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Abstract—Data movement in high-performance computing systems accelerated by graphics processing units (GPUs) remains
a challenging problem. Data communication in popular parallel programming models, such as the Message Passing Interface
(MPI), is currently limited to the data stored in the CPU memory space. Auxiliary memory systems, such as GPU memory, are
not integrated into such data movement standards, thus providing applications with no direct mechanism to perform end-to-
end data movement. We introduce MPI-ACC, an integrated and extensible framework that allows end-to-end data movement in
accelerator-based systems. MPI-ACC provides productivity and performance benefits by integrating support for auxiliary memory
spaces into MPI. MPI-ACC supports data transfer among CUDA, OpenCL and CPU memory spaces and is extensible to other
offload models as well. MPI-ACC’s runtime system enables several key optimizations, including pipelining of data transfers,
scalable memory management techniques, and balancing of communication based on accelerator and node architecture. MPI-
ACC is designed to work concurrently with other GPU workloads with minimum contention. We describe how MPI-ACC can be
used to design new communication-computation patterns in scientific applications from domains such as epidemiology simulation
and seismology modeling, and we discuss the lessons learned. We present experimental results on a state-of-the-art cluster
with hundreds of GPUs; and we compare the performance and productivity of MPI-ACC with MVAPICH, a popular CUDA-aware
MPI solution. MPI-ACC encourages programmers to explore novel application-specific optimizations for improved overall cluster
utilization.

Index Terms—Heterogeneous (hybrid) systems, Parallel systems, Distributed architectures, Concurrent programming
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1 INTRODUCTION
Graphics processing units (GPUs) have gained widespread
use as general-purpose computational accelerators and have
been studied extensively across a broad range of scientific
applications [1], [2], [3]. The presence of general-purpose
accelerators in high-performance computing (HPC) clusters
has also steadily increased, and 15% of today’s top 500
fastest supercomputers (as of November 2014) employ
general-purpose accelerators [4].

Nevertheless, despite the growing prominence of acceler-
ators in HPC, data movement on systems with GPU accel-
erators remains a significant problem. Hybrid programming
with the Message Passing Interface (MPI) [5] and the
Compute Unified Device Architecture (CUDA) [6] or Open
Computing Language (OpenCL) [7] is the dominant means
of utilizing GPU clusters; however, data movement between
processes is currently limited to data residing in the host
memory. The ability to interact with auxiliary memory
systems, such as GPU memory, has not been integrated into
such data movement standards, thus leaving applications
with no direct mechanism to perform end-to-end data
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movement. Currently, transmission of data from accelerator
memory must be done by explicitly copying data to host
memory before performing any communication operations.
This process impacts productivity and can lead to a severe
loss in performance. Significant programmer effort would
be required to recover this performance through vendor- and
system-specific optimizations, including GPUDirect [8] and
node and I/O topology awareness.

We introduce MPI-ACC, an integrated and extensible
framework that provides end-to-end data movement in
accelerator-based clusters. MPI-ACC significantly improves
productivity by providing a unified programming interface,
compatible with both CUDA and OpenCL, that can allow
end-to-end data movement irrespective of whether data re-
sides in host or accelerator memory. In addition, MPI-ACC
allows applications to easily and portably leverage vendor-
and platform-specific capabilities in order to optimize data
movement performance. Our specific contributions in this
paper are as follows.

• An extensible interface for integrating auxiliary mem-
ory systems (e.g., GPU memory) with MPI

• An efficient runtime system, which is heavily opti-
mized for a variety of vendors and platforms (CUDA
and OpenCL) and carefully designed to minimize
contention with existing workloads

• An in-depth study of high-performance simulation
codes from two scientific application domains (compu-
tational epidemiology [9], [10] and seismology mod-
eling [11])

We evaluate our findings on HokieSpeed, a state-of-
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the-art hybrid CPU-GPU cluster housed at Virginia Tech.
Microbenchmark results indicate that MPI-ACC can pro-
vide up to 48% improvement in two-sided GPU-to-GPU
communication latency. We show that MPI-ACC’s design
does not oversubscribe the GPU, thereby minimizing con-
tention with other concurrent GPU workloads. We demon-
strate how MPI-ACC can be used in epidemiology and
seismology modeling applications to easily explore and
evaluate new optimizations at the application level. In
particular, we overlap MPI-ACC CPU-GPU communica-
tion calls with computation on the CPU as well as the
GPU, thus resulting in better overall cluster utilization.
Results indicate that the MPI-ACC–driven communication-
computation patterns can help improve the performance
of the epidemiology simulation by up to 13.3% and the
seismology modeling application by up to 44% over the
traditional hybrid MPI+GPU models. Moreover, MPI-ACC
decouples the low-level memory optimizations from the
applications, thereby making them scalable and portable
across several architecture generations. MPI-ACC enables
the programmer to seamlessly choose between CPU, GPU,
or any accelerator device as the communication target, thus
enhancing programmer productivity.

This paper is organized as follows. Section 2 intro-
duces the current MPI and GPU programming models
and describes the current hybrid application programming
approaches for CPU-GPU clusters. We discuss related work
in section 3. In Section 4, we present MPI-ACC’s design
and its optimized runtime system. Section 5 explains the
execution profiles of the epidemiology and seismology
modeling applications, their inefficient default MPI+GPU
designs, and the way GPU-integrated MPI can be used
to optimize their performances while improving produc-
tivity. In Section 6, we evaluate the communication and
application-level performance of MPI-ACC. Section 7 eval-
uates the contention impact of MPI-ACC on concurrent
GPU workloads. Section 8 summarizes our conclusions.

2 MOTIVATION

In this section, we describe the issues in the traditional
CPU-GPU application design and illustrate how GPU-
integrated MPI can help alleviate them.

2.1 Designing MPI+GPU Applications

Graphics processing units have become more amenable
to general-purpose computations over the past few years,
largely as a result of the more programmable GPU hardware
and increasingly mature GPU programming models, such
as CUDA [6] and OpenCL [7]. Today’s discrete GPUs
reside on PCIe and are equipped with very high-throughput
GDDR5 device memory on the GPU cards. To fully utilize
the benefits of the ultra-fast memory subsystem, however,
current GPU programmers must explicitly transfer data
between the main memory and the device memory across
PCIe, by issuing direct memory access (DMA) calls such
as cudaMemcpy or clEnqueueWriteBuffer.

1 computation_on_GPU(gpu_buf);
2 cudaMemcpy(host_buf, gpu_buf, size, D2H ...);
3 MPI_Send(host_buf, size, ...);

(a) Basic hybrid MPI+GPU with synchronous execution – high
productivity and low performance.

1 int processed[chunks] = {0};
2 for(j=0;j<chunks;j++) {
3 computation_on_GPU(gpu_buf+offset, streams[j]);
4 cudaMemcpyAsync(host_buf+offset, gpu_buf+offset,
5 D2H, streams[j], ...);
6 }
7 numProcessed = 0; j = 0; flag = 1;
8 while (numProcessed < chunks) {
9 if(cudaStreamQuery(streams[j] == cudaSuccess) {

10 MPI_Isend(host_buf+offset,...);/* start MPI */
11 numProcessed++;
12 processed[j] = 1;
13 }
14 MPI_Testany(...); /* check progress */
15 if(numProcessed < chunks) /* find next chunk */
16 while(flag) {
17 j=(j+1)%chunks; flag=processed[j];
18 }
19 }
20 MPI_Waitall();

(b) Advanced hybrid MPI+GPU with pipelined execution – low
productivity and high performance.

