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ABSTRACT

Popular accelerator programming models rely on offloading
computation operations and their corresponding data trans-
fers to the coprocessors, leveraging synchronization points
where needed. In this paper we identify and explore how
such a programming model enables optimization opportu-
nities not utilized in traditional checkpoint/restart systems,
and we analyze them as the building blocks for an efficient
fault-tolerant system for accelerators. Although we lever-
age our techniques to protect from detected but uncorrected
ECC errors in the device memory in OpenCL-accelerated ap-
plications, coprocessor reliability solutions based on different
error detectors and similar API semantics can directly adopt
the techniques we propose. Adding error detection and pro-
tection involves a tradeoff between runtime overhead and
recovery time. Although optimal configurations depend on
the particular application, the length of the run, the error
rate, and the temporary storage speed, our test cases reveal a
good balance with significantly reduced runtime overheads.
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1. INTRODUCTION
High-performance computing (HPC) has seen many trends

in the past decade. One is the rise of coprocessors to im-
prove computing power while consuming less energy [4, 12].
On the November 2014 TOP500 list [23], 75 machines were
using accelerators, whether GPUs or specialized processors,
such as the Intel® Xeon Phi™ coprocessor. These accelera-
tors provide an energy-efficient way to perform specific types
of computations quickly.

Another recent trend has been the increased concern over
fault tolerance at large scales. Machine sizes have increased
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to hundreds of thousands of cores; and along with the size
increase, the reliability of the machines has decreased. Re-
searchers have investigated mitigating various types of fail-
ures across many components of the machines. Traditional
research has focused on protecting against two types of fail-
ures: fail-stop failures and soft errors. With a fail-stop fail-
ure, some error causes an execution to halt and requires
restarting the job, usually from a checkpoint taken during
the execution [7, 22]. Research has also demonstrated ways
to prevent an application from needing to be restarted, in-
stead allowing the system to recover on the fly [1, 2]. A
soft error usually does not cause a fail-stop error but in-
stead causes a data corruption. Soft errors are harder to
detect than fail-stop errors and require more sophisticated
mechanisms to find the errors and repair the data. They
might be detected by hardware, such as error-correcting
codes (ECCs) [15, 29], or they might require the applica-
tion itself to detect such corruptions [20].

Many soft errors in coprocessor-equipped supercomputers
originate solely in the memory of the accelerator devices.
For example, analyzing the publicly available error log of the
Japanese Tsubame 2.5 supercomputer [26], we find that al-
most 5% of the error entries involved double-bit ECC errors
in GPU memory since late 2010, with an average count of
one error every two weeks. The Moonlight supercomputer at
LANL was reported to experience an average of 0.8 of these
events per day during a 4-month period [6]. Although accel-
erators sharing the memory system with the main host pro-
cessors have been developed, deploying memory technologies
specialized for the particular access patterns of embarrass-
ingly parallel architectures (such as GDDR) is highly bene-
ficial for the HPC arena.

Current accelerators equipped with ECC hardware in their
own memory systems automatically correct single-bit flips,
but only report double-bit failures. The uncorrected error
events translate to applications merely in error codes re-
turned by the coprocessor application programming inter-
face (API) functions, which in practice means that these are
ignored or, in the best case, the execution is aborted. With
applications, such as physical simulators, running continu-
ously for several days, an automatic mechanism to ensure
accelerator data sanity is clearly beneficial, with no dispar-
agement of a host’s main memory integrity guardian. Ide-
ally, the coprocessor runtime could take the responsibility of
efficiently detecting and recovering from transient soft errors
without the application’s intervention.

The time spent on soft error recovery ranges typically from
a few minutes to a few hours in case the application leverages



accelerator-aware checkpointing. However, current solutions
are impractical for many use cases. For example, in our
experiments we find over 1,000% runtime overhead on the
baseline protection of MiniMD runs. Inefficiently protecting
from soft errors leads to longer execution times and a less
efficient utilization of the system resources.

In this paper we introduce novel techniques for efficiently
protecting data residing on coprocessor memories, based on
API interception. We use the Virtual OpenCL (VOCL) li-
brary [30] as a framework for constructing coprocessor re-
silience. This library abstracts the concept of physical de-
vices by providing a virtualization layer between the applica-
tion and the accelerators themselves. The calls to OpenCL
are captured by VOCL and forwarded to the physical co-
processor by the library. This approach enables techniques
such as remote execution, replication, and execution replay.

We have extended the existing VOCL library as a way to
log input and commands to OpenCL to be replayed later in
the event of a failure. We call this extended library VOCL-
FT. Currently, VOCL-FT focuses on soft error detection by
means of ECC query. It can detect uncorrected bit-flips
(usually double-bit corruptions) in devices equipped with
ECC detection and allow the runtime to react by restoring
the corrupted memory and re-executing any potentially af-
fected commands in order to generate a correct answer. Our
techniques, however, are independent from the error detec-
tion mechanism and can be integrated in other solutions,
such as those based in application-level data sanity verifica-
tions or coprocessor migration after hard errors, in order to
efficiently restore coprocessors’ memory.

Traditional checkpoint/restart techniques are expensive
because large amounts of data have to be backed up either in
main memory or on slow storage systems. In this paper we
propose and analyze techniques to address this limitation
by identifying and taking advantage of the opportunities
brought by the semantics of current accelerator program-
ming models. As a result, incurring low runtime overhead,
VOCL-FT can recover efficiently from uncorrected ECC er-
rors by restoring only the meaningful portions of the accel-
erator memory and replaying the affected epoch commands.

In summary, the contributions of this paper are threefold:
(1) a set of semantic and implementation optimizations and
(2) a small extension to the OpenCL API to enable further
optimizations that (3) along with ECC error checking inte-
gration builds an efficient fault detection and recovery run-
time system for OpenCL devices. These contributions en-
able a transparent low-overhead fault recovery mechanism
for OpenCL applications, while offering the possibility of
lowering the overhead further when leveraging minor code
modifications. To the best of our knowledge, this is the first
work exploring the semantic optimization opportunities of
current accelerator programming models for providing effi-
cient resilience capabilities.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces background information. Section 3 dis-
cusses related work. Section 4 describes the design and im-
plementation of the initial version of VOCL-FT. Section 5
discusses the data protection optimizations we devised. Sec-
tion 6 provides an in-depth analysis of the performance of
our proposed techniques, and Section 7 investigates the per-
formance of VOCL-FT in production environments at scale.
Section 8 summarizes the conclusions from our work.

