
9

Remote Memory Access Programming in MPI-3

TORSTEN HOEFLER, ETH Zurich
JAMES DINAN, Intel Corporation
RAJEEV THAKUR, Argonne National Laboratory
BRIAN BARRETT, Sandia National Laboratories
PAVAN BALAJI, Argonne National Laboratory
WILLIAM GROPP, University of Illinois at Urbana-Champaign
KEITH UNDERWOOD, Intel Corporation

The Message Passing Interface (MPI) 3.0 standard, introduced in September 2012, includes a significant
update to the one-sided communication interface, also known as remote memory access (RMA). In particu-
lar, the interface has been extended to better support popular one-sided and global-address-space parallel
programming models to provide better access to hardware performance features and enable new data-access
modes. We present the new RMA interface and specify formal axiomatic models for data consistency and
access semantics. Such models can help users reason about details of the semantics that are hard to extract
from the English prose in the standard. It also fosters the development of tools and compilers, enabling them
to automatically analyze, optimize, and debug RMA programs.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; D.3.3 [Programming Languages]: Language Constructs and Features—Concurrent
programming structures

General Terms: Design, Performance

Additional Key Words and Phrases: MPI, one-sided communication, RMA

ACM Reference Format:
Torsten Hoefler, James Dinan, Rajeev Thakur, Brian Barrett, Pavan Balaji, William Gropp, and
Keith Underwood. 2015. Remote memory access programming in MPI-3. ACM Trans. Parallel Comput.
2, 2, Article 9 (June 2015), 26 pages.
DOI: http://dx.doi.org/10.1145/2780584

1. MOTIVATION

Parallel programming models can be split into three categories: (1) shared memory
with implicit communication as a side effect of loads and stores to memory and explicit

This work was partially supported by the National Science Foundation under grants CCF-0816909 and CCF-
1144042, and by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research
under award number DE-FC02-10ER26011 and contract DE-AC02-06CH11357, and award numbers DE-
SC0004131 and DE-FG02-13ER26138. Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.
Authors’ addresses: T. Hoefler, Universitaetsstrasse 6, 8092 Zurich, Switzerland; email: htor@inf.ethz.ch; J.
Dinan and K. Underwood, 77 Reed Road, Hudson, MA 01749; emails: {james.dinan, keith.d.underwood}@
intel.com; R. Thakur and P. Balaji, 9700 South Cass Avenue, Lemont, IL 60439; emails: {thakur, balaji}@
mcs.anl.gov; B. Barrett, Sandia National Laboratories, New Mexico, P.O. Box 5800, Albuquerque, NM 87185-
1319; email: bwbarre@sandia.gov; W. Gropp, 201 North Goodwin Avenue, Urbana, IL 61801-2302; email:
wgropp@illinois.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 2329-4949/2015/06-ART9 $15.00
DOI: http://dx.doi.org/10.1145/2780584

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.

http://dx.doi.org/10.1145/2780584
http://dx.doi.org/10.1145/2780584


9:2 T. Hoefler et al.

synchronization, (2) message passing (MP) with explicit communication and implicit
synchronization as a side effect of messages, and (3) remote memory access (RMA) and
partitioned global address space (PGAS) where communication and synchronization
are managed explicitly and independently. Some PGAS models offer combined commu-
nication and synchronization functions to achieve higher efficiency.

High-performance computing (HPC) and datacenter networking architectures have
undergone a disruptive change in the past decade: they have increasingly converged
toward remote direct memory access (RDMA), a mechanism that enables a process to
directly read and write remote memory. RDMA offers higher performance and lower
CPU load than traditional socket communications due to operating system bypass
[Shivam et al. 2001]. RDMA is also relatively simple to implement in hardware, and
its low-level interfaces are well understood [Buonadonna et al. 1998]. Thus, current
high-performance networks, such as Cray’s Gemini and Aries, IBM’s PERCS and BG/Q
networks, InfiniBand, and Ethernet (using RoCE), all offer RDMA functionality.

Programming in shared memory is often a convenient abstraction because remote
values can just be accessed directly. This spurred a series of research works to em-
ulate shared memory on distributed memory computers. The general conclusion was
that transparent shared memory cannot be emulated efficiently with the available dis-
tributed memory technologies [Karlsson and Brorsson 1998]. RDMA and the related
PGAS abstraction provide a viable middle ground where the address space is separated
into a local load/store accessible part and a remote put/get accessible part.

The traditional programming model in HPC is the highly successful MP model. In
this model, processes communicate only through messages. However, the semantic
mismatch between RDMA and MP can only be bridged with complex and expensive
protocols [Woodall et al. 2006]. Thus, MP implementations using today’s RDMA net-
works cannot exploit the full potential of the hardware. The Message Passing Interface
(MPI) 2.0 standard introduced a one-sided communication scheme in 1997 based on
the technology at that time. The MPI-2 abstract machine model does not reflect today’s
RDMA networks well and does not support the exploitation of RDMA’s full potential,
which inhibited its adoption. However, architectural trends, such as RDMA networks
and the increasing number of (potentially noncoherent) cores on each node, required a
reconsideration of the programming model.

The Message Passing Interface Forum, the standardization body of MPI, developed
new ways for exploiting RDMA networks and multicore CPUs in MPI programs. This
article, written by key members of the MPI-3 Remote Memory Access Working Group,
summarizes the new one-sided communication interface of MPI-3 [MPI Forum 2012].
The main contributions of this work are (1) a detailed informal specification of MPI’s
RMA semantics, (2) several application patterns with the RMA synchronization strate-
gies, and (3) a guide toward a formal specification of MPI-3’s RMA semantics. Our work
is targeted at advanced programmers who want to understand the detailed semantics
of MPI-3 RMA programming; designers of libraries or domain-specific languages on
top of MPI-3; researchers thinking about future RMA programming models; and tool,
library, or compiler developers who aim to support RMA programming. For example, a
language developer could base semantics of the language on the underlying MPI RMA
semantics, a tool developer could use the semantics specified in this article to develop
static-analysis and model-checking tools that reason about the correctness of MPI RMA
programs, and a compiler developer could design analysis and transformation passes
to optimize MPI RMA programs transparently to the user.

We expect that different readers will be interested in different parts of this article
and hence provide a small overview. Section 2 provides an intuitive description of the
semantics of RMA. It also explains the relation to RDMA architectures and provides
some intuition about the performance of these operations. This section is most suited

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



Remote Memory Access Programming in MPI-3 9:3

for programmers aiming to use RMA. Section 3 specifies axiomatic semantics for MPI-3
RMA’s memory model and is intended for researchers and advanced developers. It can
be used to answer rather subtle questions about correct executions and can be encoded
into correctness checkers such as MemSAT [Torlak et al. 2010]. Section 4 provides
examples to build intuition about how to use the new semantics and is thus most
interesting to algorithm designers.

1.1. Related Work

Efforts in the area of parallel programming models are manifold. PGAS programming
models view the union of all local memory as a globally addressable unit. The two most
prominent languages in the HPC arena are Co-Array Fortran (CAF) [Numrich and
Reid 1998], now integrated into the Fortran 2008 standard as coarrays, and Unified
Parallel C (UPC) [UPC Consortium 2005]. CAF and UPC simply offer a two-level view
of local and remote memory accesses. Indeed, CAF-2 [Mellor-Crummey et al. 2009]
proposed the notion of teams, a concept similar to MPI communicators, but it has not yet
been widely adopted. Higher-level PGAS languages, such as X10 [Charles et al. 2005]
and Chapel [Chamberlain et al. 2007], offer convenient programmer abstractions and
elegant program design but have yet to deliver the performance necessary in an HPC
context. Other languages, such as Global Arrays [Nieplocha et al. 1996], offer similar
semantics restricted to specific structures or domains (in this case, array accesses).
MPI-2’s RMA model [MPI Forum 2009, §11] is the direct predecessor to MPI-3’s RMA
model, and MPI-3 is fully backward compatible. However, MPI-3 defines a completely
new memory model and access mode that can rely on hardware coherence instead of
MPI-2’s expensive and limited software-coherence mechanisms.

In general, the MPI-3 approach integrates easily into existing infrastructures, as it is
a library interface that can work with all compilers [Yang et al. 2014]. A complete speci-
fication of the library semantics enables automated compiler transformations [Danalis
et al. 2009]. In addition, MPI offers a rich set of semantic concepts such as isolated pro-
cess contexts (communicators), process topologies, and abstract definitions for access
patterns of communication functions (MPI datatypes). These concepts enable users to
specify additional properties of their code that allow more complex optimizations at the
library and compiler level [Schneider et al. 2013]. In addition, communicators and pro-
cess topologies [Traff 2002; Hoefler et al. 2011] can be used to optimize process locality
during runtime. Another major strength of the MPI concepts is the strong abstraction
and isolation principles that enable the layered implementation of libraries on top of
MPI [Hoefler and Snir 2011]. Our expectation is that experts will use MPI RMA as
an efficient foundation for high-level libraries that provide domain-specific extensions,
which hide most of the complexity.