1 for(j=0;j<chunks;j++) {
2 computation_on_GPU(gpu_buf+offset, streams[j]);
3 MPI_Isend(gpu_buf+offset, ...);
4 }
5 MPI_Waitall();

(c) GPU-integrated MPI with pipelined execution – high productivity
and high performance.

Fig. 1: Designing hybrid CPU-GPU applications. For the
manual MPI+GPU model with OpenCL, clEnqueueRead-
Buffer and clEnqueueWriteBuffer would be used in place of
cudaMemcpy. For MPI-ACC, the code remains the same for all
platforms (CUDA or OpenCL) and supported devices.

The Message Passing Interface (MPI) is one of the
most widely adopted parallel programming models for
developing scalable, distributed-memory applications. MPI-
based applications are typically designed by identifying
parallel tasks and assigning them to multiple processes.
In the default hybrid MPI+GPU programming model, the
compute-intensive portions of each process are offloaded
to the local GPU. Data is transferred between processes
by explicit messages in MPI. However, the current MPI
standard assumes a CPU-centric single-memory model
for communication. The default MPI+GPU programming
model employs a hybrid two-staged data movement model,
where data copies are performed between main memory and
the local GPU’s device memory that are preceded and/or
followed by MPI communication between the host CPUs
(Figures 1a and 1b). This is the norm seen in most GPU-
accelerated MPI applications today [10], [12], [13]. The
basic approach (Figure 1a) has less complex code, but
the blocking and staged data movement severely reduce
performance because of the inefficient utilization of the
communication channels. On the other hand, overlapped
communication via pipelining efficiently utilizes all the
communication channels but requires significant program-
mer effort, in other words, low productivity. Moreover,
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this approach leads to tight coupling between the high-
level application logic and low-level data movement opti-
mizations; hence, the application developer has to maintain
several code variants for different GPU architectures and
vendors. In addition, construction of such a sophisticated
data movement scheme above the MPI runtime system
incurs repeated protocol overheads and eliminates oppor-
tunities for low-level optimizations. Moreover, users who
need high performance are faced with the complexity of
leveraging a multitude of platform-specific optimizations
that continue to evolve with the underlying technology (e.g,
GPUDirect [8]).

2.2 Application Design Using GPU-Integrated MPI
Frameworks
To bridge the gap between the disjointed MPI and GPU
programming models, researchers have recently developed
GPU-integrated MPI solutions such as our MPI-ACC [14]
framework and MVAPICH-GPU [15] by Wang et al. These
frameworks provide a unified MPI data transmission inter-
face for both host and GPU memories; in other words, the
programmer can use either the CPU buffer or the GPU
buffer directly as the communication parameter in MPI
routines. The goal of such GPU-integrated MPI platforms
is to decouple the complex, low-level, GPU-specific data
movement optimizations from the application logic, thus
providing the following benefits: (1) portability – the ap-
plication can be more portable across multiple accelerator
platforms; and (2) forward compatibility – with the same
code, the application can automatically achieve perfor-
mance improvements from new GPU technologies (e.g.,
GPUDirect RDMA) if applicable and supported by the MPI
implementation. In addition to enhanced programmability,
transparent architecture-specific and vendor-specific perfor-
mance optimizations can be provided within the MPI layer.

Using GPU-integrated MPI, programmers need only to
write GPU kernels and regular host CPU codes for compu-
tation and invoke the standard MPI functions for CPU-GPU
data communication, without worrying about the complex
data movement optimizations of the diverse accelerator
technologies (Figure 1c).

3 RELATED WORK

MVAPICH [16] is an implementation of MPI based on
MPICH [17] and is optimized for RDMA networks such
as InfiniBand. From v1.8 onward, MVAPICH has included
support for transferring CUDA memory regions across the
network (point-to-point, collective, and one-sided commu-
nications), but its design relies heavily on CUDA’s Unified
Virtual Addressing (UVA) feature. On the other hand,
MPI-ACC takes a more portable approach: we support
data transfers among CUDA, OpenCL, and CPU memory
regions; and our design is independent of library version or
device family. By including OpenCL support in MPI-ACC,
we automatically enable data movement between a variety
of devices, including GPUs from NVIDIA and AMD, IBM
and Intel CPUs, Intel MICs, AMD Fusion, and IBM’s Cell

Broadband Engine. Also, we make no assumptions about
the availability of key hardware features (e.g., UVA) in
our interface design, thus making MPI-ACC a truly generic
framework for heterogeneous CPU-GPU systems.

CudaMPI [18] and GMH [19] are new libraries that
are designed to improve programmer productivity when
managing data and compute among GPUs across the net-
work. Both these approaches are host-centric programming
models and provide new programming abstractions on top
of existing MPI and CUDA calls. CaravelaMPI [20] is
another MPI-style library solution for data management
across GPUs, but the solution is limited to the custom
Caravela API and not applicable to general MPI pro-
grams. In contrast, MPI-ACC completely conforms to the
MPI standard itself, and our implementation removes the
overhead of communication setup time, while maintaining
productivity.

DCGN [21] is a device-centric programming model
that moves away from the GPU-as-a-worker programming
model. DCGN assigns ranks to GPU threads in the system
and allows them to communicate among each other by
using MPI-like library calls, and a CPU-based polling
runtime handles GPU control and data transfers. MPI-ACC
is orthogonal to DCGN in that we retain the host-centric
MPI communication and execution model while hiding the
details of third-party CPU-GPU communication libraries
from the end user.

Partitioned Global Address Space (PGAS) models, such
as Chapel, Global Arrays, and OpenSHMEM, provide a
globally shared memory abstraction to distributed-memory
systems. Researchers have explored extending PGAS mod-
els to include GPUs as part of the shared-memory abstrac-
tion [22], [23]. PGAS models can use MPI itself as the
underlying runtime layer [24], [25] and can be considered
as complementary efforts to MPI.

4 MPI-ACC: DESIGN AND OPTIMIZATIONS

In this section, we describe the design, implementation,
and optimizations of MPI-ACC, the first interface that
integrates CUDA, OpenCL, and other models within an
MPI-compliant interface.

4.1 API Design
We discuss MPI-ACC’s API design considerations and
compare the tradeoffs of our solution with the the API
design of MVAPICH. In an MPI communication call, the
user passes a void pointer that indicates the location of
the data on which the user wishes to operate. To the MPI
library, a pointer to host memory is indistinguishable from
a pointer to GPU memory. The MPI implementation needs
a mechanism to determine whether the given pointer can
be dereferenced directly or whether data must be explicitly
copied from the device by invoking GPU library functions.
Moreover, memory is referenced differently in different
GPU programming models. For example, CUDA memory
buffers are void pointers, but they cannot be dereferenced
by the host unless Unified Virtual Addressing (UVA) is
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Fig. 2: Overhead of runtime checks incurred by intranode CPU-
CPU communication operations. The slowdown due to automatic
detection (via cuPointerGetAttribute) can be up to 205% (aver-
age: 127.8%), while the slowdown for the datatype attribute check
is at most 6.3% (average: 2.6%).

enabled. On the other hand, OpenCL memory buffers
are represented as opaque cl mem handles that internally
translate to the physical device memory location but cannot
be dereferenced by the host unless the buffer is mapped into
the host’s address space or explicitly copied to the host.

MVAPICH’s Automatic Detection Approach: MVAPICH
allows MPI to deal with accelerator buffers by leveraging
the UVA feature of CUDA to automatically detect device
buffers. This method requires no modifications to the
MPI interface. Also, we have shown previously that while
their approach works well for standalone point-to-point
communication, programmers have to explicitly synchro-
nize between interleaved and dependent MPI and CUDA
operations, thereby requiring significant programmer effort
to achieve ideal performance [26]. Moreover, as shown in
Figure 2, the penalty for runtime checking can be significant
and is incurred by all operations, including those that
require no GPU data movement at all. Furthermore, the
automatic detection approach is not extensible for other
accelerator models such as OpenCL that do not map GPU
buffers into the host virtual address space.