2. BACKGROUND
In this section we provide background information about

OpenCL and VOCL.

2.1 OpenCL
The Open Computing Language (OpenCL) [14] is de-

signed to facilitate program execution across a variety of
devices including CPUs, GPUs, and FPGAs. It has been
adopted by several vendors, including AMD, NVIDIA, and
Apple, to integrate with their products. OpenCL has been
used primarily as a way of interfacing with GPUs for general-
purpose computing, but recently it has been employed by
other accelerators, such as the Intel® Xeon Phi™.
OpenCL applications are written by using a series of code

kernels and data movement commands submitted from the
host to the OpenCL device via command queues. Mem-
ory in OpenCL contexts is allocated by the clCreateBuffer
call. This function accepts flags to specify lifetime usage
information, including write-only, read-only, and read–write
access from kernels. On the other hand, command queues
may be ordered or unordered, and commands may be syn-
chronous or asynchronous. In order to determine when asyn-
chronous commands have finalized, and hence be able to
reuse buffers or employ the requested data, applications may
issue synchronization calls (such as clFinish or clWait-

ForEvents) or poll on completion calls (such as clGetEvent-
Info). OpenCL epochs contain commands issued between
synchronizing calls. In this regard, an epoch can be consid-
ered to always be closed by a call to clFinish or blocking
calls, but closed by the other cited functions only in ordered
queues when these target the last command in the queue.
To illustrate the use of the OpenCL API, Figure 1 shows in
pseudocode the steps required to code a simple OpenCL pro-
gram that will execute a kernel using a single I/O argument.
More detailed information can be found in [14].

2.2 VOCL
VOCL [30] is a framework providing a transparent virtu-

alization layer between applications and the OpenCL run-
time. Apart from executing on the local device, the VOCL
client library can intercept and forward OpenCL commands
to off-node VOCL proxies driving remote accelerators. This
strategy enables applications to increase the number of co-
processor resources to which they have access by harnessing
remotely accessible devices. In this paper we do not use the
remote feature, but we benefit from VOCL’s virtualization
infrastructure to implement transparent fault tolerance ca-
pabilities in the OpenCL stack. Exploring the integration
of our extensions with remote accelerators, for example to
perform device migrations, is left for future work.

3. RELATED WORK
To protect application data residing in main memory from

eventual errors, the standard mechanism that has been used
for decades is checkpointing. The most popular library has
been BLCR [7] and is usually employed to checkpoint an
entire process state at the operating system (OS) level. An-
other example is the LAM/MPI Framework [22]. Recently,
more lightweight checkpointing options have arisen that pro-
mote smaller checkpoints that can be taken with greater
frequency because of their low overhead. These include
projects such as MPICH-V [3], which combined lightweight



// Initialization : obtain/select platform/device IDs ,
// create contexts , command queues , device memory
clGetPlatformIDs (..., &platform_id , ...);
clGetDeviceIDs (..., platform_id , ..., &dev_id , ...);
context = clCreateContext (..., dev_id , ...);
cq = clCreateCommandQueue(context , ...);
dev_mem_obj = clCreateBuffer(context ,

CL_MEM_READ_WRITE , ...);

// Create and build a program and create a kernel
program = clCreateProgramWithSource(context , ...);
clBuildProgram(program , ..., SOURCE_STR , ...);
kernel = clCreateKernel(program , KERNEL_NAME , ...);

// Set a kernel argument: the OpenCL memory object
clSetKernelArg(kernel , 0, sizeof(cl_mem),

(void *)& dev_mem_obj );

// Enqueue the write (input), kernel (execution ),
// and read (output) operations
clEnqueueWriteBuffer(cq , dev_mem_obj ,

/* blocking? */ CL_FALSE ,
..., SIZE , host_buf , ...);

clEnqueueTask(cq , kernel , ...);
clEnqueueReadBuffer(cq , dev_mem_obj ,

/* blocking? */ CL_FALSE ,
..., SIZE , host_buf , ...);

// Async. command execution ; perform other tasks here

clFinish(cq); // Synchronization

// ‘host_buf ’ has finished receiving the output data

// Finalization : release the created resources
clReleaseKernel(kernel ); clReleaseProgram(program );
clReleaseMemObject(memobj ); clReleaseCommandQueue(cq);
clReleaseContext(context );

Figure 1: OpenCL sample (pseudocode).

checkpointing with message logging. Other new advances
include Containment Domains [5], which allow the applica-
tion to prevent errors in one part of the system from affecting
others. Our work is in line with this last concept, presenting
a heavily optimized solution for recovery on coprocessors.

VOCL is not the only virtualization layer for accelera-
tor libraries. For instance, rCUDA [17, 19] or SnuCL [11]
provide similar functionality. These solutions do not include
any additional reliability features but could well be extended
to incorporate the techniques that we explore in our work.

Besides VOCL-FT, other attempts have been made to cre-
ate a resilience layer for GPU computing. DS-CUDA [10]
performs redundant computations in multiple GPUs. Sim-
ilarly, [28] leverages redundant multithreading targeted at
systems without ECC hardware. An implementation of si-
lent data corruption (SDC) protection used on GPUs is Hau-
berk [31], a source-to-source translator that inserts SDC de-
tectors into the application code. When it detects a failure,
it automatically restarts the GPU application from the be-
ginning of its execution or from a checkpoint (depending on
the configuration). Snapify [21] provides a snapshot service
(checkpoint/restart, process migration, and process swap-

ping) specifically for Intel® Xeon Phi™ coprocessors.
CheCUDA [25] and CheCL [24] are libraries that allow an

application including calls to CUDA and OpenCL, respec-
tively, to be checkpointed. This process is done differently
for each API. For CheCUDA, the authors created a pack-
age as a BLCR add-on to manage checkpointing that copies
all the data out of the GPU memory at checkpoint time
and restores it on restart. For CheCL, a simple transpar-
ent checkpoint-restart mechanism is deployed. In contrast
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Figure 2: Workflow for recovering from ECC errors.

with VOCL-FT, these solutions do not specifically target
errors in the coprocessor, nor are they integrated with any
accelerator fault detection system.