Since MPI RMA offers direct memory access to local and remote memory for multi-
ple threads of execution (MPI processes), questions related to memory consistency and
memory models arise. Several recent works deal with understanding complex memory
models of architectures such as x86 [Owens et al. 2009] and specifications for program-
ming languages such as Java [Manson et al. 2005] and C++11 [Boehm and Adve 2008].
We will build on the models and notations developed in those papers and define mem-
ory semantics for MPI RMA. The well-known paper demonstrating that threads cannot
be implemented with a library interface [Boehm 2005] also applies to this discussion.
Indeed, serial code optimization combined with parallel executing threads may lead to
erroneous or slow codes. The semantics specified in this work can also be seen as a set
of restrictions for serial compilers to make them MPI-aware.

1.2. Overview and Challenges of RMA Programming

The main complications for RMA programming arise from the separation of communi-
cation (remote accesses) and synchronization. In addition, the RMA interface splits

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



9:4 T. Hoefler et al.

synchronization further into memory consistency (i.e., when a remote process ob-
serves a communicated value) and process synchronization (i.e., when a remote process
“learns” about the state of another process). Furthermore, some RMA synchronizations
can be nonblocking.

The main challenges of RMA programming revolve around the semantics of oper-
ation completion and memory consistency. Practical hardware implementations only
provide weak or relaxed consistency because sequential consistency is too expensive
to implement. However, most programmers prefer to reason in terms of sequential
consistency because of its conceptual simplicity. C++11 and Java bridge this gap by
offering sequential consistency at the language level if the programmer avoids data
races. Whereas Java defines the behavior of programs containing races, C++11 leaves
the semantics of programs with races unspecified so that implementations are less
constrained and able to deliver higher performance.

MPI models completion, memory consistency, and process synchronization as sep-
arate concepts, which enables the user to reason about them separately. RMA pro-
gramming is thus slightly more complex due to interactions between operations. For
example, MPI, like most RMA programming models, enables the programmer to start
operations asynchronously and complete them (locally or remotely) later. This tech-
nique is necessary to hide single-message latency with multiple pipelined messages;
however, it makes reasoning about program semantics more complex. In fact, in the
MPI RMA model, all communication operations are nonblocking; in other words, the
communication functions may return before the operation completes. Bulk synchro-
nization functions can be used to complete previously issued operations. In the ideal
case, this feature enables a programming model in which high latencies can be ignored
and processes never “wait” for remote completion.

The resulting complex programming environment is often not suitable for average
programmers (e.g., domain scientists); rather, writers of high-level libraries can provide
domain-specific extensions that hide most of the complexity. The MPI RMA interface
aims to enable expert programmers and implementers of domain-specific libraries
and languages to extract the highest performance from a large number of computer
architectures in a performance-portable way. However, as was the case for the MPI-2
RMA interface, there are rules that can be followed by programmers that will ensure
correct behavior. These are sufficient but not necessary rules that may sacrifice some
performance or expressivity for simplicity. This article focuses on the full potential and
power of the MPI RMA interface; the discussion here can be used to describe subsets
of the MPI RMA interface that may be easier for average programmers to use and
understand.

2. SEMANTICS AND ARCHITECTURAL CONSIDERATIONS

We now proceed to discuss the conceptual underpinnings of MPI RMA programming.
Two central concepts of MPI RMA are memory regions and process groups. An MPI
window binds a memory region at a process to a group of processes. The window’s
process group is identical to the process group of communicator that was used to create
the window. This mechanism enables two types of spatial isolation: (1) processes outside
the group cannot access memory that is exposed within the group, and (2) memory
that is not attached to an MPI window cannot be accessed by remote processes, even
in the same group. Both principles are important for parallel software engineering.
They simplify the development and maintenance of parallel programs by offering an
additional separation of concerns; that is, nonexposed memory cannot be corrupted by
remote processes. They also enable the development of spatially separated libraries in
that a library can use either a dedicated set of processes or a separate memory region
and thus not interfere with other libraries or user code [Hoefler and Snir 2011].

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



Remote Memory Access Programming in MPI-3 9:5

Fig. 1. Overview of communication options in the MPI-3 specification.

Fig. 2. MPI-3 memory window creation variants.

MPI RMA offers the basic data-movement operations put and get and additional
predefined atomic operations called accumulate. Put and get are designed to enable
direct usage of the shared memory subsystem or hardware-enabled RDMA. Accumu-
lates require computation, but they can, in some cases, also use hardware acceleration
directly. All communication functions are nonblocking and are completed by using
either bulk completion functions or request-based completion. Bulk completions are
generally faster than separate request-based completions. Figure 1 shows an overview
of communication and synchronization functions in the MPI specification. We explain
each function in the following sections.

2.1. Memory Exposure

MPI RMA offers four calls to expose local memory to remote processes. The first three
variants create windows that can be remotely accessed only by MPI communication
operations. Figure 2 shows an overview of the different versions. The fourth variant en-
ables users to exploit shared memory semantics directly and provides direct load/store
access to remote window memory if supported by the underlying architecture.

The first (legacy) variant is the normal win create function: each process specifies an
arbitrary consecutive memory region (≥ 0 bytes) to be exposed and a communicator
from which the process group is derived. The function returns an opaque window object
that can be used for remote accesses. Remote accesses are addressed relative to the start
of the window at the target process, so a put to offset zero at process k updates the first
memory block in the window that process k exposed. MPI supports the specification of
the least addressable unit in each window (called the displacement unit). The fact that
processes can attach the window to consecutive memory regions at arbitrary addresses
may lead to large translation tables on systems that offer RDMA functions. These
tables may be distributed [Mellor-Crummey et al. 2009], but the necessary remote
lookups may reduce performance.

The second creation function, win allocate, transfers the responsibility for memory
allocation to MPI. RDMA networks that require large translation tables for win create

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



9:6 T. Hoefler et al.

Fig. 3. Example MPI-3 shared memory window layout for a job running on four dual-core nodes. Each node
has its own window that supports load/store and RMA accesses. The different shapes indicate that each
process can pick its local window address and size independently of other processes.

may be able to avoid such tables by allocating memory at identical addresses on all
processes (sometimes called symmetric allocation [Gerstenberger et al. 2013]). Other-
wise, the semantics are identical to the win create function.

The third creation function, create dynamic, does not expose memory in the created
window. Instead, it binds only a process group where each process can use subsequent
local function calls for exposing memory in the window. This mode naturally maps to
many RDMA network architectures; however, it may be more expensive than allocated
windows because the MPI library may need to maintain additional structures for each
exposed memory region. This mode can, however, be used for more dynamic programs
that require process-local memory management, such as dynamically sized hash tables
or object-oriented languages.

The fourth and last creation function, shared memory window allocation, enables
processes to directly map memory regions into the address space of other processes.
For example, if an MPI job is running on multicore nodes, then each process could share
its memory directly with all other processes on the same node. This feature may lead
to much lower overhead for communications and memory accesses than going through
the MPI layer. The win allocate shared function will create such a directly mapped
window for process groups where all processes can share memory.

The helper function comm split type enables programmers to determine groups of
processes that enable such memory sharing. More details on shared memory windows
and detailed semantics and examples can be found in Hoefler et al. [2012]. Figure 3
shows an example of shared memory windows for a job running on four dual-core nodes.

Just like a process can be in multiple communicators, it can also expose multiple
windows with different exposure calls. The MPI standard also allows a process to
expose overlapping memory in different windows.

2.2. Memory Access

One strength of the MPI RMA semantics is that they pose only minimal requirements
on the underlying hardware to support an efficient implementation. For example, the
put and get calls require only that the data be committed to the target memory and
provide initiator-side completion semantics. Both calls make no assumption about the
order of the commits. Thus, races such as overlapping updates or reads conflicting with
updates have no guaranteed result without additional synchronization. This model
supports networks with nondeterministic routing as well as weakly consistent or non-
coherent memory systems.

2.3. Accumulates

Similar to put and get, accumulates strive to place the least possible restrictions on
the underlying hardware. They are also designed to take direct advantage of hardware
support if it is available. The minimal guarantee for accumulates are atomic updates
(something much harder to achieve than simple data transport). The update is atomic

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



Remote Memory Access Programming in MPI-3 9:7

only on the unit of the smallest datatype in the MPI call (usually 4 or 8 bytes), which
is often supported in hardware. Larger types, such as double complex numbers, may
not be supported in hardware. In this case, the MPI library can use software locking of
the remote window to guarantee atomicity.