MPI-ACC’s Datatype Attributes Approach: MPI
datatypes are used to specify the type and layout of
buffers passed to the MPI library. The MPI standard de-
fines an interface for attaching metadata to MPI datatypes
through datatype attributes. In MPI-ACC, we use these
MPI datatype attributes to indicate buffer type (e.g., CPU,
CUDA, or OpenCL), buffer locality (e.g., which GPU), the
stream or the event to synchronize upon, or just any other
information to the MPI library. With the datatype attributes,
there is no restriction on the amount of information that the
user can pass to the MPI implementation. With our design,
one can simply implicitly denote ordering of MPI and GPU
operations by associating GPU events or streams with MPI
calls, and the MPI-ACC implementation applies different
heuristics to synchronize and make efficient communication
progress. We have shown in our prior work [26] that this
approach improves productivity and performance, while
being compatible with the MPI standard. Moreover, our
approach introduces a lightweight runtime attribute check to
each MPI operation, but the overhead is much less than with
automatic detection, as shown in Figure 2. Since MPI-ACC
supports both CUDA and OpenCL and since OpenCL is
compatible with several platforms and vendors, we consider
MPI-ACC to be a more portable solution than MVAPICH.
Table 1 summarizes the above differences.

TABLE 1: Comparison of MPI-ACC with MVAPICH.

MPI-ACC MVAPICH
GPU Buffer MPI Datatype attributes void*
Identification (UVA–based)
MPI+GPU Synch. Implicit ExplicitMethod
Performance/Progress Automatic (through the MPI Manual (through the
for MPI+GPU Ops. implementation) programmer)

Software Platforms CUDA and OpenCL (any CUDA v4.0 and
version) newer only

Hardware Platforms
AMD (CPU, GPU and APU),

NVIDIA GPU onlyNVIDIA GPU, Intel (CPU
and Xeon Phi), FPGA, etc

4.2 Optimizations

Once MPI-ACC has identified a device buffer, it leverages
PCIe and network link parallelism to optimize the data
transfer via pipelining. Pipelined data transfer parameters
are dynamically selected based on NUMA and PCIe affinity
to further improve communication performance.

4.2.1 Data Pipelining

We hide the PCIe latency between the CPU and GPU
by dividing the data into smaller chunks and performing
pipelined data transfers between the GPU, the CPU, and
the network. To orchestrate the pipelined data movement,
we create a temporary pool of host-side buffers that are
registered with the GPU driver (CUDA or OpenCL) for
faster DMA transfers. The buffer pool is created at MPI Init
time and destroyed during MPI Finalize. The system ad-
ministrator can choose to enable CUDA and/or OpenCL
when configuring the MPICH installation. Depending on
the choice of the GPU library, the buffer pool is created by
calling either cudaMallocHost for CUDA or clCreateBuffer
(with the CL MEM ALLOC HOST PTR flag) for OpenCL.

To calculate the ideal pipeline packet size, we first
individually measure the network and PCIe bandwidths
at different data sizes (Figure 3), then choose the packet
size at the intersection point of the above channel rates,
64 KB for our experimental cluster (Section 6). If the
performance at the intersection point is still latency bound
for both data channels (network and PCIe), then we pick
the pipeline packet size to be the size of the smallest packet
at which the slower data channel reaches peak bandwidth.
The end-to-end data transfer will then also work at the net
peak bandwidth of the slower data channel. Also, only two
packets are needed to do pipelining by double buffering:
one channel receives the GPU packet to the host, while the
other sends the previous GPU packet over the network.
We therefore use two CUDA streams and two OpenCL
command queues per device per MPI request to facilitate
pipelining.

The basic pipeline loop for a “send” operation is as
follows (“receive” works the same way, but the direction
of the operations is reversed). Every time we prepare
to send a packet over the network, we check for the
completion of the previous GPU-to-CPU transfer by calling
cudaStreamSynchronize or a loop of cudaStreamQuery for
CUDA (or the corresponding OpenCL calls). However,
we found that the GPU synchronization/query calls on
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transfer protocol – R3.

already completed CPU-GPU copies caused a significant
overhead in our experimental cluster, which hurt the effec-
tive network bandwidth and forced us to choose a different
pipeline packet size. For example, we measured the cost of
stream query/synchronization operations as approximately
20 µs, even though the data transfer had been completed.
Moreover, this overhead occurs every time a packet is sent
over the network, as shown in Figure 3 by the “Effective
Network Bandwidth” line. We observed that the impact of
the synchronization overhead is huge for smaller packet
sizes but becomes negligible for larger packet sizes (2 MB).
Also, we found no overlap between the PCIe bandwidth
and the effective network bandwidth rates, and the PCIe
was always faster for all packet sizes. Thus, we picked the
smallest packet size that could achieve the peak effective
network bandwidth (in our case, 256 KB) as the pipeline
transfer size for MPI-ACC. Smaller packet sizes (<256 KB)
caused the effective network bandwidth to be latency bound
and were thus not chosen as the pipeline parameters. In
MPI-ACC, we use the pipelining approach to transfer large
messages—namely, messages that are at least as large as
the chosen packet size—and fall back to the nonpipelined
approach when transferring smaller messages.

4.2.2 OpenCL Issues and Optimizations
In OpenCL, device data is encapsulated as a cl mem object
that is created by using a valid cl context object. To transfer
the data to/from the host, the programmer needs valid
cl device id and cl command queue objects, which are all
created by using the same context as the device data. At a
minimum, the MPI interface for OpenCL communication
requires the target OpenCL memory object, context, and
device ID objects as parameters. The command queue
parameter is optional and can be created by using the above
parameters. Within the MPICH implementation, we either
use the user-provided command queue or create several
internal command queues for device-host data transfers.
Within MPICH, we also create a temporary OpenCL buffer
pool of pinned host-side memory for pipelining. However,
OpenCL requires that the internal command queues and the
pipeline buffers also be created by using the same context
as the device data. Moreover, in theory, the OpenCL context
could change for every MPI communication call, and so the
internal OpenCL objects cannot be created at MPI Init time.
Instead, they must be created at the beginning of every MPI
call and destroyed at the end of it.

The initialization of these temporary OpenCL objects is
expensive, and their repeated usage severely hurts perfor-
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mance. We cache the command queue and pipeline buffer
objects after the first communication call and reuse them if
the same OpenCL context and device ID are used for the
subsequent calls, which is a plausible scenario. If any future
call involves a different context or device ID, we clear and
replace our cache with the most recently used OpenCL
objects. In this way, we can amortize the high OpenCL
initialization cost across multiple calls and significantly
improve performance. We use a caching window of one,
which we consider to be sufficient in practice.

5 APPLICATION CASE STUDIES

In this section, we perform an in-depth analysis of the de-
fault MPI+GPU application design in scientific applications
from computational epidemiology and seismology model-
ing. We identify the inherent data movement inefficiencies
and show how MPI-ACC can be used to explore new design
spaces and create novel application-specific optimizations.

5.1 EpiSimdemics
GPU-EpiSimdemics [9], [10] is a high-performance, agent-
based simulation program for studying the spread of epi-
demics through large-scale social contact networks and
the coevolution of disease, human behavior, and the so-
cial contact network. The participating entities in GPU-
EpiSimdemics are persons and locations, which are repre-
sented as a bipartite graph (Figure 4a) and interact with
one another iteratively over a predetermined number of
iterations (or simulation days). The output of the simulation
is the relevant disease statistics of the contagion diffusion,
such as the total number of infected persons or an infection
graph showing who infected whom and the time and
location of the infection.

