Tennessee, Knoxville,

1996.
15. Bonachea D, Duell J. Problems with using MPI 1.1 and 2.0 as compilation targets for parallel language implementa-

tions. Int. J. High Perform. Comput. Netw. 2004August; 1:91–99.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe

http://www.openshmem.org


4404 J. DINAN ET AL.

16. MPI F. MPI: a message-passing interface standard version 3.0. Technical Report, University of Tennessee, Knoxville,
2012.

17. Hoefler T, Dinan J, Buntinas D, Balaji P, Barrett B, Brightwell R, Kale V, Gropp W, Thakur R. Leveraging MPIs
one-sided communication interface for shared-memory programming. Proc. Recent Adv. in MPI - 19Th Euro. MPI
Users Group Mtg., EuroMPI ’12, Vienna, Austria, September 2012; 132–141.

18. Balaji P, Buntinas D, Goodell D, Gropp W, Krishna J, Lusk E, Thakur R. PMI: a scalable parallel process-
management interface for extreme-scale systems. Proceedings the Euro MPI Users’ Group Conference (EuroMPI),
Stuttgart, Germany, September 12–15, 2010.

19. Thakur R, Gropp W, Toonen B. Optimizing the synchronization operations in MPI one-sided communication. Intl.
J. High-Performance Computing Applications Summer 2005; 19(2):119–128.

20. Gropp W, Lusk E, Thakur R. Using MPI-2: Advanced Features of the Message-passing Interface. MIT Press:
Cambridge, MA, 1999.

21. Ross R, Latham R, Gropp W, Thakur R, Toonen B. Implementing MPI-IO atomic mode without file system support.
IEEE Intl. Symp. on Cluster Comp. and the Grid, CCGrid, vol. 2, Cardiff, Wales, May 2005; 1135–1142.

22. Latham R, Ross R, Thakur R. Implementing MPI-IO atomic mode and shared file pointers using MPI one-sided
communication. Intl. J. of High Performance Computing Applications 2007; 21(2):132–143.

23. Dinan J, Balaji P, Hammond JR, Krishnamoorthy S, Tipparaju V. Supporting the global arrays PGAS model using
MPI one-sided communication. Proceedings 26th Intl. Parallel and Distributed Processing Symp., IPDPS ’12,
Shanghai, China, May 2012; 739–750.

24. Mellor-Crummey JM, Scott ML. Algorithms for scalable synchronization on shared-memory multiprocessors. ACM
Trans. Comput. Syst. February 1991; 9(1):21–65.

25. Charles P, Grothoff C, Saraswat V, Donawa C, Kielstra A, Ebcioglu K, von Praun C, Sarkar V. X10: an object-
oriented approach to non-uniform cluster computing. Intl. Conf. Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA): ACM SIGPLAN, San Diego, CA, 2005; 519–538.

26. Bonachea D. AMMPI: active messages over MPI. Website. (Available from: http://www.cs.berkeley.edu/~bonachea/
ammpi/) [Accessed on January 2013].

27. Barrett BW, Shipman GM, Lumsdaine A. Analysis of implementation options for MPI-2 one-sided. Proceedings,
Euro PVM/MPI, Vol. 4757, Springer Berlin Heidelberg, 2007; 242–250.

28. Gropp W, Thakur R. An evaluation of implementation options for MPI one-sided communication. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface, 12th European PVM/MPI Users’ Group
Meeting. Springer, Lecture Notes in Computer Science 3666, September 2005; 415–424.

29. Gropp W, Thakur R. Revealing the performance of MPI RMA implementations. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface, vol. 4757, Cappello F, Herault T, Dongarra Ja (eds)., Lecture Notes
in Computer Science. Springer, Berlin / Heidelberg, 2007; 272–280.

30. Jiang W, Liu J, Jin HW, Panda DK, Buntinas D, Thakur R, Gropp W. Efficient implementation of MPI-2 passive
one-sided communication over InfiniBand clusters. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface, 11th European PVM/MPI Users’ Group Meeting, Kranzlmüller D, Kacsuk P, Dongarra J (eds).
Lecture Notes in Computer Science 3241, Springer, September 2004; 68–76.

31. Lai P, Sur S, Panda DK. Designing truly one-sided MPI-2 RMA intra-node communication on multi-core systems.
International Supercomputing Conference (ISC), Vol. 25, Springer-Verlag, June 2010; 3–14.

32. Mourão FE, Silva JG. Implementing MPI’s one-sided communications for WMPI. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface, 6th European PVM/MPI Users’ Group Meeting, Dongarra J, Luque
E, Margalef T (eds). Lecture Notes in Computer Science 1697, Springer, September 1999; 231–238.

33. Santhanaraman G, Balaji P, Gopalakrishnan K, Thakur R, Gropp W, Panda DK. Natively supporting true one-sided
communication in MPI on multi-core systems with InfiniBand. Proceedings of the IEEE International Symposium
on Cluster Computing and the Grid (CCGrid), Shanghai, China, May 18–21, 2009; 380–387.

34. Träff JL, Ritzdorf H, Hempel R. The implementation of MPI-2 one-sided communication for the NEC SX-5.
Proceedings SC2000: High Performance Networking and Computing, Dallas, Texas, USA, November 2000.

35. Worringen J, Gäer A, Reker F. Exploiting transparent remote memory access for non-contiguous and one-sided-
communication. Proceedings 2002 Workshop on Communication Architecture for Clusters (CAC), April 2002.

36. Zhao X, Santhanaraman G, Gropp W. Adaptive strategy for one-sided communication in MPICH2. In Recent
Advances in the Message Passing Interface, vol. 7490, Träff Jesper, Benkner Siegfried, Dongarra Jack (eds)., Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2012; 16–26.

Copyright © 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2016; 28:4385–4404
DOI: 10.1002/cpe

http://www.cs.berkeley.edu/~bonachea/ammpi/
http://www.cs.berkeley.edu/~bonachea/ammpi/

	An implementation and evaluation of the MPI 3.0 one-sided communication interface
	Summary
	Introduction
	The Message Passing Interface Remote Memory Access Interface
	Message Passing Interface-2 remote memory access
	One-sided communication operations
	The Message Passing Interface-2 data consistency model
	Active target synchronization
	Passive target synchronization

	Message Passing Interface-3 remote memory access extensions
	One-sided atomic operations
	Request-generating operations
	Message Passing Interface-3 RMA windows
	Unified memory model
	Passive target synchronization


	Architecture of MPICH
	Data type processing
	Sending and receiving messages
	Allocating and attaching to shared memory

	Design of Message Passing Interface-3 remote memory access in MPICH
	Message Passing Interface-3 remote memory access windows
	Window synchronization
	Implementation of communication operations
	Efficient synchronization state tracking and error detection
	Shared-memory windows

	Experimental Evaluation
	Impact of the unified memory model
	Impact of atomic operations
	Message Passing Interface-2 mutex algorithm
	Message Passing Interface-3 mutex algorithm
	Performance comparison

	Impact of accumulate operation ordering
	Impact of synchronization operations
	Dynamic linked-list construction benchmark
	Performance evaluation

	Impact of window types

	Related Work
	Outlook and Future Work
	Management of remote memory access communication and synchronization operations
	Extensions for one-sided networks

	REFERENCES


