
Fault Tolerant MapReduce-MPI for HPC Clusters

Yanfei Guo*, Wesley Bland**, Pavan Balaji**, and Xiaobo Zhou*

*Department of Computer Science, University of Colorado, Colorado Springs

**Mathematics and Computer Science Division, Argonne National Laboratory

ABSTRACT
Building MapReduce applications using the Message-Passing
Interface (MPI) enables us to exploit the performance of
large HPC clusters for big data analytics. However, due
to the lacking of native fault tolerance support in MPI and
the incompatibility between the MapReduce fault tolerance
model and HPC schedulers, it is very hard to provide a fault
tolerant MapReduce runtime for HPC clusters. We propose
and develop FT-MRMPI, the first fault tolerant MapReduce
framework on MPI for HPC clusters. We discover a unique
way to perform failure detection and recovery by exploiting
the current MPI semantics and the new proposal of user-
level failure mitigation. We design and develop the check-
point/restart model for fault tolerant MapReduce in MPI.
We further tailor the detect/resume model to conserve work
for more efficient fault tolerance. The experimental results
on a 256-node HPC cluster show that FT-MRMPI effectively
masks failures and reduces the job completion time by 39%.

1. INTRODUCTION
MapReduce is a programming paradigm widely adopted

for reliable large-scale data-intensive processing. As data
explodes in velocity, variety, and volume, it is getting in-
creasingly difficult to scale computing performance using
enterprise class servers and networks [23]. High Perfor-
mance Computing (HPC) clusters, characterized by high
performance compute and storage servers and high-speed
interconnections, offer immense potential for high perfor-
mance data analytics. However, popular MapReduce im-
plementations like Google MapReduce [16], Hadoop [1], and
Dryad [26] are designed for the clusters that are dedicated to
MapReduce. Their custom-designed task runtimes and job
schedulers are not suitable for HPC clusters. More impor-
tantly, HPC clusters usually use heavily simplified kernels
that may not support a Java runtime. We cannot simply
deploy popular MapReduce implementations on HPC clus-
ters. Thus, a new MapReduce framework that is designed
for HPC clusters and implemented using a portable runtime,

The submitted manuscript has been created by UChicago Argonne, LLC, Opera-
tor of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of
Energy Office of Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a
paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, pre-
pare derivative works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

SC ’15, November 15-20, 2015, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-3723-6/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2807591.2807617

such as Message-Passing Interface (MPI) is urgently needed.
However, as the cluster size increases, failures have be-

come a frequent event. For example, the Blue Waters super-
computer at the National Center of Supercomputing Appli-
cations has a mean time to failure (MTTF) of 4.2 hours [17].
Projections also found that the MTTF of future systems can
be as low as one hour [13, 36]. What is lacking in previous
efforts to implement MapReduce for large HPC clusters is
to design a fault tolerant job execution framework. Build-
ing a fault tolerant MapReduce for HPC clusters is a very
important but challenging task for two reasons.

Firstly, MapReduce in an HPC cluster relies on MPI to
perform failure detection, notification, and recovery through
MPI. But, the current MPI does not have direct support for
fault tolerance. Indeed, it treats failures as local errors [3].
In the case of failure, MPI provides no guarantee of the
global state consistency to the MapReduce job nor ways to
recover, which violates both the safety and liveness require-
ments for fault tolerance [32].

Secondly, the detect/restart fault tolerance model of con-
ventional MapReduce is not compatible with the scheduler
in most HPC clusters. MapReduce needs the flexibility to
schedule and to restart individual processes for failure recov-
ery. HPC schedulers usually use a gang scheduling policy.
Under this policy, one application will either run with all
processes or wait in a queue until the resources are available.
This is favorable for MPI applications because it reduces
the communication delay [20, 27]. However, for MapReduce
applications, it makes recovery very expensive because in-
creasing the size of a running application incurs hours of
additional delay in a busy HPC cluster. Some popular HPC
systems like IBM BlueGene/Q even do not support increas-
ing the job size, which makes failure recovery impossible.