5.1.1 Phases
Each iteration of GPU-EpiSimdemics consists of two
phases: computeVisits and computeInteractions. During the
computeVisits phase, all the person objects of every pro-
cessing element (or PE) first determine the schedules for
the current day, namely, the locations to be visited and
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the duration of each visit. These visit messages are sent to
the destination location’s host PE (Figure 4a). Computation
of the schedules is overlapped with communication of the
corresponding visit messages.

In the computeInteractions phase, each PE first groups
the received visit messages by their target locations. Next,
each PE computes the probability of infection transmission
between every pair of spatially and temporally colocated
people in its local location objects (Figure 4b), which
determines the overall disease spread information of that
location. The infection transmission function depends on
the current health states (e.g., susceptible, infectious, latent)
of the people involved in the interaction (Figure 4c) and
the transmissibility factor of the disease. These infection
messages are sent back to the “home” PEs of the infected
persons. Each PE, upon receiving its infection messages,
updates the health states of the infected individuals, which
will influence their schedules for the following simulation
day. Thus, the messages that are computed as the output
of one phase are transferred to the appropriate PEs as
inputs of the next phase of the simulation. The system is
synchronized by barriers after each simulation phase.

5.1.2 Computation-Communication Patterns and
MPI-ACC-Driven Optimizations
In GPU-EpiSimdemics, each PE in the simulation is im-
plemented as a separate MPI process. Also, the computeIn-
teractions phase of GPU-EpiSimdemics is offloaded and
accelerated on the GPU while the rest of the computations
are executed on the CPU [10]. The current implementation
of GPU-EpiSimdemics assumes one-to-one mapping of
GPUs to MPI processes. In accordance with the GPU-
EpiSimdemics algorithm, the output data elements from the
computeVisits phase (i.e., visit messages) are first received
over the network, then merged, grouped, and preprocessed
before the GPU can begin the computeInteractions phase
of GPU-EpiSimdemics. Moreover, there are two GPU com-
putation modes depending on how the visit messages are
processed on the GPUs. In this paper, we discuss the
exclusive GPU computation mode, but discussion of the
cooperative CPU-GPU computation mode can be found in
our prior work [27].

Preprocessing phase on the GPU: As a preprocessing
step in the computeInteractions phase, we modify the data
layout of the visit messages to be more amenable to the
massive parallel architecture of the GPU [10]. Specifically,
we unpack the visit message structures to a 2D time-bin
matrix, where each row of the matrix represents a person-
location pair and the cells in the row represents fixed time
slots of the day: that is, each visit message corresponds to a
single row in the person-timeline matrix. Depending on the
start time and duration of a person’s visit to a location,
the corresponding row cells are marked as visited. The
preprocessing logic of data unpacking is implemented as
a separate GPU kernel at the beginning of the computeIn-
teractions phase. The matrix data representation enables
a much better SIMDization of the computeInteractions
code execution, which significantly improves the GPU

Network 

PEi (Host CPU) 

GPUi (Device) 

1. Copy to GPU 

2. Pre-process on GPU 

GPUi (Device) 

PEi (Host CPU) 

Network 

1a. Pipelined or direct 
data transfers to GPU  

1b. Pipelined pre-processing 
with GPU communication 

Fig. 5: Exclusive GPU computation mode of GPU-EpiSimdemics.
Left: manual MPI+CUDA design. Right: MPI-ACC–enabled de-
sign, where the visit messages are transferred and preprocessed
on the device in a pipelined manner.

performance. However, we achieve the benefits at the cost
of a larger memory footprint for the person-timeline matrix,
as well as a computational overhead for the data unpacking.

Basic MPI+GPU communication-computation pipeline:
In the naı̈ve data movement approach, in each PE, we
receive the visit messages in the main memory during the
computeVisits phase, transfer the aggregate data to the local
GPU (device) memory across the PCIe bus, and then begin
the preprocessing step of the computeInteractions phase.
While all PEs communicate the visit messages with every
other PE, the number of pairwise visit message exchanges
is not known beforehand; in other words, it is not a typical
collective all-to-all or a scatter/gather operation. On the
other hand, each PE preallocates CPU buffer fragments
and registers them as persistent receive requests with the
MPI library by using the MPI_Recv_init call to enable
persistent point-to-point communication among the PEs.
Moreover, each PE has to create persistent CPU receive
buffers corresponding to every other participating PE in the
simulation; that is, receive buffers increase with number of
PEs and cannot be reused from a constant buffer pool.

Whenever a buffer fragment is received into the corre-
sponding receive buffer, it is copied into a contiguous visit
vector in the CPU’s main memory. The computeInteractions
phase of the simulation then copies the aggregated visit
vector to the GPU memory for preprocessing. While the
CPU-CPU communication of visit messages is somewhat
overlapped with their computation on the source CPUs,
the GPU and the PCIe bus will remain idle until the visit
messages are completely received, merged, and ready to be
transferred to the GPU.

Advanced MPI+GPU communication-computation
pipeline: In this optimization, we still preallocate
persistent receive buffers on the CPU in each PE and
register them with the MPI library as the communication
endpoints by calling MPI_Recv_init. But, we create the
contiguous visit vector in GPU memory, so that whenever
a PE receives a visit buffer fragment on the CPU, we
immediately enqueue an asynchronous CPU-GPU data
transfer to the contiguous visit vector and also enqueue the
associated GPU preprocessing kernels, thereby manually
creating the communication-computation pipeline.

In order to enable asynchronous CPU-GPU data trans-
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fers, however, the persistent receive buffers must be non-
pageable (pinned) memory. Also, since the number of re-
ceive buffers increases with the number of PEs, the pinned
memory footprint also increases with the number of PEs.
This design reduces the available pageable CPU memory,
a situation that could lead to poor CPU performance [6].

The pinned memory management logic can be imple-
mented at the application level in a couple of ways. In the
first approach, the pinned memory pool is created before
the computeVisits phase begins and is destroyed once the
phase finishes, but the memory management routines are
invoked every simulation iteration. While this approach
is relatively simple to implement, repeated memory man-
agement leads to significant performance overhead. In the
second approach, the pinned memory pool is created once,
before the main simulation loop, and is destroyed after
the loop ends, thus avoiding the performance overhead
of repeated memory management. However, this design
reduces the available pageable CPU memory, not only for
the computeVisits phase, but also for the other phases of the
simulation, including computeInteractions. We discuss the
performance tradeoffs of these two memory management
techniques in Section 6.2.

MPI-ACC–enabled communication-computation
pipeline: Since MPI-ACC handles both CPU and
GPU buffers, in each PE we preallocate persistent buffer
fragments on the GPU and register them with the MPI
library by using MPI_Recv_init. Without MPI-ACC’s
GPU support, one cannot create persistent buffers on the
GPU as MPI communication endpoints. In this approach,
the receive buffers on the GPU increase with number
of PEs, and the approach does not require a growing
pinned memory pool on the host. Furthermore, MPI-ACC
internally creates a constant pool of pinned memory
during MPI_Init and automatically reuses it for all
pipelined data communication, thereby providing better
programmability and application scalability. Internally,
MPI-ACC may either pipeline the internode CPU-GPU
data transfers via the host CPU’s memory or use direct
GPU transfer techniques (e.g., GPUDirect RDMA), if
possible; but these details are hidden from the programmer.