Accumulates, however, allow overlapping conflicting accesses only if the basic types
are identical and well aligned. Thus, a specification of ordering is required. Here, MPI
offers strong consistency at the granularity of primitive datatypes by default, which
is most convenient for programmers but may come at a cost to performance. However,
the strong consistency can be relaxed by expert programmers to any combination
of read/write ordering that is minimally required for the successful execution of the
program. The fastest mode is to require no ordering.

Accumulates can also be used to emulate atomic put or get if overlapping accesses
are necessary. In this sense, get accumulate with the operation no op will behave like
an atomic read, and accumulate with the operation replace will behave like an atomic
write. However, one must be aware that atomicity is guaranteed only at the level of
each basic datatype. Thus, if two processes use replace to perform two simultaneous
accumulates of the same set of two integers (either specified as a count or as a datatype),
the result may be that one integer has the value from the first process and the second
integer has the value from the second process.

2.4. Request-Based Operations

Bulk local completion of communications has the advantage that no handles need to
be maintained to identify specific operations. These operations can run with little over-
head on systems where this kind of completion is directly available in hardware, such
as Cray’s Gemini or Aries interconnects [Alverson et al. 2010; Faanes et al. 2012].
However, some programs require a more fine-grained control of local buffer resources
and thus need to be able to complete specific messages. For such cases, request-based
operations, prefixed with R (e.g., MPI_Rput), can be used in passive mode. These opera-
tions return a request object similar to nonblocking point-to-point communication that
can be tested or awaited for completion using test or wait functions. Completion refers
only to local completion in this context: for request-based put and accumulate opera-
tions, local completion means that the local buffer may be reused. For request-based
get and get accumulate operations, local completion means that the remote data has
been delivered to the local buffer.

Request-based operations are useful when the application issues a number of non-
blocking RMA operations and waits for the completion of a subset of them before it can
continue computation. An application may start several get operations and compute
the data in the order of their completion (see Listing 1). Note that the completion order
may be different from the order in which the operations were started.

Request-based operations enable finer-grained management of individual RMA op-
erations, but users should be aware that the associated request management can also
cause additional runtime overhead in the MPI implementation.

2.5. Memory Models

To support different applications and systems efficiently, MPI defines two memory mod-
els: separate and unified. These memory models define the conceptual interaction with
remote memory regions. MPI conceptually separates each window into a private and a
public copy. Local CPU operations (also called load and store operations) always access
the local copy of the window, whereas remote operations (get, put, and accumulates)
target the public copy of the window.

The separate memory model assumes systems where coherency is managed by soft-
ware. In this model, remote updates target the public copy and loads/stores target the

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



9:8 T. Hoefler et al.

Fig. 4. Unified and separate memory models.

Listing 1. Example (pseudo) code for using request-based operations.

private copy. Synchronization operations, such as lock/unlock and sync, synchronize
the contents of the two copies for a local window. The semantics do not prescribe that
the windows must be separate, just that they may be separate. In other words, remote
updates may also update the private copy. However, the rules in the separate memory
model ensure that a correct program will always observe memory consistently. These
rules force the programmer to perform separate synchronization.

The unified memory model relies on hardware-managed coherence. It assumes that
the private and public copies are identical; that is, the hardware automatically prop-
agates updates from one to the other (without MPI calls). This model is similar to
cache-coherence protocols on multicore CPUs and memory semantics of RDMA net-
works that propagate writes to their destination eventually. It enables programmers
to exploit the whole performance potential of architectures in which both the processor
and network provide such progress guarantees. Moreover, it places a lower burden on
the programmer, as it requires less explicit synchronization. Figure 4 shows a compar-
ison between the two memory models.

A portable program would query the memory model for each window and behave
accordingly. Programs that are correct in the separate model are always also correct in
the unified model. Thus, programming for the separate memory model is more portable
but may require additional synchronization calls.

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



Remote Memory Access Programming in MPI-3 9:9

Fig. 5. Active target synchronization: fence mode for bulk-synchronous applications (left) and scalable active
target mode for sparse applications (right).

2.6. Synchronization

All communication operations are nonblocking and arranged in epochs. An epoch
is delineated by synchronization operations and forms a unit of communication. All
communication operations are completed locally and remotely by the call that closes
an epoch (the various completion calls are discussed later). Epochs can conceptually be
divided into access and exposure epochs: the process-local window memory can only be
accessed remotely if the process is in an exposure epoch, and a process can only access
remote memory when it is in an access epoch. Naturally, a process can be simultane-
ously in access and exposure epochs.

MPI offers two main synchronization modes based on the involvement of the target
process: active target synchronization and passive target synchronization. In active
target synchronization, the target processes expose their memory in exposure epochs
and thus participate in process synchronization. In passive target synchronization,
the target processes are always in an exposure epoch and do not participate in syn-
chronization with the accessing processes. Each mode is tailored to different use cases.
Active target synchronization supports bulk-synchronous applications with a relatively
static communication pattern, whereas passive target synchronization is best suited
for random accesses with quickly changing target processes.

2.6.1. Active Target Synchronization. MPI offers two modes of active target synchroniza-
tion: fence and general. In the fence synchronization mode, all processes associated
with the window call fence and advance from one epoch to the next. Fence epochs are
always both exposure and access epochs. This type of epoch is best suited for bulk
synchronous parallel applications that have quickly changing access patterns, such as
many graph-search problems [Willcock et al. 2011].

In general active target synchronization, processes can choose to which other pro-
cesses they open an access epoch and for which other processes they open an exposure
epoch. Access and exposure epochs may overlap. This method is more scalable than
fence synchronization when communication is with a subset of the processes in the
window, as it does not involve synchronization among all processes. Exposure epochs
begin with a call to post (which exposes the window memory to a selected group) and
complete with a call to test or wait (which tests or waits for the access group to fin-
ish their accesses). Access epochs begin with a call to start (which may wait until all
target processes in the exposure group exposed their memory) and finish with a call
to complete. The groups of start and post and complete and wait must match; that is,
each group has to specify the complete set of access or target processes. This type of
access is best for computations that have relatively static communication patterns and
few communication partners, such as many stencil access applications [Datta et al.
2008]. Figure 5 shows example executions for both active target modes. The dashed

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



9:10 T. Hoefler et al.

Fig. 6. Passive target mode examples.

lines between processes represent get request commands, and the solid lines between
processes represent data transfers.

2.6.2. Passive Target Synchronization. The concept of exposure epoch is not relevant in
passive mode, as all processes always expose their memory. This feature leads to re-
duced safety (i.e., arbitrary accesses are possible) but also potentially to improved
performance. Passive mode can be used in two ways: single-process lock/unlock as in
MPI-2 and global shared lock accesses.

In the single-process lock/unlock model, a process locks the target process before
accessing it remotely. To avoid conflicts between local load/store and remote RMA ac-
cesses (see Section 3), a process may lock its local window exclusively. Exclusive remote
window locks may be used to protect conflicting accesses, similar to reader-writer locks
(shared and exclusive in MPI terminology). Acquiring a lock guarantees local memory
consistency, and releasing a lock guarantees remote consistency as well. More seman-
tic details are explained in Section 3. Figure 6(a) shows an example with multiple
lock/unlock epochs and remote accesses. The gray dashed-dotted lines represent the
actual locked region (in time) when the operations are performed at the target process.
Note that the lock function itself is a nonblocking function—it does not have to wait
for the lock to be acquired (in this case, accesses have to be buffered). Lock is also
one sided; thus, it does not enforce an ordering of epochs across processes, and access
epochs to process 2 in Figure 6(a) can occur in the order shown or in the reverse order.

In the global lock model, each process starts a lock all epoch to all other processes. As
opposed to fence, lock all is not collective. Lock all epochs are shared locks by definition.
Processes then communicate via RMA operations to update data and use point-to-
point communication or synchronization operations for notification. Fine-grained data-
structure locks, such as MCS (see Section 4.3), can be implemented in this mode.
Figure 6(b) shows an example of a lock all epoch with several communications and
flushes. A flush ends the current epoch and ensures memory consistency. MPI also
allows mixing both lock modes and point-to-point communication freely.

3. SEMIFORMAL DEFINITION OF SEMANTICS

Our specification of the memory model tries to be as precise as possible while still
being readable by professional programmers. We aim to specify the semantics with
sufficient precision to enable other researchers to derive a formal specification of the
MPI-3 RMA memory models and develop valid transformations for such programs.1
For this purpose, we follow the conventions from Manson et al. [2005] and Boehm and
Adve [2008]. Yet, the level of detail creates complex interactions and readers who are

1Small additions and the removal of simplifications are necessary for defining a full formal model. The model
presented in this work is kept simple and readable to foster human reasoning.

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



Remote Memory Access Programming in MPI-3 9:11

primarily interested in gaining an intuitive understanding about the semantics for
practical use may skip to Section 4, where we present use cases and examples.