All the discussed solutions performing accelerator check-
pointing save and restore the entire device memory (as we
do in our initial approach and present for comparison). Our
work focuses on exploring the optimization opportunities
that the semantics of accelerator-offloading programming
models offer to attain lightweight checkpointing and fast re-
covery. Although we showcase them with a double-bit error
detector, these could well be directly adopted by several
other solutions, such as CheCUDA or CheCL, obtaining the
performance benefits that we present in our study.

4. DESIGN AND IMPLEMENTATION
In this section we discuss the overall design of VOCL-

FT. We describe the mechanisms for logging OpenCL com-
mands, failure detection, and recovery. While our logging
procedure acts upon the interception of a set of OpenCL
calls, our detection and recovery mechanism (see Figure 2)
is triggered during synchronizing calls. By checking for cor-
rectness only at epoch closings we minimize the detection
overhead while ensuring the prevention of the propagation
of coprocessor data corruptions to the host memory, since
only after these points the data retrieved from the device is
guaranteed to be consistent in the host memory.

We note that our solution is explicitly designed for sep-
arate accelerator memories. Users should deploy OpenCL-
aware solutions for host memory protection. Since we adhere
strictly to the OpenCL semantics, existing host protection
mechanisms should be compatible with our approach.

4.1 Protection Workflow
When VOCL-FT detects an uncorrected ECC error, the

execution is restored from the last good checkpoint, and
the current epoch is replayed from logs. At the end of the
epoch, VOCL-FT again checks for an ECC error; if one is
discovered, the execution is aborted because of having found
repeated nonrepairable ECC errors. (This behavior could
change in a future version of VOCL-FT to migrate away
from the problem memory.) If no ECC error is detected
initially, then VOCL-FT creates a new checkpoint to protect
the current epoch. After checking for ECC errors one last
time to ensure that the checkpoint is valid, the checkpoint
and logs are consolidated and saved. The remainder of this
section expands on the details of this workflow.



4.2 Execution Logging
OpenCL data is stored in checkpoint files on the system’s

default temporary directory, which is often mounted either
as a tmpfs partition or in a fast local persistent storage.
In any case, this solution benefits from memory-like speeds
and large storage space. While the latter may impact per-
formance slightly because of OS I/O buffering management,
the former is subject to disk swapping policies and poten-
tial competition for physical memory space. Data transfers
between the device and the checkpoint files are performed
in a highly tuned pipelined fashion by using asynchronous
device transfers and pinned host buffers, similar to the ap-
proach described in [18] for GPU and network transfers.

We organized the checkpoints by creating one file per
memory object. Usually, the number of memory objects
in OpenCL applications is relatively low, which prevents
the number of checkpoint files from becoming too large.
This way, a single checkpoint file can serve all the command
queue uses, reducing the number of checkpoints that must
be written if individual objects are used in multiple com-
mand queues. These files are “double buffered” to prevent
checkpoints from becoming corrupted while being written.
That is, while the current checkpoint is written, the previous
checkpoint is stored in a separate file, which is then switched
after the checkpoint has been verified to not contain any new
errors (see “Validate Checkpoint” in Figure 2).

Capturing the data only at synchronization points is not
sufficient. For example, the user’s execution might use the
same host buffer as both device input and output in the same
epoch. Because the original input memory is overwritten by
the data transfer from the device to the host, it cannot be
reused later when trying to replay the epoch in the event of
a detected failure. For this reason, we must capture data as
it is transferred from the host to the device.

In addition to capturing all the data involved in the ex-
ecutions, we must capture a log of the issued commands.
This allows us to automatically replay the commands in the
event of an error. The command log is retained in memory
because of its relatively small size.

4.3 Failure Detection
Currently VOCL-FT addresses soft data corruption by

leveraging existing ECC memory protection. ECC memory
automatically detects and corrects single-bit errors (a single
bit of data is changed in a word) and can detect, but not
correct, double-bit errors (two bits of data are changed in a
word). The NVIDIA Management Library (NVML) [16] al-
lows VOCL-FT to query NVIDIA hardware to determine the
number of uncorrected ECC errors that have been detected.
However, this information is currently provided about the
entire device memory, hence preventing our middleware from
targeted actions. If in the future information is provided
about the place where the uncorrected ECC error happened,
a more efficient mechanism could be deployed by performing
recovery actions affecting specific memory regions.

We note that the time spent in the third-party error detec-
tion call affects the general execution time. We experienced
an average of 208 ms employed by the NVML ECC check
call, obtaining low runtime overheads.

In order to analyze error recoveries, we simulate ECC error
events. These are injected by hardcoding the return of a
positive number of ECC errors by the error query function
call to happen at the point of interest of each particular case.

4.4 Failure Recovery
Once a failure is detected, VOCL-FT begins its proto-

col for repairing data and replaying executions for recov-
ery. VOCL-FT restores each device memory object from
the checkpoint files. After the memory has been repaired,
the command queue is re-executed for the current epoch.
All these actions occur without user intervention.

5. OPTIMIZATIONS
In this section we present several optimizations to the

baseline approach described in Section 4,1 designed to re-
duce runtime overhead and improve recovery time.

5.1 Per-Epoch Buffer Modifications
Our first optimization involves examining when the de-

vice and host buffers are modified. In our naive implemen-
tation, we checkpoint every buffer at the end of each epoch.
Since the entire device memory may not be touched in every
epoch, however, such large and time-consuming checkpoints
are often not required. These optimizations can be imple-
mented completely transparently to the user.

5.1.1 No Modifications

For those device objects that have not been potentially
modified during the epoch, checkpointing can be avoided
because the previously stored data is still valid. This is
the case for applications that do not touch the entire set of
device objects in every epoch. We refer to this optimization
as MOD (Modified).

5.1.2 Coprocessor Modifications

If the CL_MEM_READ_ONLY flag is specified during object
creation, we can assume that kernels are not allowed to
modify the buffer contents and will reuse the previously
checkpointed data as long as no host-side modifications (e.g.,
clEnqueueWrite) are present within the epoch. We refer to
this optimization as RO (Read Only).