Along with the preallocated persistent GPU buffer
fragments, the contiguous visit vector is created in the
GPU memory itself. As soon as a PE receives the visit
buffer fragments on the GPU, we enqueue kernels to
copy data within the device to the contiguous visit vec-
tor and also enqueue the associated GPU preprocessing
kernels, thereby creating the end-to-end communication-
computation pipeline. Thus, we completely overlap the
visit data generation on the CPU with internode CPU-
GPU data transfers and GPU preprocessing. In this way,
the preprocessing overhead is completely hidden and re-
moved from the computeInteractions phase. Moreover, the
CPU, GPU, and the interconnection networks are all kept
busy, performing either data transfers or the preprocessing
execution.

MPI-ACC’s internal pipelined CPU-GPU data transfer
largely hides the PCIe transfer latency during the compute-

Visits phase. However, it still adds a non-negligible cost
to the overall communication time when compared with
the CPU-CPU data transfers of the default MPI+GPU im-
plementation. Nevertheless, our experimental results show
that the gains achieved in the computeInteractions phase
due to the preprocessing overlap outweigh the communi-
cation overheads of the computeVisits phase for all system
configurations and input data sizes.

In summary, MPI-ACC helps the programmer focus on
the high-level application logic by enabling automatic and
efficient low-level memory management techniques. More-
over, MPI-ACC exposes a natural interface to communicate
with the target device (CPU or GPU), without treating
CPUs as explicit communication relays.

5.2 FDM-Seismology
FDM-Seismology is our MPI+GPU hybrid implementation
of an application that models the propagation of seismo-
logical waves using the finite-difference method by taking
the Earth’s velocity structures and seismic source models as
input [11]. The application implements a parallel velocity-
stress, staggered-grid finite-difference method for propaga-
tion of waves in a layered medium. In this method, the
domain is divided into a three-dimensional grid, and a one-
point-integration scheme is used for each grid cell. Since
the computational domain is truncated in order to keep
the computation tractable, absorbing boundary conditions
(ABCs) are placed around the region of interest so as
to keep the reflections minimal when boundaries are im-
pinged by the outgoing waves. This strategy helps simulate
unbounded domains. In our application, PML (perfectly
matched layers) absorbers [28] are being used as ABCs for
their superior efficiency and minimal reflection coefficient.
The use of a one-point integration scheme leads to an
easy and efficient implementation of the PML absorbing
boundaries and allows the use of irregular elements in the
PML region [11].

5.2.1 Computation-Communication Patterns
The simulation operates on the input finite-difference (FD)
model and generates a three-dimensional grid as a first step.
Our MPI-based parallel version of the application divides
the input FD model into submodels along different axes
such that each submodel can be computed on different
CPUs (or nodes). This domain decomposition technique
helps the application scale to a large number of nodes. Each
processor computes the velocity and stress wavefields in its
own subdomain and then exchanges the wavefields with the
nodes operating on neighbor subdomains, after each set of
velocity or stress computation (Figure 6). Each processor
updates its own wavefields after receiving all its neighbors’
wavefields.

These computations are run multiple times for better
accuracy and convergence of results. In every iteration,
each node computes the velocity components followed by
the stress components of the seismic wave propagation.
The wavefield exchanges with neighbors take place after
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Fig. 6: Communication-computation pattern in the FDM-
Seismology application. Left: basic MPI+GPU execution mode
with data marshaling on CPU. Right: execution modes with
data marshaling on GPU. MPI-ACC automatically communicates
the GPU data; the MPI+GPU Adv case explicitly stages the
communication via the CPU.

each set of velocity and stress computations. This MPI
communication takes place in multiple stages wherein each
communication is followed by an update of local wave-
fields and a small postcommunication computation on local
wavefields. At the end of each iteration, the updated local
wavefields are written to a file.

The velocity and stress wavefields are stored as large
multidimensional arrays on each node. In order to optimize
the MPI computation between neighbors of the FD domain
grid, only a few elements of the wavefields, those needed
by the neighboring node for its own local update, are
communicated to the neighbor, rather than whole arrays.
Hence, each MPI communication is surrounded by data-
marshaling steps, where the required elements are packed
into a smaller array at the source, communicated, and then
unpacked at the receiver in order to update its local data.

5.2.2 GPU Acceleration of FDM-Seismology
We describe a couple of GPU execution modes of FDM-
Seismology.

MPI+GPU with data marshaling on CPU (MPI+GPU):
Our GPU-accelerated version of FDM-Seismology per-
forms the velocity and stress computations as GPU kernels.
In order to transfer the wavefields to other nodes, it first
copies the bulk data from the GPU buffers to CPU memory
over the PCIe bus and then transfers the individual wave-
fields over MPI to the neighboring nodes (Figure 6). All the
data-marshaling operations and small postcommunication
computations are performed on the CPU itself. The newly
updated local wavefields that are received over MPI are
then bulk transferred back to the GPU before the start of
the next stress or velocity computation on the GPU.

MPI+GPU with data marshaling on GPU (MPI+GPU
Adv): In this execution mode, the data-marshaling opera-
tions are moved to the GPU to leverage the faster GDDR5
memory module and the massively parallel GPU archi-
tecture. Consequently, the CPU-GPU bulk data transfers
before and after each velocity-stress computation kernel are
completely avoided. The need to explicitly bulk transfer
data from the GPU to the CPU arises only at the end of
the iteration, when the results are transferred to the CPU
to be written to a file (Figure 6).

5.2.3 MPI-ACC–Enabled Optimizations
GPU-based data marshaling suffers from the following dis-
advantage in the absence of GPU-integrated MPI. All data-
marshaling steps are separated by MPI communication, and
each data-marshaling step depends on the previously mar-
shaled data and the received MPI data from the neighbors.
In other words, after each data-marshaling step, data has to
be explicitly moved from the GPU to the CPU only for MPI
communication. Similarly, the received MPI data has to be
explicitly moved back to the GPU before the next mar-
shaling step. In this scenario, the application uses the CPU
only as a communication relay. If the GPU communication
technology changes (e.g., GPUDirect RDMA), we will have
to largely rewrite the FDM-Seismology communication
code to achieve the expected performance.

With MPI-ACC as the communication library, we still
perform data marshaling on the GPU, but we communicate
the marshaled data directly to and from the GPU without
explicitly using the CPU for data staging. Also, the bulk
transfer of data still happens only once at the end of each
iteration, in order to write the results to a file. But, the data-
marshaling step happens multiple times during a single iter-
ation; and consequently the application launches a series of
GPU kernels. While consecutive kernels entail launch and
synchronization overhead per kernel invocation, the benefits
of faster data marshaling on the GPU and optimized MPI
communication outweigh the kernel overheads.

Other than the benefits resulting from GPU-driven data
marshaling, a GPU-integrated MPI library benefits the
FDM-Seismology application in the following ways: (1)
it significantly enhances the productivity of the program-
mer, who is no longer constrained by the fixed CPU-
only MPI communication and can easily choose the ap-
propriate device as the communication target end-point;
(2) the pipelined data transfers within MPI-ACC further
improve the communication performance over the network;
and (3) regardless of the GPU communication technology
that may become available in the future, our MPI-ACC–
driven FDM-Seismology code will not change and will
automatically benefit from the performance upgrades that
are made available by the subsequent GPU-integrated MPI
implementations (e.g., support for GPU-Direct RDMA).

6 EVALUATION

In this section, we describe our experimental setup followed
by the performance evaluation of MPI-ACC via latency
microbenchmarks. Next, we demonstrate the efficacy of the
MPI-ACC–enabled optimizations in GPU-EpiSimdemics
and FDM-Seismology. Using both microbenchmarks and
GPU-EpiSimdemics, we discuss the impact of shared re-
source (hardware and software) contention on MPI-ACC’s
communication performance.