Formal semantics can be used for proving consistency of the standard; indeed, we
found two issues in MPI-3 while establishing the models: (1) a loose definition that
allows interpretation of memory consistency rules in different, conflicting ways and
(2) a missing definition for the interaction between active and passive target mode.
We also found that the formal notation can be used to concisely describe corner cases
as litmus tests [Mador-Haim et al. 2011], many of which resolve themselves after
formalization. In addition, applications written in MPI-3 RMA could be verified for
correctness and determinism similar to programs on multicore CPUs [Torlak et al.
2010]. Formal semantics could also be used to design and verify semantics-preserving
compiler transformations [Boehm 2005].

MPI’s memory semantics are specified in terms of regions of exposed memory called
MPI windows. Each MPI RMA call is constrained to target a single window. Each
such memory window has an associated set of MPI processes that may perform MPI
RMA operations on the window memory of any process in the set. Our model considers
only operations on memory associated with a window. MPI RMA comprises memory
operations and synchronization operations. Window memory can also be accessed by
the program using local load and store operations (induced by statements in the source
code or MPI operations). To simplify our notation, we assume that each primitive
datatype occupies distinct memory locations in a window (with a per-byte granularity).
We also assume that all operations are aligned at multiples of the size of the accessed
primitive datatype.

A correct MPI RMA program is a program where each conflicting access is synchro-
nized with process synchronization (we call this happens before) as well as memory
synchronization (we call this consistency). In addition, correct MPI programs do not
deadlock or livelock. MPI offers different synchronization calls to achieve both orders.
Our semantics consider executions of programs. First, we introduce two initial types of
actions: memory and synchronization. Following Manson et al. [2005] and Boehm and
Adve [2008], we define a memory action as the tuple

〈a, o, t, rl, wl, u, p〉
with the following elements:

a: [action type] can be one of the following: local store (ls), local load (ll), remote com-
munication put (rcp), remote communication get (rcg), remote accumulate get (rag,
with the special case fetch and op), remote accumulate (rac), or remote accumulate
compare and swap (ras).

o: [origin] contains the MPI process rank for the origin of the action.
t: [target] contains the MPI process rank for the destination of the action. Actions of

type ll and ls can have only the local process as destination.
rl: [read location] contains the location read by the action. This is not specified for ls

and is a tuple of the form 〈compare location, swap location〉 for ras.
wl: [write location] contains the location written by the action (not specified for ll).
u: an arbitrary [unique] identifier for the action.
p: [source point] is a label identifying the source program point.

Similarly, a synchronization action is defined as the tuple

〈a, o, t, u, p〉
with the following elements:

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



9:12 T. Hoefler et al.

a: [action type] can be one of the following: fence (sfe), lock shared (sls), lock exclusive
(sle), unlock (sul), lock all (sla), unlock all (sula), flush (sfl), flush local (sfll), flush all
(sfla), flush local all (sflla), win-sync (sws), and external synchronization (ses, e.g.,
matching send/recv pairs or collective operations).

o: [origin] contains the process rank for the origin of the action.
t: [target] contains the process rank for the destination of the action. The actions sla,

sula, sfla, sflla have a special identifier � as destination, which stands for the entire
set of processes associated with the window.

u: an arbitrary [unique] identifier for the action.
p: [source point] is a label identifying the source program point.

We omit the generalized active target synchronization and request-based RMA op-
erations to keep the notation simple. They are conceptually similar to the modeled
operations, and their omission does not affect the conclusions drawn. However, mod-
eling these would require several new symbols and interactions, adding significant
complexity and jeopardizing our goal of readability.

For brevity, we name actions of type z just as z instead of “x where x.a = z”. For
example, sle reads “the action sle of type lock exclusive.” We use the notation v = (x|y)
to indicate that v is either of type x or y. For example, we write (sls|sle) to denote a
single action of type lock shared or lock exclusive. Ordering relations such as (sls|sle) →
(sls|sle) can be read like “an action of type lock shared or lock exclusive is ordered with
another action of type lock shared or lock exclusive.” That means that the expression
orders two actions of all possible type combinations, such as sls → sls, sle → sle, sle →
sls, sls → sle.

We define the following abbreviations for common action types: a put/get action
rc∗ := (rcp|rcg), a remote accumulate action ra∗ := (rac|rag|ras), a remote memory
action r∗ := (rc∗|ra∗), a local memory action l∗ := (ll|ls), and a synchronization action
s∗ := (sfe|sls|sle|sul|sla|sula|sfl|sfll|sfla|sflla|sws|ses).

In addition, remote memory actions r∗ as well as unlock actions (sul|sula) and remote
flush actions (sfl|sfla) create virtual actions (vac|vas) at the target process. A virtual
communication action vac represents the event when the effect of the communication
action takes place at the target, and a virtual synchronization action vas represents
the event when a synchronization action takes place at the target. For example, for
an rcp, the corresponding vac is the action that commits the data to the destination
memory, and for an rcg, it is the action that reads the data from destination memory.
Virtual actions are necessary to define consistency and process order for purely one-
sided remote events. We arbitrary abbreviate virtual actions as va∗ = (vac|vas).

We can now define the execution of a program as a set of actions, orders, and functions

X = 〈P, A,
po−→, W, V,

so−→,
hb−→,

co−→〉,

where

P: is the program to be executed;
A: is the set of all actions (types s∗|r∗|l∗|va∗);
po→ specifies a total order (program order) of actions (s∗|r∗|l∗) at the same process

much like the “sequenced-before” order in C++ or the “program order” in Java,
which specifies the order of executions in a single-threaded execution;

W : is a function that returns the store (ls), remote put (rcp), or remote accumulate
(ra∗) that wrote the value into the location read by the specified action;

V : is a function that returns the value written by the specified action;

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



Remote Memory Access Programming in MPI-3 9:13

so→ is a partial order of the synchronization relations of process synchronization and
virtual actions (s∗|va∗) including external waiting-for relationships (e.g., arise from
ses actions like collective operations and matched send/recv pairs);

hb→ is a transitive relation between pairs of actions, in which the relation
hb−→ is the

transitive closure of the union of
po−→ and

so−→; and
co→ is a partial order of memory actions and virtual actions (r∗|l∗|va∗), in which a

consistency edge x
co−→ y guarantees that the memory effects of action x are visible

to y.

Consistency order
co−→ and happens-before order

hb−→ are representing the memory con-
sistency and process synchronization concepts, respectively. If x

co−→ y in an execution,
then y observes the effect of x. If y originates at a different process than x, then
unbounded network latencies may delay the commit and it is generally not specified
when y commits. Thus,

co−→ alone cannot guarantee consistent semantics. However, MPI
specifies that x

co−→ y implies that if y happens arbitrary late (or is repeated), then y
observes the effect of x eventually in unified memory windows; this guarantee is needed
for polling and does not require an

hb−→ ordering (see Section 3.5 for an example). To
establish a guaranteed order between actions on different processes, MPI specifies
process synchronization operations that imply

so−→ by delaying a process’s execution
until a matching synchronization is issued and has arrived. Both

co−→, which only en-
sures synchronized memory, and

hb−→ which only ensures synchronized process actions,
have to be combined to enforce correct executions. Indeed, the active mode synchro-
nization primitives guarantee both orders. However, some complex synchronization
mechanisms allow the user to separate the two orders. We thus abbreviate a consistent
happens-before order between two actions x and y as

x
cohb−−→ y := x

hb−→ y ∧ x
co−→ y. (1)

For two actions x and y and an order of type O ∈ { po−→,
so−→,

hb−→,
co−→}, we denote that x

and y are not ordered by O as

x ‖O y := ¬(x
O−→ y ∨ y

O−→ x). (2)

For example, x ‖hb y means that x and y happen concurrently in happens-before order,
and x ∦hb y means that x and y are ordered in happens-before order. Unless otherwise
stated, all relations and orders assume actions at the same process.

3.1. Valid Executions and Process Synchronization

We now specify valid programs in terms of their executions. In a correct and deadlock-
free MPI program, all possible executions must be valid. An execution is valid under
the following conditions:

(1) Each action is generated by executing a program statement, and all actions occur
in an order (

po−→) consistent with the control flow of each process in the program.
(2) Passive target (lock/unlock) must be called in the correct order at each process

(e.g., each unlock is preceded by a matching lock in program order, and each lock is
followed by an unlock). Let

[x..y] := {z : x
po−→ z

po−→ y}. (3)

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



9:14 T. Hoefler et al.

Formally, for an action x = (sls|sle),

∃ y : x
po−→ y ∧ y.a = sul ∧ x.t = y.t ∧ ∀ z ∈ [x..y], z.a = sfe ∧ z.a ∈ {sls, sle} ⇒ z.t = x.t

(4)
and similarly, when x = sla,

∃ y : x
po−→ y ∧ y.a = sula ∧ ∀ z ∈ [x..y], z.a /∈ {sfe, sls, sle, sul}. (5)

(3) Fence actions are matched correctly; that is, for each fence sfei on process i, there
must be a corresponding fence sfek on each other process k (for all processes in the
group associated with the window) such that sfei ‖hb sfek.