In this paper, we design and implement FT-MRMPI, the
first fault tolerant MapReduce library built on MPI. We de-
velop a task runner with user-customizable interfaces that
provide fine-grained progress tracking. It enables the li-
brary to establish locally consistent states for failure re-
covery. We design distributed masters to manage the job
execution and maintain the globally consistent state for all
processes. We exploit the semantics of the current MPI stan-
dard and extend the error handler for the checkpoint/restart
model. It allows a failed MapReduce job to be recovered
when restarted by the user. We use User Level Failure
Mitigation (ULFM) [10], a new fault tolerance interface be-
ing considered for future inclusion in the MPI standard, to
support a work-conserving detect/resume model for efficient
fault tolerance. With this model, FT-MRMPI provides au-

Task

...

MR Master

Scheduler
Metadata Server

MR Worker

TaskTaskTask

Datachunk
Server Worker

TaskTaskTask

Datachunk
Server

Worker

TaskTaskTask

Datachunk
Server

MR Worker

TaskTaskTask

Datachunk
Server

Enterprise Cluster

Server Server Server…..

HPC Cluster

Compute
Node …..

Infiniband Network

Compute
Node

Compute
Node

Storage
Node

Storage
Node

Storage
Node

...

Cluster Scheduler
MPI

MR Proc

TaskTaskTask

MR Proc

TaskTaskTask

MR Proc

TaskTaskTask

Global Communicator

...

MR Application

Figure 1: An overview of MapReduce Framework in
an enterprise cluster and an HPC cluster.

tomated in-place failure recovery by redistributing the work-
load of failed processes to the surviving ones. It also makes
FT-MRMPI tolerant to continuous failures. We further de-
velop two performance refinements to improve the perfor-
mance of FT-MRMPI in both normal execution and recov-
ery. We evaluate FT-MRMPI using representative MapRe-
duce benchmarks on a 256-node HPC cluster. The experi-
mental results show that FT-MRMPI effectively masks fail-
ures during job execution. FT-MRMPI also reduces the
total completion time of a failed job by as much as 39%
compared to a MapReduce implementation without fault
tolerance.

The rest of this paper is organized as follows. Section 2
introduces the background of MapReduce and discusses ex-
isting issues implementing a fault tolerant MapReduce-MPI.
Section 3 presents the architectural design and key compo-
nents of FT-MRMPI. Section 4 discusses the design of the
fault tolerance models. Section 5 presents the implementa-
tion and performance refinements for FT-MRMPI. Section 6
shows the experimental results and analysis. Related work is
presented in Section 7. We conclude this paper in Section 8.

2. BACKGROUND AND MOTIVATION

2.1 MapReduce Fault Tolerance Model
MapReduce [16] is a programming paradigm for large-

scale data-intensive processing in distributed clusters. As
Figure 1 shows, a conventional MapReduce implementation
on an enterprise cluster consists of two subsystems: a dis-
tributed file system and a job execution engine with a cus-
tomized cluster scheduler. Both subsystems form a mas-
ter/worker architecture. The distributed file system (DFS)
in MapReduce uses a replication-based fault tolerance model
to provide availability and reliability to the input and out-
put data that resides on it. The job execution engine uses
a non-work-conserving detect/restart model for fault toler-
ance. The master monitors the status of each worker node.
Once a failure is detected, the master will try to recover
the lost intermediate data by rescheduling the affected tasks
(both finished and unfinished) on a different worker. These
two subsystems offer fault tolerance to MapReduce in dedi-
cated enterprise clusters.

In HPC clusters, MapReduce takes a different design. Un-
like the shared nothing architecture in conventional MapRe-

duce clusters, an HPC cluster usually employs a shared disk
architecture. As Figure 1 shows, an HPC cluster consists
of a collection of compute nodes and a shared distributed
storage system connected using high-speed networks. Such
a cluster usually has its own scheduler, resource manager,
and parallel file system. Therefore, it is hard to use holis-
tic MapReduce implementations like Hadoop on HPC clus-
ters. The only thing that the MapReduce implementation
needs to provide is the job execution engine. MapReduce
jobs are characterized by their all-to-all communication pat-
tern, which makes it a logical option to build MapReduce for
HPC clusters using MPI and exploit portable performance
for collective communication. However, this change in plat-
form has a significant impact on the fault tolerance model
of MapReduce.

Next, we discuss two specific issues that make the design
of a fault tolerant MapReduce for HPC clusters a challenging
task, and discuss the opportunities to bring fault tolerance
to MapReduce in HPC clusters.