We conducted our experiments on HokieSpeed, a state-
of-the-art, 212-teraflop hybrid CPU-GPU supercomputer
housed at Virginia Tech. Each HokieSpeed node contains
two hex-core Intel Xeon E5645 CPUs running at 2.40 GHz
and two NVIDIA Tesla M2050 GPUs. The host memory
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capacity is 24 GB, and each GPU has a 3 GB device
memory. The internode interconnect is QDR InfiniBand.
We used up to 128 HokieSpeed nodes and both GPUs
per node for our experiments. We used the GCC v4.4.7
compiler and CUDA v5.0 with driver version 310.19.

6.1 Microbenchmark Analysis
Impact of Pipelined Data Transfer: In Figure 7, we
compare the performance of MPI-ACC with the manual
blocking and manual pipelined implementations. Our in-
ternode GPU-to-GPU latency tests show that MPI-ACC
is better than the manual blocking approach by up to
48.3% and is up to 18.2% better than the manual pipelined
implementation, especially for larger data transfers. The
manual pipelined implementation repeatedly invokes MPI
calls, causing multiple handshake messages to be sent back
and forth across the network and thus hurting performance.
On the other hand, we perform the handshake only once in
MPI-ACC to establish the send-receiver identities, followed
by low-overhead pipelining. We perform pipelining in MPI-
ACC only for messages that are larger than the pipeline
packet size, and we fall back to the default blocking
approach for smaller data sizes. Hence, we see that the
performance of MPI-ACC is comparable to the manual
blocking approach for smaller message sizes.

Impact of OpenCL Object Caching: Our OpenCL
caching optimization improves the internode GPU-to-GPU
communication latency from 3% for larger data sizes (64
MB) to 88.7% for smaller data sizes (< 256 KB). Even
where the programmers provide their custom command
queue, the pipeline buffers still have to be created for
every MPI communication call; hence, caching improves
performance.

6.2 Case Study Analysis: EpiSimdemics
We compare the combined performance of all the phases
of GPU-EpiSimdemics (computeVisits and computeInterac-
tions), with and without the MPI-ACC–driven optimizations
discussed in Section 5.1.2. We choose different-sized input
datasets of synthetic populations from two U.S. states:
Washington (WA), with a population of 5.7 million, and
California (CA), with a population of 33.1 million. In this
paper, we present results and detailed analysis of WA;
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Fig. 8: Execution profile of GPU-EpiSimdemics over various node
configurations.

analysis of CA is described in our prior work [27]. We also
vary the number of compute nodes from 8 to 128 and the
number of GPU devices between 1 and 2. We begin from
the smallest node-GPU configuration that can fit the entire
problem in the available GPU memory. We also compare
the application performance when MVAPICH (v2.0a) is
used as the GPU-aware MPI implementation of choice.

Our results in Figure 8 indicate that our MPI-ACC–
driven optimizations perform better than the basic block-
ing MPI+GPU implementations by an average of 9.2%
and by up to 13.3% for WA. The performance of the
MPI-ACC–driven solution is similar to the performance
of the MVAPICH-based and the manual MPI+GPU (ad-
vanced) implementations. Since the CPU-GPU transfer is
not a bottleneck in GPU-EpiSimdemics, the specific data
pipelining logic of either MPI-ACC or MVAPICH does
not directly affect the performance gains. On the other
hand, the preprocessing step (data unpacking) of the com-
puteInteractions phase is completely overlapped with the
asynchronous CPU-to-remote-GPU communication, for all
node configurations. Note that the advanced MPI+GPU im-
plementation uses the manual pinned memory management
techniques that we implemented at the application level,
which achieves better performance but with a much more
complex code.

For larger node configurations, the local operating dataset
in the computeInteractions phase becomes smaller, and
hence that the basic MPI+GPU solution takes less time
to execute the preprocessing stage; in other words, the
absolute gains achieved by hiding the preprocessing step
get diminished for GPU-EpiSimdemics. However, we have
shown that MPI-ACC can enable the developer to create
newer optimizations for better latency hiding and resource
utilization.

Data management complexity vs. performance tradeoffs:
While the advanced MPI+GPU implementation achieved
comparable performance to the MPI-ACC–based solution,
it put the burden of explicit data management on the
application programmer. We discussed in Section 5.1.2 that,
on the other hand, the user can write simpler code and avoid
explicit data management but has to repeatedly create and
destroy the receive buffers for every simulation iteration,
thereby losing performance. Figure 9 shows the perfor-
mance tradeoffs of the two approaches. We observe that ex-
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Fig. 9: Analysis of the data management complexity vs. per-
formance tradeoffs. Manual data management achieves better
performance at the cost of high code complexity. The case with no
explicit data management has simpler code but performs poorly.

plicit data management is better for all node configurations
and can achieve up to 4.5× performance improvement.
Without data management, the pinned memory footprint
of the receive buffers increases with the number of MPI
processes, thereby entailing bigger performance losses for
larger nodes. To quantify the degree of performance loss,
we measured the individual memory allocation costs using
simple microbenchmarks and found that CUDA’s pinned
memory allocator (cudaMallocHost) was about 26%
slower than the vanilla CPU memory allocator (malloc)
for single CUDA contexts. We also observed that the pinned
memory allocation cost increased linearly with the number
of GPUs or CUDA contexts, whereas memory manage-
ment in multiple processes and CUDA contexts should
ideally be handled independently in parallel. Consequently,
in Figure 9, we see that for the same number of MPI
processes, the node configuration with two MPI processes
(or GPUs) per node performs worse than the node with a
single MPI process; for example, the 64×2 configuration is
slower than the 128×1 one. Thus, efficient pinned memory
management is essential for superior performance, and
MPI-ACC provides that automatically to the programmers.

Discussion: The basic MPI+GPU solution has prepro-
cessing overhead but does not have significant memory
management issues. While the advanced MPI+GPU imple-
mentation gains from hiding the preprocessing overhead, it
loses from either nonscalable pinned memory management
or poor programmer productivity. On the other hand, MPI-
ACC provides a more scalable solution by (1) automatically
managing a fixed-size pinned buffer pool for pipelining
and (2) creating buffer pools just once at MPI_Init
and destroying them at MPI_Finalize. MPI-ACC thus
gains from both hiding the preprocessing overhead and
efficient pinned memory management. MPI-ACC decouples
the lower-level memory management logic from the high-
level simulation implementation, thereby enabling both
performance and productivity.

6.3 Case Study Analysis: FDM-Seismology
In this section, we analyze the performance of the different
phases of the FDM-Seismology application and evaluate
the effect of MPI-ACC and MVAPICH on the application.
FDM-Seismology is implemented with both CUDA and
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larger input data (Dataset-2). Note that MPI Communication refers
to CPU-CPU data transfers for the MPI+GPU and MPI+GPU
Adv cases and GPU-GPU (pipelined) data transfers for MPI-
ACC and MVAPICH. The performance difference between MPI-
ACC(CUDA) and MPI-ACC(OpenCL) is negligible and only the
MPI-ACC(CUDA) result is shown in this figure.

OpenCL, and while MPI-ACC is evaluated using both
CUDA and OpenCL, MVAPICH can be evaluated only with
the CUDA-based code. We vary the nodes from 2 to 128
with 1 GPU per node and use small and large datasets as
input. Our scalability experiments begin from the smallest
number of nodes required to fit the given data in the device
memory. For the larger input data (i.e., Dataset-2), the size
of the MPI transfers increases by 2×, while the size of data
to be marshaled increases by 4× when compared with the
smaller Dataset-1.

Figure 10 shows the performance of the FDM-
Seismology application, with and without the GPU-
based data marshaling. We report the average wall-clock
time across all the processes because the computation-
communication costs vary depending on the virtual location
of the process in the application’s structured grid represen-
tation. The application’s running time is composed mainly
of velocity and stress computations (>60%) and does not
change for the three application designs.