(4) Windows may not be locked and exposed concurrently such that for an action
x = (sls|sle|sla): x ∦hb sfe and for all x

hb−→ sfe there exists an unlock y where

y.a ∈ {sul, sula} that matches x and y
hb−→ sfe.

(5) For actions sfe0 po−→ r∗ po−→ sfe1, sfe0 may only open a fence epoch when the
MPI_MODE_NOSUCCEED assertion is not given and

s∗ /∈ [sfe0
..r∗]. (6)

The sfe1 action may only close a fence epoch when the MPI_MODE_NOPRECEDE assertion
is not given and

s∗ /∈ [r∗..sfe1]. (7)

(6) The synchronization actions (sfl|sfla|sfll|sflla) can only be called in passive target
mode; that is,

∃y = (sls|sle|sla) : y
po−→ x

po−→ (sfl|sfla|sfll|sflla) ∧ x.a = sfe. (8)

(7) The program is deadlock free; that is, the directed graph G = (A,
hb−→) contains no

cycles (this excludes the synchronization orders introduced by matching fences,
single unlocks, and single flushes).

(8) For each remote memory action r∗, the origin process r∗.o is in an epoch of type
access (see Section 3.2). The target process r∗.t is in an epoch of type exposure if
the accessing origin process’s last synchronization operation (in

po−→) was of type sfe.

The orders
po−→ and

so−→, and thus
hb−→, are uniquely defined by the execution schedule

and the rules for a well-formed execution. The consistency order is defined by the
semantics of epochs and synchronization operations. We define these in the following
sections.

3.2. Epochs, Synchronization, and Consistency

Synchronization operations logically split the execution at each process into epochs.
Epochs are a concept to enforce consistency for local and remote operations. We now
define all significant interactions between all (r∗|l∗|s∗) actions of valid executions with
regard to process synchronization

so−→, program order
po−→, and consistency order

co−→.

3.2.1. Epochs. Epochs have a total order per process for a given pair of window and
target arguments and can be of type access (the process acts as source of RMA op-
erations), type exposure (the process acts as destination of RMA operation), or both
simultaneously. Each epoch starts with a synchronization action (sfe|sle|sls|sla) and
ends with a locally matching synchronization action (sfe|sul|sula). Two synchroniza-
tion operations sfe match locally if no other sfe occurs between them, sla matches the
next sula in

po−→ and vice versa, and sle or sls match the next sul (with the same target

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



Remote Memory Access Programming in MPI-3 9:15

process) in
po−→ and vice versa. A synchronization action (sfl|sfla) has the effect of closing

and opening an epoch.
Each memory action x = (r∗|l∗) happens in exactly one epoch that is bounded by

matching synchronization actions (in
po−→). Two epochs u and v are ordered by

hb−→ if
the ending synchronization action s∗u of u is ordered with the starting synchronization
action s∗v of v as s∗u

hb−→ s∗v.

3.2.2. Virtual Actions. Virtual actions belong to a real action in the trace. However,
virtual actions happen at a different process than the originating action. They indicate
when the effect of a real action commits at the target process.

Each virtual synchronization action vas is part of a real synchronization action s∗,
and it is coherent as well as synchronized with its originating action. We abbreviate
coherency as well as synchronization order between two actions x and y as x

coso−−→ y =
x

co−→ y∧ x
so−→ y. Since it blocks until all messages commit remotely, it introduces orders

in both directions. To model this, we split the s∗ action into start s∗s and end action s∗e

and define s∗s
coso−−→ vas and vas

coso−−→ s∗e. We abbreviate this split action for brevity with
s∗ coso−−→ vas. Each virtual communication action vac is part of a real communication
action r∗, and it is coherent as well as synchronized with its originating action. We also
split communication actions into start and end parts r∗s and r∗e and define r∗s

coso−−→ vac
and vac

coso−−→ r∗e abbreviated as r∗ coso←→ vac. A virtual action va∗ happens at the target
(s∗|r∗).t of its originating action (s∗|r∗). The location where a virtual action happens is
its origin va∗.o.

3.2.3. Remote Memory Actions and Local Effects. Remote memory actions r∗ cause local
load/store operations to read or write the data at the origin r∗.o and a virtual remote
communication action at r∗.t when the action takes place at the target. Thus, each r∗
can be modeled by a set of l∗ and the virtual communication action vac. The action vac
acts on the public window copy at the target, whereas l∗ act on the private window copy.
Again, we assume that r∗ is split into start and end actions. We define the following
optional replacement rules to model local and remote effects of communication actions:
rcge = ls, rcps = ll, racs = ll, rass = ll, rase = ls, rags = ll, and rage = ls. However, we
keep the remote actions r∗ in the following to define their interaction with locks and
flushes precisely.

Some synchronization operations complete remote actions r∗, whereas others only
enforce consistency of local actions l∗. Thus, we will consider interactions between local
memory actions l∗, remote memory actions r∗, and virtual actions (vas|vac) with the
synchronization actions s∗ in the following.

3.2.4. Active Target Synchronization. The active target synchronization mode uses sfe
actions to collectively transition all processes from epoch i to epoch i + 1. A fence can
essentially be seen as a single action invoked by all processes in the group associated
with the window. It introduces

co−→ and
so−→ between remote matching fences at all pairs

of processes i and j. As for the virtual action, we split sfe into start and end actions and
the orders of actions between arbitrary processes i and j sfei

s
co−→ sfe j

e and sfei
s

so−→ sfe j
e .

As for virtual actions, we abbreviate the orders and split using sfei coso←→ sfe j in the
following. Fences match remotely in the order of issuing in the window; that is, the kth

fence on process j matches the kth fence on process i. In addition, a fence guarantees
local consistency for all

hb−→-ordered load/store and virtual communication actions

(r∗|l∗|vac)
hb−→ sfe ⇒ (r∗|l∗|vac)

co−→ sfe and sfe
hb−→ (r∗|l∗|vac) ⇒ sfe

co−→ (r∗|l∗|vac). (9)

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



9:16 T. Hoefler et al.

3.2.5. Passive Target Synchronization. In the passive target synchronization mode, the
concept of an exposure epoch does not exist, and all processes can be accessed at any
time without any MPI call at the “passive” target. A process-local access epoch to a
single process j is opened at process i after an action (sls|sle).t = j ∧ (sls|sle).o = i and
ends with a sul.t = j ∧ sul.o = i action. A process-local access epoch to all processes is
opened at process i by an action sla.o = i and ends with action sula.o = i.

Lock/Unlock. Lock operations can be either shared or exclusive. In a valid execution,
a shared lock (sls|sla) is ordered by a synchronization order sul

so−→ sls with all previous
unlocks sul for which sls.t = sul.t and sul is matching an exclusive lock sle. An exclusive
lock sle is ordered by a synchronization order (sul|sula)

so−→ sle with all previous unlocks
sul for which sle.t = sul.t and all previous sula. Lock actions guarantee local consistency

(sls|sle|sla)
hb−→ l∗ ⇒ (sls|sle|sla)

co−→ l∗ if (sls|sle|sla).o = l∗.o (10)

and

vas
hb−→ (sls|sle|sla) ⇒ vas

co−→ (sls|sle|sla) if (sls|sle|sla).o = vas.o. (11)

Unlock completes remote actions locally

r∗ po−→ (sul|sula) ⇒ r∗ co−→ (sul|sula) (12)

and also guarantees that local memory is consistent, such that

(sul|sula)
po−→ l∗ ⇒ (sul|sula)

co−→ l∗ (13)

if and only if the value accessed by l∗ was accessed by an r∗ action (its related ls) after
the matching (sle|sls) and sul.t = r∗.t. Unlock also propagates updates to the public
window

ls
po−→ (sul|sula) ⇒ ls

co−→ (sul|sula) and (sul|sula)
po−→ vas ⇒ (sul|sula)

co−→ vas. (14)

In addition, an unlock completes actions remotely and generates a virtual action vas
at sul.t that synchronizes the memory access to the remote public window

vas
hb−→ vac ⇒ vas

co−→ vac and vac
hb−→ vas ⇒ vac

co−→ vas (15)

if vac.o = vas.o.

Flush. A flush can be used to synchronize RMAs. A flush sfl has the same semantics
as an unlock. It also generates a virtual synchronization action vas at its target with
the same rules as stated in Equation (15). A flush all sfla behaves like a flush to all
processes. Flush local sfll completes remote operations locally:

r∗ po−→ sfll ⇒ r∗ co−→ sfll if r∗.t = sfll.t. (16)

Flush local all completes all remote operations locally:

r∗ po−→ sflla ⇒ r∗ co−→ sflla. (17)

Flush local does not create a virtual action.