5.1.3 Host Modifications

We can extract further information from OpenCL calls
that allows us to determine the exact part of the buffer
that is to be modified. Here, our optimizations depend on
whether the data is being written via a blocking or a non-
blocking call. If the host uses a blocking write, the specifica-
tion of OpenCL states that when the call returns, the user
can reuse the buffer; but it does not specify that the com-
plete buffer has been transferred to the coprocessor memory.
Therefore, we immediately make a copy of the user-specified
host memory contents to an internal host buffer and convert
the blocking call to a nonblocking call. In this way, we have
a copy of the original host buffer contents that we can use
to reissue the write command if necessary. This process is
shown in Figure 3a. The implementation of swapping block-
ing writes for nonblocking writes is common in OpenCL li-
braries, including the increased memory overhead.

In the case of nonblocking writes, the contents of the user-
provided host buffer must be saved when the user makes the
call, as discussed in Section 4.2. Unlike a blocking write call,
a nonblocking call is not expected to be implemented with
an additional buffer, so we use a temporary file. If at the end
of an epoch an OpenCL object has been modified only by a

1We will refer to the baseline as NO (No Optimizations).



(a) Blocking.

(b) Nonblocking.
Figure 3: OpenCL write call being captured by VOCL-FT.

host call, after the checkpoint from device memory stage has
been validated, the checkpoint file will be updated from the
logged data (either in host memory or in a file) instead of
the device. We call this a consolidation stage (see Figure 2).
This stage requires traversing the whole set of commands of
the epoch looking for write operations. Since (1) the num-
ber of operations per epoch is usually relatively small, (2)
the modified regions are potentially smaller than the entire
object, and (3) both host–to–file and file–to–file data copies
tend to be faster than pipelined device–to–file operations,
we leverage the consolidation stage where applicable rather
than performing a regular checkpoint from the device. We
include this behavior as part of MOD.

On the other hand, most applications do not use a single
buffer as both input and output. We benefit from this fact
with another optimization: HB (Host Buffer). Instead of
immediately logging to a file the user data in a nonblocking
write, we log only the information about the user buffer (i.e.,
its memory location and size). If a subsequent read call
modifying any part of the same host buffer is found within
the epoch, at that point we perform the delayed copy of the
host buffer before queuing the read command. This process
is shown in Figure 3b. Because of the relative infrequency
of this situation, our optimization avoids most file writes in
practice; and the host buffer tracking overhead is negligible
in the majority of use cases because of the limited number
of commands applications tend to leverage per epoch.

5.2 Extended API
Our second set of optimizations requires additional knowl-

edge not provided by the user when interacting with the
original OpenCL API. For this reason, we extend it with a
function with which the user can inform VOCL-FT of the
per-epoch usage pattern for each OpenCL buffer. We refer
to this optimization as EAPI (Extended API).

5.2.1 Read-Only Buffers

We extend the original approach described in Section 5.1.2
by allowing the application to specify read-only protection
per epoch, rather than for the entire memory object lifetime.
This extension provides further flexibility and room for finer-
grained overhead reductions.

Figure 4: Replay procedure with CS optimization enabled.

5.2.2 Scratch Buffers

Scratch buffers are those whose contents are not meaning-
ful across epochs. This is a common type of buffer for epochs
performing tasks such as matrix multiplication. Usually in
this scenario the input buffers are provided at the beginning
of every epoch, and the output buffers are written at the end
of each epoch. Once a buffer is marked as a scratch buffer,
VOCL-FT continues to log data written from it, in order
to allow kernel replay in the event of a failure (preserving
the HB optimizations). However, it will not create an on-file
checkpoint at the end of the epoch, nor will the buffer’s con-
tents be restored in the event of a detected failure. We refer
to this optimization as SB (Scratch Buffer).

5.3 Reducing Synchronization Points
The third set of proposed optimizations focuses on reduc-

ing the checkpointing frequency, which poses most of the
runtime overhead of coprocessor data protection.

5.3.1 Host Dirty

Synchronization is needed for correctness only in order to
ensure that the data read from a device is ready to be used
on the host or that a host buffer is ready to be reused after a
write to device operation. Frequently, developers introduce
arbitrary synchronization points by means of unnecessar-
ily synchronous data transfer operations or explicit synchro-
nizations for timing purposes. Our functionality, however,
requires only ensuring that the data reaching the host mem-
ory from the device is not potentially corrupted. In this op-
timization (HD or Host Dirty) we limit triggering the check-
pointing mechanism only on those epoch closings that have
contained device read operations, hence guaranteeing the
host data integrity. With this mechanism we avoid perform-
ing the checkpointing procedure on common code patterns,
such as synchronous writes or many synchronizations intro-
duced for timing purposes. HD effectively extends VOCL-FT
epochs by merging OpenCL epochs.

5.3.2 Checkpoint Skip

The CS (Checkpoint Skip) optimization avoids performing
the file checkpointing stage in every synchronization point.
To ensure the integrity of the host data originated on the
device, we still perform the ECC check in all synchronization
points. If an error is found, the recovery process is triggered.
The replay procedure skips read operations occurring before
the current synchronization point: the data read and used
by the host in those prior epochs was ensured to be sane
because of the appropriate ECC checks. This mechanism
is compliant with OpenCL’s epoch semantics in which the
host buffers are assured to no longer be used by the runtime
after the synchronization point. This recovery procedure
is depicted in Figure 4. The CS optimization extends the
VOCL-FT epochs farther beyond device to host transfers.

Users may elect different checkpoint frequencies depend-
ing on particular runtime overhead and recovery time re-
quirements: lower frequencies lead to lower runtime over-



head but higher recovery times. Our proposed default for
entry-level users is to let the framework determine the fre-
quency automatically according to the disk speed, in order
to prevent eventually degrading the checkpointing perfor-
mance. Adjusting the I/O rate at runtime is easily accom-
plished by measuring the time since the last checkpoint and
deciding whether to perform another in the current synchro-
nization point according to the checkpoint sizes. More ad-
vanced users may set the checkpointing frequency to a given
number of synchronization points or at time intervals. These
options can be configured by an environment variable.