In the basic MPI+GPU case, we perform both data-
marshaling operations and MPI communication from the
CPU. Thus, the application has to move large wavefield
data between the CPU and the GPU for data marshaling and
MPI communication after every stress and velocity compu-
tation phase over every iteration. In the MPI+GPU Adv,
MVAPICH, and MPI-ACC–driven scenarios, we perform
data marshaling on the GPU itself; hence, smaller-sized
wavefield data is transferred from the GPU to the CPU only
once per iteration for output generation. By performing data
marshaling on the GPU, we avoid the large bulk CPU-GPU
data transfers and improve the overall performance over the
basic MPI+GPU design with data marshaling on the CPU.
Data marshaling on the GPU provides performance gains
while MPI-ACC improves programmer productivity by
directly communicating the GPU buffers (CUDA/OpenCL)
in the application.

Scalability analysis: Figure 11 shows the performance
improvement due to the MPI-ACC–enabled GPU data mar-
shaling strategy over the basic MPI+GPU implementation
with CPU data marshaling. We see that the performance
benefits due to the GPU data marshaling decrease with
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Fig. 11: Scalability analysis of FDM-Seismology application with
two datasets of different sizes. The baseline for speedup is the
naı̈ve MPI+GPU programming model with CPU data marshaling.

increasing number of nodes, because of the following rea-
sons. For a given dataset, the per-node data size decreases
with increasing number of nodes. Thus, the costly CPU-
GPU bulk data transfers are reduced (Figure 10), and the
overall benefits of GPU-based data marshaling itself are
minimized. Also, for a larger number of nodes, the appli-
cation’s MPI communication cost becomes significant when
compared with the computation and data marshaling costs.
In such a scenario, the CPU-to-CPU MPI communication
of the MPI+GPU and MPI+GPU Adv implementations
will have less overhead than does the pipelined GPU-
to-GPU MPI communication of the MPI-ACC–enabled
design. If newer technologies such as GPUDirect-RDMA
are integrated into MPI, we can expect the GPU-to-GPU
communication overhead to be reduced, but the overall
benefits of GPU data marshaling itself will still be limited
because of the reduced per-process working set.

7 ANALYSIS OF CONTENTION

In this section, we provide some insights into the scalable
design of MPI-ACC. Specifically, we show that MPI-ACC
is designed to work concurrently with other existing GPU
workloads with minimum contention; that is, one should be
able to perform MPI-ACC GPU-GPU communication and
other user-specified GPU tasks (kernel or data transfers)
simultaneously with minimum performance degradation for
both tasks. We analyze the contention effects of MPI-ACC,
MVAPICH and manual MPI+GPU on concurrent GPU and
PCIe workloads.

Sources of contention: NVIDIA Fermi GPUs have
one hardware queue each for enqueueing GPU kernels,
D2H data transfers, and H2D data transfers. Operations
on different hardware queues can potentially overlap. For
example, a GPU kernel can overlap with H2D and D2H
transfers simultaneously. However, operations enqueued to
the same hardware queue will be processed serially. If a
GPU task oversubscribes a hardware queue by aggressively
enqueueing multiple operations of the same type, then it can
severely slow other GPU tasks contending to use the same
hardware queue.

GPU streams are software workflow abstractions for a
sequence of operations that execute in issue-order on the
GPU. Stream operations are directed to the appropriate
hardware queue depending on the operation type. Op-
erations from different streams can execute concurrently
and may be interleaved, whereas operations within the
same stream are processed serially, leading to software
contention.
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Fig. 12: Characterizing the contention impact of CUDA’s stream-0
in GPU-EpiSimdemics.

In summary, contention among GPU operations can be
of two types: hardware contention, where one or more
hardware queues of the GPU are oversubscribed by the
same type of operation, or software contention, where
different types of operations may be issued but to the same
GPU stream. In MPI-ACC, we have carefully minimized
both types of contention by staggered enqueueing of H2D
and D2H operations to different GPU streams, thereby
enabling maximum concurrency.

Microbenchmark design: We extended the SHOC bench-
mark suite’s contention-mt application for the mi-
crobenchmark study. The benchmark creates two MPI
processes, each on a separate node and controlling the
two local GPUs. Each MPI process is also dual-threaded
and concurrently runs one task per thread, where task-0
by thread-0 does point-to-point GPU-to-GPU MPI com-
munication with the other process and task-1 by thread-
1 executes local non-MPI GPU tasks, such as compute
kernels or H2D and D2H data transfer loops. CUDA allows
the same GPU context to be shared among all the threads
(tasks) in the process. We share the local GPU between both
tasks. To measure the contention impact, we first execute
tasks 0 and 1 independently without contention and then
execute them concurrently to induce contention. Each task
is run for 100 loop iterations for both the independent and
concurrent runs. We measure and report the performance
difference between the tasks’ independent and concurrent
runs as the incurred contention.

7.1 Discussion of Software Contention
CUDA’s stream-0 (default stream) is unique in that it
is completely ordered with all operations issued on any
stream of the device. That is, issuing operations on stream-0
would be functionally equivalent to synchronizing the entire
device before and after each operation. Although MPI-
ACC privately creates and uses custom streams to minimize
software contention with other streams, a concurrent user
operation to stream-0 can inadvertently stall any MPI-ACC
operation on that GPU until stream-0 has completed. On
the other hand, OpenCL does not have special queues and
does not incur software contention.

Contention due to stream-0 can be seen even in GPU-
EpiSimdemics, and we analyze its effect as follows. In
GPU-EpiSimdemics, the internode CPU-GPU communica-
tion of the visit messages is overlapped with a prepro-
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cessing kernel that performs data layout transformation
(Section 5.1). While we use non-0 streams within MPI-
ACC for the internode communication of visit messages,
the preprocessing kernel may be launched with the user’s
chosen CUDA stream. Figure 12 shows that the perfor-
mance of GPU-EpiSimdemics is about 6.6% slower when
the preprocessing kernels use stream-0 instead of a non-
0 stream, and the slowdown can be up to 16.3% for
some node configurations. While MPI-ACC’s streams are
designed to scale, a poor application design using stream-
0 can cause an apparent slowdown in MPI-ACC’s data
transfer performance.

7.2 Minimizing the Hardware Contention

MPI-ACC uses the D2H and H2D hardware queues of the
GPU for send and receive, respectively. In theory, MPI-
ACC communication can overlap with kernel invocations or
other data transfer operations in the opposite direction, that
is, using the other data transfer queue. However, MPI-ACC
can cause contention with another data transfer operation in
the same direction. For example, MPI_Send can contend
with a concurrent D2H data transfer. MPI-ACC operations
can also potentially contend with the on-device memory
controller. For example, MPI_Send or MPI_Recv can
slow a global-memory-intensive kernel that is accessing
the same memory module. In this section, we quantify and
evaluate the global memory and PCIe contention effects.

Global memory contention analysis: We study the
impact of global memory contention by executing MPI-
ACC operations in task-0 and global memory read/write
benchmarks in task-1 with custom CUDA streams. Our
experiments indicate that the performance drop due to
contention in the MPI-ACC communication is about 4%,
whereas the global memory kernels slow by about 8%. The
average MPI-ACC call runs longer than an average global
memory access, so MPI-ACC has less relative performance
reduction. On the other hand, the performance impact
of MPI-ACC on on-chip (local) memory accesses and
simple computational kernels using custom CUDA streams
is less, where the performance degradation in the MPI-
ACC communication is about 3% and the GPU workloads
do not have any noticeable slowdown. Because of space
constraints, we omit explicit performance graphs.