Sync. A win sync call sws has the effect synchronizing remote and local accesses.

(l∗|vac)
hb−→ sws ⇒ (l∗|vac)

co−→ sws and sws
hb−→ (l∗|vac) ⇒ sws

co−→ (l∗|vac). (18)

Local load/Store. For normal reads and writes interacting with RMA calls,

l∗ po−→ r∗ ⇒ l∗ co−→ r∗. (19)

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



Remote Memory Access Programming in MPI-3 9:17

Consistent remote operations. For virtual communication actions in the unified mem-
ory window,

l∗ hb−→ vac ⇒ l∗ co−→ vac. (20)

3.3. Conflicts and Races

We now specify the rules for defined memory operations in MPI RMA. Those are needed
to reason about the possible result of a series of memory actions originating at different
processes.

3.3.1. Conflicting Actions. In the separate memory model (see Section 2.5), two memory
actions x and y are called conflicting if they are directed toward overlapping memory
locations at the same process and either (1) one of the two operations is a put rcp, (2)
exactly one of the operations is an accumulate (ra∗), or (3) one operation is a get (rcg)
and the second one a local store (ls). In addition, remote writing operations (rcp and
ra∗) that access the same process conflict with local store (ls) operations issued by the
target process regardless of the accessed location.

In the unified model, two actions x and y are called conflicting if they are directed
toward overlapping memory locations at the same process and either (1) one of the two
operations is a put (rcp), (2) exactly one of the operations is an accumulate (ra∗), or (3)
one operation is a get (rcg) and the second one a local store (ls).

3.3.2. Races. A data race between two conflicting operations x and y exists if they are
not ordered by both

hb−→ and
co−→ relations

¬(x
cohb−−→ y ∨ y

cohb−−→ x); (21)

that is,

x ‖hb y ∨ x ‖co y. (22)

In other words, for a program to be free of data races, all conflicting accesses must be
ordered by

cohb−−→.

3.3.3. Conditions for Well-Defined Memory Semantics. Only data race–free executions have
well-defined memory semantics. If an execution has well-defined semantics, then a
read action ll will always return the last written value (last as defined by the consistent
happens-before order):

W((ll|vac))
cohb−−→ (ll|vac) ∧ V ((ll|vac)) = V (W((ll|vac))). (23)

In addition, the following property is guaranteed:

W((ll|vac))
cohb−−→ ls

cohb−−→ (ll|vac), then (ll|vac).rl = ls.wl ∧ V ((ll|vac)) = V (W((ll|vac))).
(24)

In other words, in a program with well-defined memory semantics, for every read action
(ll|vac),

¬((ll|vac)
cohb−−→ W((ll|vac))). (25)

3.4. Ordering Rules for Accumulates

Let x and y be of type ra∗ and update the same variable:

x.wl = y.wl ∧ x
po−→ y ⇒ x

co−→ y. (26)

However, the user can relax any of the possible combinations of write and read ordering
(waw, war, raw, rar). For local ls and ll memory actions and the local reads and writes

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



9:18 T. Hoefler et al.

Fig. 7. Simple examples for active and passive synchronization.

associated with r∗ actions, we assume sequential ordering. The effects cannot be ob-
served remotely, as no consistent ordering exists for those operations; thus, many local
compiler transformations (e.g., changing the order of instructions) that do not modify
sequential correctness are possible. Remote put and get rc∗ actions and r∗ actions with
different destination addresses or processes have no specified ordering.

3.5. Eventual Remote Completion

The unified memory model enables the user to “poll” on a location and wait for a
message to arrive without additional MPI operations. Thus, a flush or unlock on a
process A could complete an r∗ action targeted at process B, and process B could wait
in an infinite loop for the arrival for the message.

The vac action that is generated on process B will not have a happens-before relation,
whereas it will have a (sul|sfl|sfla)

co−→ vac. If process B waits (potentially an unbounded
number of steps) for the message to arrive (by polling on r∗.wl), it is guaranteed that
the message will eventually arrive; that is, a consistent happens-before relation will
be established between the (sul|sfl|sfla) and one of the polling reads. However, MPI
provides no timing guarantees, and thus the process may need to wait for an unbounded
number of steps.

3.6. Shared Memory Windows

All of the preceding discussions apply to shared memory windows. As stated earlier,
however, there are no guarantees about the consistency order of ll and ls actions
(which can now be observed directly by remote processes), as this is a function of
the architecture’s memory model (e.g., x86 [Owens et al. 2009] or POWER [Adve and
Gharachorloo 1996; Sarkar et al. 2012]).

3.7. Examples

We show several examples for using the semantic definition to reason about the va-
lidity and outcome of RMA operations. To avoid cluttering the figures, we do not show
program order (

po−→). Each statement at a process is ordered with regard to the previous
statements at the same process in

po−→, and thus
hb−→.

Figure 7(a) shows a simple example with fence synchronization. The variables x and v
are accessed with conflicting operations, but the fences guarantee

cohb−−→ ordering. Thus,
the result of this example trace is defined, and the print(v) will always output “0.”

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



Remote Memory Access Programming in MPI-3 9:19

Fig. 8. Examples for polling on a memory location. The abbreviations rap and rag stand for remote atomic
put (accumulate with replace) and remote atomic get (get accumulate with no-op), respectively.

The numbers in brackets at the orders in all following figures state the rule number
that generates this order.

The formal model also supports reasoning about mixing RMA programming with
traditional point-to-point programming. Figure 7(b) shows how a passive mode unlock
is combined with a barrier to establish consistency and happens-before orders. The
conflicting accesses are again acting on x and v. The barrier guarantees a

hb−→ ordering
between the assignment of x and the remote get. The win sync guarantees

co−→ at process
1 (for the separate model, it is unnecessary in the unified model), and the unlock
together with the vas and vac actions guarantees

co−→ order between the conflicting
accesses. Thus, the memory semantics are well defined, and the read will always read
“0.”

In Figure 8(a), process 0 puts a value into process 1’s window, which waits for the
value’s arrival. In this example,

hb−→ is guaranteed to the virtual communication action
(vac), which itself is not ordered with regard to the actions at process 1. However,
since process 1 is in an infinite loop, vac will eventually appear in this loop and thus
introduce an eventual

hb−→ and
co−→ ordering. Thus, this program is correct in the unified

memory model, and v will have the value “1” at process 1 eventually. Figure 8(b) shows
polling in the separate memory model. This schedule is undefined since the vac action
can occur between a sync and a local load and may thus lead to undefined outcome of
the local load.

Figure 9(a) shows an example where a consistency edge is missing for a local access.
The accesses to x are conflicting on process 0, and there is no

co−→; thus, the outcome
is undefined. Figure 9(b) shows an example with correct consistency ordering. Two
conflicting accesses to x at process 1 are synchronized with a flush (

co−→) and with a
send/recv pair (

hb−→). The outcome of this example is well defined to print “1.”
Figure 10 shows an example for a missing happens-before ordering. The

co−→ ordering
at process 1 is established because of the stronger guarantees of the unified model;
however, there is no

hb−→ ordering such that vac could execute concurrently with the
write, making the outcome undefined.

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



9:20 T. Hoefler et al.

Fig. 9. Examples for consistency ordering.

Fig. 10. Missing happens-before ordering.

4. USE CASES AND EXAMPLES

In this section, we discuss several possible uses of the new RMA interface. Some of those
applications can be implemented with other mechanisms, such as traditional MPI-1
communication or even other new MPI-3 features such as neighborhood collectives
[Hoefler and Schneider 2012]. We note that RMA programming can be faster because
of the absence of message-matching overhead; however, it is impossible to make general
statements about performance across a wide variety of architectures. Here, we focus on
MPI-3 RMA examples and provide some high-level hints to potential users. We often
cannot provide detailed advice about which mechanism to use; however, we encourage
MPI vendors to provide detailed performance models for all operations to help guide
the user’s decisions.

4.1. Stencil Boundary Exchange

Many applications follow the stencil parallel pattern—the basis of many PDE and ODE
computations. In this pattern, each process is running an iterative computation and
communicates with a set of neighbors in each iteration. The communication exchanges
the boundary zones of the local process domains. The neighborhood relations are often
fixed for several iterations (or, in fact, may never change). The computation generally
follows the bulk synchronous paradigm of repeated computation and communication
phases and may support overlapping of computation and communication.

If each of the p processes communicates with a large number of neighbors k (k >
log(p)), then fence synchronization may be the best solution. However, if the number
of neighbors is relatively small (or constant) and the neighborhood relationship is not

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



Remote Memory Access Programming in MPI-3 9:21

Fig. 11. 1D stencil boundary exchange example using fence (left) and general active target synchronization
(right).