6. PERFORMANCE ANALYSIS
We present an in-depth analysis of the performance of the

fault-tolerant runtime methodologies we propose. The ex-
periments in this section were run in a single node in order to
avoid the influence of internode communication performance
artifacts. Production evaluations at scale are presented in
Section 7. After introducing our testbed, we present our
analysis based on microbenchmarks and two OpenCL codes:
MiniMD, a molecular dynamics miniapplication, and Hydro,
a full hydrodynamics code. In our evaluation, presenting re-
sults based on the average of three executions, we apply opti-
mizations on top of each other. Therefore, when referring to
(or plotting) a new optimization, those previously discussed
for that particular experiment are also leveraged. For con-
venience, in this section we refer to the CS optimization by
its keyword followed by the number of application-level it-
erations constituting a VOCL-FT epoch. We use the term
native to refer to experiments on top of the bare NVIDIA’s
OpenCL implementation, which we use as our baseline.

6.1 Testbed
We performed our performance evaluation in a SuperMi-

cro SuperServer 7047GR-TPRF platform equipped with two
Intel E5-2687W v2 octocore CPUs running at 3.40 GHz,
64 GB of DDR3-1866 RAM, an NVIDIA Tesla K40m, and
storage based on Intel S3700 SSD disks (where the system’s
temporary directory is mounted). The server runs the Red
Hat Enterprise Linux Server release 6.5 operating system
with NVIDIA driver version 340.29.

6.2 Microbenchmark Evaluation
Since the temporary directory is mounted on disk, we first

evaluate the storage system and discuss its performance im-
plications. Next, we present a preliminary evaluation of our
strategies by means of a synthetic benchmark.

6.2.1 Disk

Modern operating systems feature cached I/O operations
that are performed asynchronously in the background after
buffering the user data into memory. Although meant to ac-
celerate I/O transactions, these introduce timing variability
when disk operations are involved, because of the internal
I/O buffer management. While our disk features a physical
write transfer rate of roughly 300 MB/s, we experience up
to 3.5 GB/s for the smallest payloads. When the internal
buffer size is exhausted, write speeds decrease, approaching
the physical write rate. This effect is also visible in mul-
tiple small write operations: the write call exhausting the
internal buffering space performs much slower than others,
introducing timing variability. Similarly, read speeds from
buffered I/O are much higher than those being read directly

voclSetMemFlags(a_dev , READONLY | SCRATCH)
voclSetMemFlags(b_dev , READONLY | SCRATCH)
voclSetMemFlags(c_dev , SCRATCH );
writeBuffer(dummy_dev , blocking , dummy , 2GB)
for (i=0 to iterations ):

enqueueWrite(a_dev , nonblocking , offset , SIZE/4, a)
enqueueWrite(b_dev , nonblocking , offset , SIZE/4, b)
enqueueKernel(sgemm , a_dev , b_dev , c_dev , SIZE /4)
enqueueRead(c_dev , nonblocking , offset , SIZE/4, c)
finish () // Epoch closing
offset = offset == MAX_OFFSET ? 0 : offset + SIZE/4

Figure 5: Microbenchmark pseudocode.
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(b) Fault recovery overhead.
Figure 6: Microbenchmark evaluation.

from disk. Hardware disk buffers introduce another source
of disk variability. In Section 6.4 we explored further how
this feature impacts our solution.

6.2.2 VOCL-FT

We used a synthetic benchmark based on repetitive ma-
trix products in order to showcase the potential benefits of
the different optimizations we propose. It features a 2 GB
dummy buffer that is initialized immediately after creation
but never used further. Matrices of 12,032 floating-point
square elements are used, constituting 1.6 GB of memory. A
quarter of the matrices is used on each iteration that makes
up an epoch. The pseudocode for this benchmark is shown
in Figure 5.

The runtime overhead breakdown for 100 fault-free itera-
tions is shown in Figure 6a. In all cases, the time employed in
ECC checks (208 ms) is negligible with respect to the other
tasks because of having sufficiently long epochs. While the
logging time remains constant during the first three cases,
the checkpoint time is greatly reduced. MOD removes the
need for checkpointing the dummy buffer because it is not
written or used by a kernel during the epochs. RO does the
same for a_dev and b_dev, introducing a consolidation stage
to save the written data to the checkpoint file, saving only
the transferred data (one quarter of the memory object) in-



Table 1: MiniMD runtime overhead of first optimizations.
Log ECC Check Checkpoint Consolidate

NO
2.9% 74.4%

1,679.9% 0.0%
MOD 567.3% 1.6%

Table 2: MiniMD synchronizations per 100 timesteps.
NO HD MA CS-25 CS-50 CS-100 CS-200

330 25 16 4 2 1 1/2

stead of the whole object. HB removes most of the remaining
runtime overhead because the host buffers used to write data
to the device are not employed on read operations. Thus we
avoid saving the user data during the logging stage. SB re-
moves the need for tracking c_dev because its contents are
meaningless across epochs. On the other hand, HD and CS

are meant to reduce the synchronization points and do not
lower the runtime overhead further in this simple example.

Figure 6b shows our recovery evaluation for a single failure
event. Restore times differ for the same data size because
we experience different read speeds due to the I/O buffering
effects. For instance, the NO restore throughput2 is higher
than that of MOD because in the former the dummy_dev object
is written to disk in every checkpoint and hence all data to
be recovered is more recently used than in the latter. HB

slightly increases the replay stage (5%) because writes to
device are performed from pageable user buffers instead of
our pipelined device and disk transfers using pinned host
buffers, which attain higher transfer rates. Because their
epochs are twice as long, the CS-2 and CS-4 optimizations
almost double their replay time with respect to the previous
cases. These replay times pose close to 100% of an epoch’s
time increase because, in spite of avoiding intermediate read
operations (see Figure 4), the epoch time in this code is
dominated by the kernel execution.

6.3 MiniMD
MiniMD [8] is a codesign miniapplication targeted at eval-

uating the performance of molecular dynamics simulations.
In our experiments we used the OpenCL implementation
of MiniMD version 1.2. We performed experimental evalua-
tions with the biggest size supported by this version: 237,276
atoms, employing roughly 180 MB of GPU memory. The
relative standard deviation (RSD) for our three experiment
repetitions is under 5% for all nonnegligible measured times,
validating the significance of our experimentation.