2.2 Missing Fault Tolerance in MPI
MapReduce applications that are built on top of MPI re-

quire the direct support of fault tolerance in MPI, which
includes failure detection, notification, and recovery. Unfor-
tunately, none of these is supported by the current MPI stan-
dard. In MPI-3, failures are reflected as local errors in the
relevant communication calls. MPI itself provides no mecha-
nisms for handling process failures [3]. A failure notification
on one process does not guarantee that all other processes
will receive the same notification. Applications can easily
run into an inconsistent state where some processes detect a
failure while others continue normal execution or hang with-
out error. In addition, the failure of one process will make
the communicator inoperable for collective communications.
There is no way to repair or replace the broken communi-
cator without requiring all processes (including the failed
ones) to participate. One alternative approach is using the
master/worker architecture of conventional MapReduce and
let the master process to detect failures. However, the ded-
icated master process not only is a resource waste but also
a single point of failure by itself.

2.3 Scheduling Restrictions on Recovery
Conventional MapReduce recovers failed tasks by reschedul-

ing them to different nodes. However, the HPC schedulers
like Maui and PBS Pro are optimized for HPC applications
and they do not provide an efficient way for MapReduce ap-
plications to do that. Ideally, the processes in one HPC pro-
gram should be run simultaneously and use the allocated re-
source exclusively to minimize the communication delay [20,
27]. For this reason, gang scheduling is the most favorable
for its all-or-nothing scheduling strategy. All jobs wait in the
pending queue until the cluster has enough resources to meet
their requests. A running job that tries to get additional re-
sources can significantly affect the scheduling fairness, hence
most HPC schedulers restrict the use of resizing running jobs
and force the resized job to go back to pending queue. Some
systems like the IBM BlueGene/Q have even dropped sup-
port for spawning processes in MPI programs. For these
reasons, the current fault tolerance model of MapReduce is
simply not compatible in HPC clusters, and changing the
scheduler of a HPC cluster is not a viable alternative as it
can be harmful to HPC applications.

MapReduce Job

MPI

...

ULFM

MapReduce Process

Task
Runner

Distributed
Master

Failure Hdlr

Load
Balancer

MapReduce Process

Task
Runner

Distributed
Master

Failure Hdlr

Load
Balancer

Figure 2: The architecture of FT-MRMPI.

2.4 Our Opportunities
We have found that we can force all processes of an MPI

program to exit if any of them detect an error using current
MPI semantics. This mimics failure detection and notifica-
tion. All the processes are terminated, and the user has to
restart the failed MapReduce application as a new job. For
this reason, the checkpoint/restart fault tolerance model [8,
40] is a logically first option for MapReduce because the
recovered application can continue processing from the lat-
est checkpoint rather than starting over. Despite the ad-
ditional overhead that the checkpoint/restart model intro-
duces, it has distinct advantages in its compatibility with
gang scheduling and it requires no changes to MPI.

Fault tolerance is one of the major focuses in the future
MPI standard. One of the proposals is User Level Failure
Mitigation (ULFM) proposed in our prior work. It enables
application-level fault tolerance by offering interfaces to ap-
plications and libraries to mitigate failure. It allows a failed
MPI program to recover without restarting the job and en-
ables us to use the detect/resume fault tolerance model [15]
to recover a failed job without restarting it completely. It
provides an automated and efficient fault tolerant job execu-
tion for MapReduce by redistributing the workload of failed
processes to the surviving ones.

To build a fault tolerant MapReduce in HPC with these
models, we need a new framework that traces the job exe-
cution state and manages workload distribution so that the
work of failed processes can be correctly saved and recovered.
These fault tolerance models also need to be carefully tai-
lored to adapt to MapReduce in HPC clusters. Next section,
we present FT-MRMPI, a novel framework for MapReduce
in MPI that supports both fault tolerance models.

3. SYSTEM DESIGN
FT-MRMPI is a fault tolerant MapReduce framework im-

plemented on MPI. It tracks a consistent state during job
execution and supports efficient fault tolerance through two
models: checkpoint/restart and detect/resume. The check-
point/restart model offers the basic fault tolerance using the
current MPI semantics. The detect/resume model enables
automated in-place recovery and a more efficient job execu-
tion engine.