Fig. 12. Put and get protocols for passive target mode synchronization.

changing often, then the general active target synchronization seems most natural.
Remote memory put operations are often faster than get. If the target address can be
computed at the origin, using put operations is often beneficial. Figure 11 shows an
example execution of the 1D stencil exchange with overlap using fence and general
active target synchronization. Compute inner is independent of the halo-zone values,
and compute outer then computes the boundary that depends on the halo zone.

One can also use passive target synchronization to implement stencil codes. The
benefit of passive mode is that separate targets can be completed separately and a
target process can pipeline the computations that use the incoming data. Depending on
the operation, different protocols must be used. For put, the source process simply puts
the message into the target window, flushes, and notifies the target (either by setting
a notification byte or with a message). In addition, the target has to notify the source
when the data can be overwritten in the next iteration to satisfy the output dependence
at the target window. In a get-based protocol, the origin would send a notification to
the target, which then fetches the data, flushes, and processes the data. Both protocols
require two remote accesses (or messages), and the better protocol depends on the put
and get performance of the target system. Gerstenberger et al. [2013] demonstrated
substantial speedups at large scale for the get-based protocol. Figure 12 shows put and
get protocols for passive target synchronization.

4.2. Fast Fourier Transform

Fast Fourier transforms (FFTs) are an important kernel in many scientific applications.
The computation patterns can often be arranged in different layouts by using twiddle
factors. Here, we discuss a 3D FFT (X × Y × Z) using a 1D data decomposition as a
case study.

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



9:22 T. Hoefler et al.

Fig. 13. Example computation of a 3D FFT.

In the decomposition, each process has a set of 2D planes. If we assume that the X
dimension is distributed initially, each process can perform local Y -Z 2D FFTs. Then, a
global transpose step follows such that X is contiguous at each process for performing
the final 1D FFT. An optional transpose can be used to copy the data back into the
original layout if needed.

An optimized RMA implementation could issue puts to remote processes as soon as
the data becomes available (e.g., start all puts for a plane after the Y -Z transform of this
plane completed). After all planes have been started, all processes end the epoch with
a fence before moving to the X FFT. This scheme enables high overlap of computation
and communication. Figure 13 shows an example decomposition and execution of a 3D
FFT.

4.3. Distributed Locks

The new atomic operations added in MPI-3 make it possible to build asynchronous, dis-
tributed, lock-free data structures. Such structures are central to a variety of scalable
algorithms; the well-known MCS mutual exclusion algorithm [Mellor-Crummey and
Scott 1991], for example, uses a lock-free queue. In this queue, the process at the head
holds the lock and forwards it to the next process when it has completed its critical
section. Thus, the queue supports two operations: removing the element at the head of
the queue and adding new elements to the tail.

The MCS algorithm uses a tail pointer in a fixed location at a specific process, which
is initialized to MPI_PROC_NULL. In addition, each process maintains a single queue el-
ement, which contains a next pointer that is also initialized to MPI_PROC_NULL. These
pointers are integer values that will be used to enqueue processes by rank. Thus,
an MPI window is created, where each process posts an integer location that will be
used as its queue element (displacement ELEM DISP = 0), and the process hosting the
mutex adds a second integer element that will be used as the tail pointer (byte dis-
placement TAIL DISP = sizeof(int)). Once the window has been created, all processes
call MPI_Win_lock_all to initiate shared-mode access, as accesses will be performed by
using only atomic operations.

As shown in Listing 2, when processes request the lock, they atomically exchange
their rank, which acts as a pointer to their list element (initialized to MPI_PROC_NULL),
with the tail pointer. If the tail pointer is MPI_PROC_NULL, the process has successfully
acquired the lock. Otherwise, it updates the element of the process that was the old

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



Remote Memory Access Programming in MPI-3 9:23

Listing 2. MCS mutex lock acquire algorithm.

list tail and waits for that process to forward the lock. All concurrent accesses are
performed by using atomic operations to enable a shared lock access mode.

Similarly, when releasing the lock, shown in Listing 3, processes perform an atomic
compare-and-swap of the tail pointer. If the process releasing the lock is still at the tail
of the queue, the tail pointer is reset to MPI_PROC_NULL. If not, the process forwards the
lock to the next process in the queue, potentially waiting for that process to update the
releasing process’s queue element. As an optimization, processes can first check their
local queue element to determine whether the lock can be forwarded without checking
the tail pointer.

5. SUMMARY

In this article, we described the MPI-3 one-sided interface, presented the semantics
in a semiformal way, and showed several use cases. This new interface is expected
to deliver the highest performance on novel network architectures that offer RDMA
access directly in hardware. Highly optimized implementations of MPI-2 RMA exist
[Larsson Traff et al. 2000], but the interface has only been adopted in very limited
settings. The new MPI-3 RMA interface enables an extremely efficient implementation
on modern hardware [Gerstenberger et al. 2013] while offering several convenient
and easy-to-use programming constructs such as process groups, exposed memory
abstraction (windows), MPI datatypes, and different synchronization models. The RMA
interface separates communication and synchronization and offers different collective
and noncollective synchronization modes. In addition, it enables the programmer to
choose between implicit notification in active target mode and explicit notification in
passive target mode. This large variety of options enables users to create complex
programs.

Our formalization of remote access semantics enables one to reason about complex
applications written in MPI-3 RMA. This can be used to prove that programs have
defined outcomes, and one can easily derive deadlock conditions from our specification
of happens-before orders. Thus, we expect that the semantics will lead to powerful tools
to support programmers in using MPI for RMA.

We provided three examples: (1) a stencil exchange pattern to show a possible im-
plementation of neighbor exchanges, (2) a fast Fourier transformation to demonstrate

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.



9:24 T. Hoefler et al.

Listing 3. MCS mutex lock release algorithm.

the capabilities to overlap communication and computation, and (3) an MCS lock to
demonstrate a more complex data structure in the passive mode model.

ACKNOWLEDGMENTS

We thank Martin Vechev and Andrei Dan for many helpful discussions and comments on the semantics. We
thank the anonymous reviewers for their many insightful comments and valuable suggestions.

REFERENCES

Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared memory consistency models: A tutorial. Computer
29, 12, 66–76.

Robert Alverson, Duncan Roweth, and Larry Kaplan. 2010. The Gemini System interconnect. In Proceedings
of the 2010 18th IEEE Symposium on High Performance Interconnects (HOTI’10). IEEE, Los Alamitos,
CA, 83–87. DOI:http://dx.doi.org/10.1109/HOTI.2010.23

Hans-J. Boehm. 2005. Threads cannot be implemented as a library. ACM SIGPLAN Notices 40, 6, 261–268.
DOI:http://dx.doi.org/10.1145/1064978.1065042

Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++ concurrency memory model. ACM SIG-
PLAN Notices 43, 6, 68–78. DOI:http://dx.doi.org/10.1145/1379022.1375591

Philip Buonadonna, Andrew Geweke, and David Culler. 1998. An implementation and analysis of the virtual
interface architecture. In Proceedings of the 1998 ACM/IEEE Conference on Supercomputing (Super-
computing’98). IEEE, Los Alamitos, CA, USA, 1–15.

Bradford L. Chamberlain, David Callahan, and Hans P. Zima. 2007. Parallel programmability and the
Chapel language. International Journal of High Performance Computing Applications 21, 3, 291–312.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,
Christoph von Praun, and Vivek Sarkar. 2005. X10: An object-oriented approach to non-uniform cluster
computing. ACM SIGPLAN Notices 40, 10, 519–538. DOI:http://dx.doi.org/10.1145/1103845.1094852

Anthony Danalis, Lori Pollock, Martin Swany, and John Cavazos. 2009. MPI-aware compiler optimiza-
tions for improving communication-computation overlap. In Proceedings of the 23rd International

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.

http://dx.doi.org/10.1109/HOTI.2010.23
http://dx.doi.org/10.1145/1064978.1065042
http://dx.doi.org/10.1145/1379022.1375591
http://dx.doi.org/10.1145/1103845.1094852


Remote Memory Access Programming in MPI-3 9:25

Conference on Supercomputing (ICS’09). ACM, New York, NY, 316–325. DOI:http://dx.doi.rg/10.
1145/1542275.1542321

Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter, Leonid Oliker, David
Patterson, John Shalf, and Katherine Yelick. 2008. Stencil computation optimization and auto-
tuning on state-of-the-art multicore architectures. In Proceedings of the 2008 ACM/IEEE Con-
ference on Supercomputing (SC’08). IEEE, Los Alamitos, CA, Article No. 4. http://dl.acm.org/
citation.cfm?id=1413370.1413375

Greg Faanes, Abdulla Bataineh, Duncan Roweth, Tom Court, Edwin Froese, Bob Alverson, Tim Johnson,
Joe Kopnick, Mike Higgins, and James Reinhard. 2012. Cray Cascade: A scalable HPC system based on
a Dragonfly network. In Proceedings of the International Conference on High Performance Computing,
Networking, Storage, and Analysis (SC’12). IEEE, Los Alamitos, CA, Article No. 103. http://dl.acm.
org/citation.cfm?id=2388996.2389136

Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. 2013. Enabling highly-scalable remote memory
access programming with MPI-3 one sided. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage, and Analysis (SC’13). ACM, New York, NY, Article No.
53. DOI:http://dx.doi.org/10.1145/2503210.2503286

Torsten Hoefler, James Dinan, Darius Buntinas, Pavan Balaji, Brian Barrett, Ron Brightwell, William
Gropp, Vivek Kale, and Rajeev Thakur. 2012. Leveraging MPI’s one-sided communication interface for
shared-memory programming. In Proceedings of the 19th European Conference on Recent Advances in the
Message Passing Interface (EuroMPI’12). 132–141. DOI:http://dx.doi.org/10.1007/978-3-642-33518-1_18

Torsten Hoefler, Rolf Rabenseifner, Hubert Ritzdorf, Bronis R. de Supinski, Rajeev Thakur, and Jesper
Larsson Träff. 2011. The scalable process topology interface of MPI 2.2. Concurrency and Computation:
Practice and Experience 23, 4, 293–310.