Our fault-free evaluation results are shown in Table 1
and Figure 7, reporting per-timestep numbers averaged from
1,000 timestep executions. In Table 1 we observe that the
overhead with respect to native executions when leveraging
the first set of optimizations is considerable, caused mainly
by the checkpointing stage. This situation stems from the
high number of synchronization points introduced by the
code (see Table 2). RO cannot obtain any benefit because of
the absence of the corresponding OpenCL flags in the user
code on device memory allocation calls. Similarly, no mem-
ory objects offer optimization opportunities for MOD and HB.

Figure 7a shows our results for a more aggressive set of
optimizations. HD reduces the overhead to under 60% thanks
to skipping the checkpointing stage in those epochs finish-
ing without having touched the host memory—introduced

2We define Restore Throughput as the effective transfer rate
obtained restoring the contents of the relevant OpenCL
memory objects to their status at the last check point.
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(a) Aggressive optimizations.
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(b) Extended API.
Figure 7: Error-free MiniMD execution times.

mainly with timing purposes. As shown in Table 2, this op-
timization reduces the synchronization points from 330 to
25 every 100 timesteps.

For the next optimization in Figure 7a, MA (Manual), we
performed a manual reduction of the synchronization points
of this code by simply replacing consecutive sets of syn-
chronous data transfer operations with their asynchronous
counterpart followed by a final synchronization. While the
HD optimization is not able to automatically skip checkpoint-
ing in synchronous reads, we can benefit from application-
level semantics to perform this manual optimization. This
avoids 9 more checkpoints every 100 timesteps, reducing the
overhead another 6% while not noticeably impacting the na-
tive runtime. This optimization also removes most of the
logging overhead that was caused by saving user data from
synchronous data transfer operations.

The CS optimizations presented in Figure 7a reduce the
costly checkpoint operations further. We explored from a
check every 25 (CS-25) to 200 (CS-200) timesteps, attaining
execution overheads from 24% to under 10%, respectively.
As we can observe in the plot, the checkpoint time per iter-
ation decreases proportionally to the number of checkpoints
avoided. From the different frequencies we explored, the
first that meets our 300 MB/s disk write boundary is CS-50
(see Figure 8), attaining less than 15% overhead. We exam-
ine the I/O effects in our Hydro evaluations in Section 6.4.
Since we are able to use larger datasets with that use case,
these effects become more obvious and easily explored.

Figure 7b shows our MiniMD fault-free evaluation when
using the extended API. We apply our successive set of opti-
mizations in a different order to showcase better the benefit
of the different optimizations. Our starting point, the MA

optimization, is not shown in the figure because its large
overhead would make the graph difficult to read. The HD

optimization attains 91% runtime overhead. When apply-
ing the MOD optimization we reduce the overhead to less than
60%. The RO optimization brings another 20% overhead re-
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Figure 8: Checkpoint sizes and rates on MiniMD executions.
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(b) Execution time in 1,000 timesteps.
Figure 9: MiniMD recovery times in a single faulty epoch.

duction, enabled thanks to properly reporting the per-epoch
read-only properties of the different memory objects. The
HB optimization removes most of the logging overhead, now
available because of the longer epochs, and reduces the run-
time overhead to roughly 35%. The SB optimization, en-
abled by the introduced extended API calls, brings another
7% overhead reduction in the checkpoint stage by avoiding
unnecessarily saving the contents of scratch buffers. The set
of CS optimizations behave as in the former plot, leading
from 22.4% to 9.5% overheads.

Recovery times on MiniMD for a single faulty epoch are
reported in Figure 9. Figure 9a shows the breakdown of the
recovery times for the different optimizations in the order ex-
plored in Figure 7b. Replay times in this case are over twice
the restore times. Up to the SB optimization, the replaying
stage takes constantly around 40 ms. The relative recov-
ery time3 increases as we apply more optimizations because
these decrease the VOCL-FT overhead and make executions
more efficient. The CS optimizations have lower relative re-
covery times because of skipping read operations.

3We define Relative Recovery Time as the relative execution
time of the recovery stage with respect to nonfaulty epochs.
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Figure 10: MiniMD recovery for multiple faulty epochs.

Figure 9b presents execution times for 1,000 timesteps and
a single faulty epoch with the different optimizations. The
overhead with respect to native error-free executions is also
shown in the figure. CPU times employing all the cores by
means of the OpenMP version of the code are included for
comparison. In the CS cases, worst-case scenarios are con-
sidered; that is, uncorrected ECC errors are found in the
check that closes a VOCL-FT epoch. The restore through-
put reaches over 90% efficiency with respect to the available
GPU bandwidth thanks to the fast cached disk read times.
On the other hand, we can see that the execution times de-
crease up to the CS-100 optimization. The runtime overhead
reduction in CS-200 with respect to the CS-100 case is not
sufficiently high to overcome the longer replay time for the
number of executed timesteps. As depicted in Figures 10a
and 10b, there is a tradeoff not only between the error rate
and the check period but also the runtime, as longer execu-
tions make the use of longer epochs beneficial if the error
rate is sufficiently low by attaining low runtime overhead.

6.4 Hydro
The Hydro benchmark is a complete hydrodynamics code

implementing a 2D Eulerian scheme by means of a Godunov
method. We employ the OpenCL variant [13] published
in https://github.com/HydroBench/Hydro.git. We use the
most recent version available at the master branch of the
repository at the time of benchmarking: commit ef3a63b5
dating from October 21, 2014. The RSD for our three exper-
iment repetitions is under 6% for all nonnegligible measured
times, which confirms the significance of our results.

We first evaluate error-free executions when leveraging dif-
ferent optimizations on a range of problem sizes, reaching
up to the maximum 4 GB of device memory exposed by
NVIDIA’s OpenCL implementation.