PCIe contention analysis with data transfers in the
opposite direction: We study the impact of PCIe contention
by having task-0 perform MPI_Send or MPI_Recv com-
munication operations with GPU-0, while task-1 executes
H2D or D2H calls. This approach gives four different task
combinations, of which two combinations perform bidirec-
tional data transfers and two combinations transfer data in
the same direction. In this paper, we report the results by
running MPI_Send (task-0) concurrently with H2D and
D2H transfers on the same GPU (task-1). The contention
analysis of MPI_Recv with H2D and D2H transfers is
identical, and we exclude it because of space constraints.
If task-0 and task-1 perform bidirectional data transfers
and use custom CUDA streams, then we find that the

average slowdown of task-0 is 6% and the H2D task (task-
1) has a negligible slowdown. Ideally, if the bidirectional
bandwidth were to be twice the unidirectional bandwidth,
then both the concurrent tasks would have no slowdown.
In our experimental platform, however, the bidirectional
bandwidth is only about 19.3% more than the unidirectional
bandwidth according to the simpleMultiCopy CUDA
SDK benchmark. Thus, task-0’s slowdown is due to slower
bidirectional bandwidth and not due to any possible MPI-
ACC–related contention effects.

PCIe contention analysis with data transfers in the same
direction: For this study, we analyze contention effects
when MPI_Send (task-0) is invoked concurrently with
standalone D2H transfers on the same GPU (task-1). We
analyze the contention impacts of three MPI_Send imple-
mentations: MPI-ACC, MVAPICH, and manual pipelining
using asynchronous MPI and CUDA. Since the Fermi
GPUs have a single data transfer hardware queue in each
direction, a task that oversubscribes the GPU can signif-
icantly slow any other task that uses the same queue.
In fact, we show that MPI-ACC induces less contention
than MVAPICH and the manual asynchronous MPI+GPU
approaches of GPU data communication. We show that
MPI-ACC enqueues commands to the GPU hardware queue
in a balanced manner, thereby minimizing the apparent
performance slowdown in the D2H task (task-1) while
incurring a modest slowdown to the MPI communication
(task-0) itself.

Figure 13a shows the relative increase in the MPI latency
due to contention from the D2H task. For this experiment,
the D2H task consistently transfers 16 MB between the
device and the host, whereas the data size for the MPI
task is varied. MPI-ACC shows a maximum slowdown of
about 5% for relatively small MPI data transfers, and the
slowdown for larger MPI data transfers is negligible, on
average. The other implementations demonstrate less to
negligible slowdown for all data sizes.

Figure 13b shows the normalized bandwidth of the D2H
task when run concurrently with MPI. For this experiment,
the MPI task consistently performs 16 MB GPU-GPU data
transfers across the network, whereas the data size for the
local D2H task is varied. We see that MPI-ACC causes a
maximum performance slowdown of 3.8% to the D2H task
for relatively small data, and the performance slowdown for
larger D2H data sizes is negligible. However, MVAPICH
and the manual asynchronous MPI+GPU implementation
causes a slowdown of about 18% for smaller D2H data
transfers. This result indicates that MPI-ACC enqueues
GPU tasks to the hardware queues in a more balanced man-
ner, whereas MVAPICH may oversubscribe the hardware
queues thereby causing significant performance variations
to the other GPU tasks.

HPCToolkit analysis: HPCTOOLKIT [29], [30] is
a sampling-based performance analysis toolkit capable
of quantifying scalability bottlenecks in parallel pro-
grams. We use HPCTOOLKIT’s Hpctraceviewer in-
terface to understand why MPI-ACC causes less con-
tention than the manual MPI+GPU implementations do.
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Fig. 13: Impact of contention due to concurrent MPI_Send
and local D2H GPU operations. MPI-ACC is evaluated against
MVAPICH and the manual MPI+GPU implementations.

Hpctraceviewer renders hierarchical, timeline-based
visualizations of parallel hybrid CPU-GPU programs. Fig-
ure 14 presents screenshots of the detailed execution profile
of our contention benchmark. The hpctraceviewer tool
presents the timeline information of all CPU processes,
threads, and their corresponding CUDA streams. However,
we zoom in and show only the timelines of the relevant
CUDA streams associated with both tasks of the 0th pro-
cess. The other process exhibits identical behavior and is
excluded from the figure.

Figure 14a shows the effect of MPI-ACC’s send opera-
tion interacting with the D2H data transfers of task-1. Since
both tasks issue D2H commands and there is only one D2H
queue on Fermi, we can see that only one of the CUDA
streams is active at any given point in time. Moreover,
the MPI-ACC’s pipelining logic has been designed to issue
GPU commands only when the next pipeline stage is ready.
This design does not oversubscribe the GPU and leads to
balanced execution, which can be seen by the interleaved
bars in the MPI-related timeline. Figure 14b depicts the
contention effect of the manual pipelined MPI+GPU im-
plementation. In this example implementation, we enqueue
all the pipeline stages upfront, which is an acceptable
design for standalone point-to-point communication. This
design oversubscribes the GPU, however, and can be seen
as clusters of bars in the MPI-related timeline. Of course, if
one designs the manual MPI+GPU implementation similar
to our MPI-ACC design, then the associated timeline figure
will look like Figure 14a. Since the manual MPI+GPU
implementation is more aggressive in enqueuing GPU oper-
ations, the D2H operations of task-1 tend to wait more. That
is why, on average, MPI-ACC causes the least performance
perturbation to the D2H task (Figure 13b).

7.3 Summary
In this section, we provided insights into the scalable design
of MPI-ACC and compared its performance with MVA-
PICH and manual MPI+GPU implementations. Specifically,

Task 0: MPI_Send from GPU 
(MPI-ACC’s Internal Stream 0) 

Task 1: D2H Loop  
(Custom Stream) 

Task 0: MPI_Send from GPU 
(MPI-ACC’s Internal Stream 1) 

Balanced GPU Requests 

(a) Impact of MPI-ACC’s MPI_Send with concurrent D2H operations.

Task 0: MPI+CUDA send from GPU 
(Custom Stream 0) 

Task 1: D2H Loop  
(Custom Stream) 

Task 0: MPI+CUDA send from GPU 
(Custom Stream 1) 

Aggressive GPU Requests 

(b) Impact of manual MPI+GPU send task with concurrent D2H opera-
tions.

Fig. 14: Using HPCTOOLKIT to understand the contention im-
pacts of MPI-ACC and local GPU data transfer operations.

we showed that MPI-ACC delivers maximum concurrency
by carefully ordering multiple GPU streams and efficiently
balancing the H2D and D2H hardware queues for data
pipelining, without oversubscribing the GPU resource.

8 CONCLUSION

In this paper, we introduced MPI-ACC, an integrated and
extensible framework that allows end-to-end data move-
ment in accelerator-connected systems. We discussed MPI-
ACC’s API design choices and a comprehensive set of
optimizations including data pipelining and buffer manage-
ment. We studied the efficacy of MPI-ACC for scientific
applications from the domains of epidemiology (GPU-
EpiSimdemics) and seismology (FDM-Seismology), and
we presented the lessons learned and tradeoffs. We found
that MPI-ACC’s internal pipeline optimization not only
helps improve the end-to-end communication performance
but also enables novel optimization opportunities at the
application level, which significantly enhance the CPU-
GPU and network utilization. With MPI-ACC, one can
naturally express the communication target without explic-
itly treating the CPUs as communication relays. MPI-ACC
decouples the application logic from the low-level GPU
communication optimizations, thereby significantly improv-
ing scalability and application portability across multiple
GPU platforms and generations.
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