Torsten Hoefler and Timo Schneider. 2012. Optimization principles for collective neighborhood com-
munications. In Proceedings of the International Conference on High Performance Computing, Net-
working, Storage, and Analysis (SC’12). IEEE, Los Alamitos, CA, Article No. 98. http://dl.acm.org/
citation.cfm?id=2388996.2389129

Torsten Hoefler and Marc Snir. 2011. Writing parallel libraries with MPI—common practice, issues, and
extensions. In Proceedings of the 18th European MPI Users’ Group Conference on Recent Advances in the
Message Passing Interface (EuroMPI’11). 345–355. http://dl.acm.org/citation.cfm?id=2042476.2042521

Sven Karlsson and Mats Brorsson. 1998. A comparative characterization of communication patterns in appli-
cations using MPI and shared memory on an IBM SP2. In Proceedings of the 2nd International Workshop
on Network-Based Parallel Computing: Communication, Architecture, and Applications (CANPC’98).
189–201. http://dl.acm.org/citation.cfm?id=646092.680546

Jesper Larsson Traff, Hubert Ritzdorf, and Rolf Hempel. 2000. The implementation of MPI-2 one-sided
communication for the NEC SX-5. In Proceedings of the 2000 ACM/IEEE Conference on Super-
computing (Supercomputing’00). IEEE, Los Alamitos, CA, Article No. 1. http://dl.acm.org/citation.
cfm?id=370049.370878

Sela Mador-Haim, Rajeev Alur, and Milo M. K. Martin. 2011. Litmus tests for comparing memory consistency
models: How long do they need to be? In Proceedings of the 48th Design Automation Conference (DAC’11).
ACM, New York, NY, 504–509. DOI:http://dx.doi.org/10.1145/2024724.2024842

Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java memory model. In Proceedings of the
32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’05). ACM,
New York, NY, 378–391. DOI:http://dx.doi.org/10.1145/1040305.1040336

John Mellor-Crummey, Laksono Adhianto, William N. Scherer III, and Guohua Jin. 2009. A new vision for
coarray Fortran. In Proceedings of the 3rd Conference on Partitioned Global Address Space Programming
Models (PGAS’09). ACM, New York, NY, Article No. 5. DOI:http://dx.doi.org/10.1145/1809961.1809969

John Mellor-Crummey and Michael L. Scott. 1991. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on Computer Systems 9, 1, 21–65. DOI:http://dx.doi.org/10.
1145/103727.103729

MPI Forum. 2009. MPI: A Message-Passing Interface Standard. Version 2.2.
MPI Forum. 2012. MPI: A Message-Passing Interface Standard. Version 3.0.
Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield. 1996. Global arrays: A nonuniform

memory access programming model for high-performance computers. Journal of Supercomputing 10, 2,
169–189.

Robert W. Numrich and John Reid. 1998. Co-array Fortran for parallel programming. ACM SIGPLAN Fortran
Forum 17, 2, 1–31.

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A better x86 memory model: x86-TSO. In Theorem
Proving in Higher Order Logics. Lecture Notes in Computer Science, Vol. 5674. Springer, 391–407.
DOI:http://dx.doi.org/10.1007/978-3-642-03359-9_27

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.

http://dx.doi.org/10.1145/1542275.1542321
http://dx.doi.org/10.1145/1542275.1542321
http://dl.acm.org/citation.cfm?id=1413370.1413375
http://dl.acm.org/citation.cfm?id=1413370.1413375
http://dl.acm.org/citation.cfm?id=2388996.2389136
http://dl.acm.org/citation.cfm?id=2388996.2389136
http://dx.doi.org/10.1145/2503210.2503286
http://dx.doi.org/10.1007/978-3-642-33518-1_18
http://dl.acm.org/citation.cfm?id=2388996.2389129
http://dl.acm.org/citation.cfm?id=2388996.2389129
http://dl.acm.org/citation.cfm?id$=$2042476.2042521
http://dl.acm.org/citation.cfm?id$=$646092.680546
http://dl.acm.org/citation.cfm?id=370049.370878
http://dl.acm.org/citation.cfm?id=370049.370878
http://dx.doi.org/10.1145/2024724.2024842
http://dx.doi.org/10.1145/1040305.1040336
http://dx.doi.org/10.1145/1809961.1809969
http://dx.doi.org/10.1145/103727.103729
http://dx.doi.org/10.1145/103727.103729
http://dx.doi.org/10.1007/978-3-642-03359-9_27


9:26 T. Hoefler et al.

Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc Maranget, Jade Alglave,
and Derek Williams. 2012. Synchronising C/C++ and power. ACM SIGPLAN Notices 47, 6, 311–322.
DOI:http://dx.doi.org/10.1145/2345156.2254102

Timo Schneider, Robert Gerstenberger, and Torsten Hoefler. 2013. Compiler optimizations for non-contiguous
remote data movement. In Proceedings of the 26th International Workshop on Languages and Compilers
for Parallel Computing.

Piyush Shivam, Pete Wyckoff, and Dhabaleswar Panda. 2001. EMP: Zero-copy OS-bypass NIC-driven
Gigabit Ethernet message passing. In Proceedings of the 2001 ACM/IEEE Conference on Supercom-
puting (Supercomputing’01). ACM, New York, NY, 57–57. DOI:http://dx.doi.org/10.1145/582034.582091

Emina Torlak, Mandana Vaziri, and Julian Dolby. 2010. MemSAT: Checking axiomatic specifications of
memory models. ACM SIGPLAN Notices 45, 6, 341–350. DOI:http://dx.doi.org/10.1145/1809028.1806635

Jesper Larsson Traff. 2002. Implementing the MPI process topology mechanism. In Proceedings of the
2002 ACM/IEEE Conference on Supercomputing (Supercomputing’02). IEEE, Los Alamitos, CA, 1–14.
http://dl.acm.org/citation.cfm?id=762761.762767

UPC Consortium. 2005. UPC Language Specifications, v1.2. Technical Report LBNL-59208. Lawrence
Berkeley National Laboratory.

Jeremiah Willcock, Torsten Hoefler, Nick Edmonds, and Andrew Lumsdaine. 2011. Active pebbles: Parallel
programming for data-driven applications. In Proceedings of the International Conference on Supercom-
puting (ICS’11). ACM, New York, NY, 235–244. DOI:http://dx.doi.org/10.1145/1995896.1995934

Tim S. Woodall, Galen M. Shipman, George Bosilca, and Arthur B. Maccabe. 2006. High performance RDMA
protocols in HPC. In Proceedings of the 13th European PVM/MPI User’s Group Conference on Re-
cent Advances in Parallel Virtual Machine and Message Passing Interface (EuroPVM/MPI’06). 76–85.
DOI:http://dx.doi.org/10.1007/11846802_18

Chaoran Yang, Wesley Bland, John Mellor-Crummey, and Pavan Balaji. 2014. Portable, MPI-interoperable
Coarray Fortran. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’14). ACM, New York, NY, 81–92. DOI:http://dx.doi.org/10.1145/2555243.
2555270

Received March 2013; accepted December 2014

ACM Transactions on Parallel Computing, Vol. 2, No. 2, Article 9, Publication date: June 2015.

http://dx.doi.org/10.1145/2345156.2254102
http://dx.doi.org/10.1145/582034.582091
http://dx.doi.org/10.1145/1809028.1806635
http://dl.acm.org/citation.cfm?id$=$762761.762767
http://dx.doi.org/10.1145/1995896.1995934
http://dx.doi.org/10.1007/11846802_18
http://dx.doi.org/10.1145/2555243.2555270
http://dx.doi.org/10.1145/2555243.2555270