Table 3 presents per-timestep overheads with respect to
native executions when the first optimizations are applied.
In the NO case we obtain an unbearable slowdown starting at



Table 3: Evaluation of first optimizations in Hydro.
Dimension (Elements) 1,000 2,000 3,000

Overhead (%)
NO 29,467 54,452 80,026
MOD 7,659 10,747 14,235

Synchronizations 603 1,167 1,750

Table 4: Hydro runtime overhead on a 1,000 × 1,000 mesh.
Log ECC Check Checkpoint Consolidate

NO
1.2% 4,646.1%

25,049.2% 0.2%
MOD 6,519.9% 0.2%

almost 30,000%, caused mostly by the checkpointing stage,
as shown in Table 4 for the 1,000 by 1,000 mesh. In this
case, MOD brings a large overhead reduction by avoiding sav-
ing to disk those objects not modified by the executed kernel
on the corresponding epoch. This application cannot ben-
efit from the remainder of the set of first optimizations ex-
cept from EAPI, with which we can set two small temporary
memory objects as scratch buffers; however, this does not
pose a noticeable performance impact. These considerable
slowdowns result from the large number of synchronizations
per timestep that this code performs (see Table 3). Most
of these, however, are systematically performed after many
OpenCL calls, and their semantics are not actually required
for a correct execution. HD automatically detects this situa-
tion and provides a large performance improvement.

Figure 11a shows the results when applying a more ag-
gressive set of optimizations. In this experiment we avoid
the I/O variability by committing the buffer cache to disk
before checkpointing (by means of the sync POSIX call) and
subtracting this call’s time. In this way we obtain a clean
picture of the expected overhead without the inherent I/O
caching variability. The HD optimization attains a reduction
in the number of synchronization points to one every two
timesteps only: a device buffer read as part of a reduction
process in the compute delta T operation. This optimization
greatly reduces the overhead—up to 17% in our experiments.
The CS optimizations we show as an example (4, 8, and 64
timesteps) attain further overhead reductions of up to 1%
in the CS-64 case with the largest data size, by avoiding
the checkpoint stage in every synchronization point. The
trend in this plot indicates that the checkpointing overhead
increases more slowly than the rest of the tasks, with the
problem size not being a bottleneck any further. Figures 12a
and 12b show per-timestep overhead breakdowns, revealing
that these are dominated by the checkpointing stage.

Figure 11b shows the measured overhead, including regu-
lar I/O operations, on executions covering five synchroniza-
tion points in the different optimizations. As expected, the
obtained overhead is larger than that shown in the former
plot because of the inherent operating system I/O manage-
ment, as discussed in Section 6.2.1. The HD case shows an
increasing trend in our two largest problem sizes, while the
remaining optimizations reveal more stable trends. This be-
havior is related to the rate at which the VOCL-FT mid-
dleware performs disk write operations on the different op-
timizations, as shown in Figure 13. While all optimizations
reveal a decreasing disk write pace trend as the problem size
increases, because of the larger increase in computation than
checkpointing time with the problem size, only the CS-8 and
CS-64 cases show consistently sustainable transfer rates un-
der our disk actual write throughput of roughly 300 MB/s.

Figure 14a shows per-epoch recovery times with respect to
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Figure 11: Error-free Hydro runs—aggressive optimizations.
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(a) Aggressive optimizations on an 11,000 × 11,000 mesh.
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(b) Overhead breakdown with the CS-64 optimization.
Figure 12: Error-free Hydro execution times—breakdown.

0

1000

2000

3000

4000

0

300

600

900

S
iz

e
 (

M
B

) 

P
a

ce
 (

M
B

/s
) 

Mesh Dimension (Elements) 

HD CS-4 CS-8 CS-64 Checkpoint

Figure 13: Checkpoint sizes and rates on Hydro.



0%

20%

40%

60%

80%

100%

0

50

100

150

200

HD CS-4 CS-8 CS-64 R
e

la
ti

v
e

 R
e

co
v

e
ry

 T
im

e
 

T
im

e
 (

s)
 

Optimization 

Restore Replay

Expected Actual
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Figure 14: Hydro recovery times.

error-free executions using VOCL-FT in the 11,000 square
elements mesh case. The CS cases represent worst-case sce-
narios as discussed for MiniMD. This implies a different
number of timesteps depending on the epoch size: two time-
steps in the HD case, and four (CS-4), eight (CS-8), and sixty-
four (CS-64) timesteps in the CS cases. The restore operation
poses roughly 0.4 s of this process, attaining over 7 GB/s.
This high recovery rate is enabled by the operating system
I/O cache. Restores using cached data are expected to be
a common case, hence not posing a significant portion of
the recovery time. On the other hand, replay times grow
proportionally to the VOCL-FT epoch length. Command
re-executions, dominating the recovery time, are faster than
error-free executions because of avoiding host computations
and read operations. As shown in the figure, the expected
relative recovery time, following the mechanism as in Fig-
ure 11a, varies between 90% for the HD case and 98% for
CS-64. The relative recovery time becomes higher with the
size of the epoch because the epoch checkpointing time is
amortized among a larger number of timesteps. The actual
relative recovery times do not present such a neat trend and
are comparatively smaller, between 78% and 95%, because
the I/O overhead poses a larger portion of time in the “real”
epoch than in the “expected” counterpart, being lower with
the decrease of the checkpointing frequency.

Results for error-free executions of 1,000 timesteps of the
CPU-only OpenMP version of the code using all the CPU
cores of the computer are shown in Figure 14b as a compar-
ison of our fault-safe accelerated proposal with the execu-
tion on a traditional nonaccelerated environment. We com-
pare these with VOCL-FT executions leveraging the longest
checkpointing period we have considered, CS-64, leading
to the lowest runtime overhead but longest recovery time.
Our results reveal that GPU-accelerated executions suffer-
ing from an uncorrected ECC error are executed 45% faster
than they would in a CPU-only run on an error-free en-
vironment in the biggest mesh we could execute and only
slightly slower than a native execution on a healthy device.

In the unlikely case, assuming a healthy device at current er-
ror rates [6], that during the close-to-an-hour execution the
GPU would experience 5 uncorrected ECC errors, the execu-
tions would still be correct on the device, attaining over 30%
speedup with respect to their nonaccelerated counterpart.

In production runs executing thousands of timesteps [13],
where the possibility of experiencing a soft error event on the
accelerator is a reality [6], having a runtime ensuring the cor-
rectness of executions at the expense of a small overhead is
clearly appealing. In the Hydro case, GPU-accelerated runs
attain roughly 2x speedup with respect to their CPU-only
counterpart, which is a common minimum factor for appli-
cations featuring a good match with accelerator architec-
tures. Therefore, we expect our techniques to attain similar
or better recovery results in most coprocessor-accelerated
applications with respect to CPU-only executions.

6.5 Discussion
Both of our test cases experience a relatively high syn-

chronization frequency, what introduces nonnegligible run-
time overhead in order to ensure data integrity: at the very
least, error checks must be performed at every synchroniza-
tion point. This overhead is higher as the amount of data
used by non-scratch buffers increases. Hence, MiniMD’s
overhead prior to HD and CS is lower than that of Hydro:
MiniMD’s maximum dataset is relatively reduced. While HD
skips many arbitrary synchronization points, it is necessary
to apply CS to reduce the data backup overhead to reason-
able levels. The remaining optimizations help reducing the
data backup overhead by determining what portions of the
device memory require to be backed up according to the
specific application use of the OpenCL API.

In those use cases in which scratch buffers are dominant,
however, those optimizations designed to reduce synchro-
nization points (HD and CS) would not lead to further signif-
icant performance improvements: the data backup overhead
would be negligible. That would be the case of those applica-
tions using coprocessors mainly as massively-parallel solvers
with little or no persistent data among kernel runs.

7. EVALUATION AT SCALE
We next showcase how the use of our techniques affect

production executions at scale. We first introduce our eval-
uation platform and then analyze the results.

7.1 Experimental Environment
We use the HokieSpeed supercomputer [27] from Virginia

Tech. Its compute nodes, interconnected by an InfiniBand
QDR fabric, feature two hexa-core Intel Xeon E5645 CPUs
(24 GB of RAM) and two NVIDIA Tesla M2050 GPUs
(5.25 GB of combined memory). The temporary directory
in this system is mounted as a tmpfs partition. We leverage
Intel MPI [9] version 4.1 as the MPI implementation.

7.2 Experimental Evaluation
In our production evaluation at scale we employ the Hy-

dro application, which presents good scalability properties
(note that the OpenCL version of MiniMD cannot be used at
scale because of the input size limitation). We perform both
strong- and weak-scaling evaluations using up to 128 GPUs
in 64 nodes, the largest allocation permitted in HokieSpeed.
In our 1,000-timestep executions using all the GPU mem-
ory, both the host data and the temporary files on the tmpfs



filesystem for the two GPUs can be held by the main host
memory of the nodes without disk swapping interferences.

We compare error-free native (Native) with VOCL-FT
(V-FTx0E) runs leveraging the full set of optimizations. The
VOCL-FT runtime is configured to checkpoint every 3 min-
utes. We select intentionally a relatively frequent interval for
a production run to demonstrate the low overhead enabled
by our techniques. VOCL-FT executions including recovery
from 1 (V-FTx1E) and 5 (V-FTx5E) disjoint uncorrected ECC
events are also discussed as examples of faulty executions.
The errors occur on a single GPU at the end of the second
VOCL-FT epoch, which for short runs in the strong scaling
experiments is the last synchronization point instead of a 3-
minute epoch. We also performed CPU-only runs employing
the hybrid OpenMP+MPI Hydro version leveraging the 12
cores per node of the system. For clarity, we skipped them
in the plots, since their execution time is an order of magni-
tude higher than that of the other experiments. The RSDs
for the three repetitions of our experiments in this section
are under 1%.

For our strong-scaling experiments, Hydro computes a
mesh of 11,000 square elements, which roughly fills the com-
bined GPUs memory of a HokieSpeed’s compute node. Our
results are shown in Figure 15a. We observe a reduced
2.2% overhead on single-node error-free VOCL-FT execu-
tions with respect to the native OpenCL library. This over-
head increases with the number of nodes involved because
of the lower compute loads. Derived from our checkpoint-
ing interval, each recovery procedure lasts 136–176 s up to
8 nodes (lower as the GPU load decreases), while the re-
mainder of the experiments recover from shorter VOCL-FT
epochs. Executions incurring one recovery event start at ex-
ecution times 10% longer than Native for the single-node
case, naturally increasing with the reduction of the load per
node. In the unlikely case of experiencing 5 recovery events,
VOCL-FT driven executions still finish with correct results
an order of magnitude faster than their CPU-only counter-
part does.

The weak-scaling experiments, involving meshes of 11,000
to 88,000 square elements, are presented in Figure 15b. The
error-free overheads caused by the VOCL-FT runtime are
roughly between 2% and 6%. The trend to a slight over-
head increase with the number of processes is due to more
communications being performed, leading in this code to
further GPU data movements and synchronization points.
When a recovery event is triggered, we experience from 10%
to 13% increased execution time with respect to error-free
native executions, which corresponds with the configured
checkpoint period. In the unlikely 5-error recovery sample
case, correctness is provided at the expense of a 38–45% run-
time increase, which is still well below that of the CPU-only
(error-free) version.

Our production-level experiments reveal similar perfor-
mance properties to those of single-node runs (Section 6),
indicating that our proposal is feasible for production ex-
ecutions at scale. The experiments in this section confirm
that our solution does not significantly affect the original
scalability properties of the application being protected.

8. CONCLUSION
In this paper we have explored efficient data protection

mechanisms for coprocessor memories based on API inter-
ception. We have devised an extensive set of optimization

2
.2

%
 

4
.7

%
 

1
1

.0
%

 

2
3

.4
%

 

4
3

.9
%

 

7
6

.8
%

 

1
2

2
.6

%
 

0

10

20

30

40

50

60

1 2 4 8 16 32 64

T
im

e
 (

m
in

) 

Number of Nodes 

Native V-FTx0E V-FTx1E V-FTx5E

(a) Strong scaling.

2
.2

%
 

2
.8

%
 

3
.7

%
 

3
.9

%
 

4
.4

%
 

5
.2

%
 

6
.3

%
 

0

10

20

30

40

50

60

70

1 2 4 8 16 32 64

T
im

e
 (

m
in

) 

Number of Nodes 

Native V-FTx0E V-FTx1E V-FTx5E

(b) Weak scaling.
Figure 15: Hydro evaluation at scale. Bar labels indicate
overhead with respect to Native.

opportunities derived from the OpenCL semantics that en-
able a low-cost runtime system. We have demonstrated,
both in single-node environments and in production at scale,
that our methodologies can provide error-free runtime over-
heads below 5% while attaining low recovery times for rea-
sonably long runs and common device error rates.
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