3.1 Overview
Figure 2 shows the structure of a MapReduce application

using FT-MRMPI. FT-MRMPI consists of four components:
TaskRunner, Master, FailureHandler, and LoadBalancer. It

provides a set of interfaces that enable progress tracking of
user-defined tasks. The master is a thread dedicated to job
management. It handles the data operations during check-
pointing and recovery. It also monitors the job execution
status in each process and maintains the global state consis-
tency. The failure handler is a customized MPI error handler
that performs the failure notification, state preservation, and
recovery. The load balancer estimates the completion time
of each process and redistributes the workload to mitigate
load imbalance after recovery from failures. We briefly de-
scribe some major features of FT-MRMPI in the following.

3.2 Task Runner
The lifespan of a MapReduce job can be divided into

three phases: map, shuffle, and reduce. The map and re-
duce phases are mainly user-defined logics that read input
data, process each record, and writes output results. It is
not trivial to trace the consistent states in all three phases
at a fine granularity.

FT-MRMPI’s task runner provides a set of user-customizable
interfaces for the map and reduce phases. It embeds the
tracing feature into the user-defined logic.

Table 1 shows the interfaces for map and reduce phases
in FT-MRMPI. The main purpose of these new interfaces
is to delegate the essential operations in a MapReduce job
to the library. For example, instead of writing the file op-
erations in the map function, users are expected to tell the
library how the input data should be tokenized and how the
output records should be serialized. This can be achieved
by extending the FileRecordReader and the FileRecord-

Writer class templates. The library will perform the read
and write operations for a MapReduce job and track the
progress at fine granularity. Similarly, the user can also ex-
tend the KVWriter and the KMVReader class templates in case
of special operations is needed when handling the interme-
diate data.

After delegating the I/O operations to the library, the im-
plementation of the map and reduce functions can be largely
simplified. The map and reduce functions only need to con-
tain the job logic that needs to be applied to individual
records. We provide the Mapper and the Reducer class tem-
plates for defining map and reduce functions.

With the interfaces, FT-MRMPI generalizes the workflow
of map and reduce phases. Algorithm 1 shows an example of
a map task in FT-MRMPI. The loop in the map task reads
input data using the record reader that a user provides and
applies the user-defined map function to each input record.
Each iteration has a commit operation that tells FT-MRMPI
that the processing of the current record is finished, and the
task has reached a consistent state. The workflow of the
reduce phase follows the same loop structure.

The state tracing in the shuffle phase is relatively simple
because no user code is involved. FT-MRMPI traces the
send and receive for each memory buffer in data transmission
stage as well as the merging on each partition.

3.3 Distributed Masters
Although a process-local consistent state is sufficient for

fault tolerance in the map and reduce phases. It is not
enough for the shuffle phase. Unlike the other phases that
have no inter-process coordination, the shuffle phase has col-
lective communication between all processes. In the shuffle
phase, all processes in the MapReduce job exchange interme-

Table 1: FT-MRMPI Task Runner Interfaces.
Interface Description
template class FileRecordReader<K, V> File input reader
template class FileRecordWriter<K, V> File output writer
template class KVWriter<K, V> Key-value buffer writer
template class KMVReader<K, V> Key-multivalue buffer reader
template class Mapper<INKEY, INVALUE, OUTKEY, OUTVALUE> Map task
template class Reducer<INKEY, INVALUE, OUTKEY, OUTVALUE> Reduce task
int32_t map(INKEY&, INVALUE&, OUTKEY&, OUTVALUE&, void*) User-defined map function
int32_t reduce(INKEY&, List<INVALUE>&, OUTKEY&, OUTVALUE&, void*) User-defined reduce function

Algorithm 1 Workflow of the map task.

1: Variables: Record reader RReader; Record writer
RWriter; Mapper M ; Number of processed records n;

2:
3: function maptask(M , RReader, RWriter)
4: n ← 0
5: while < k, v >← RReader.next() do
6: n += M.map(< k, v >,RWriter)
7: commit()
8: end while
9: return n

10: end function

diate data using a series of MPI_Alltoallv calls. If a failure
occurs in the middle of communication, there is no way to
determine which part of the memory buffer is successfully
transmitted. All processes have to perform a coordinated
rollback to the last successful transmission. For this reason,
FT-MRMPI must maintain a globaly consistent state within
the shuffle phase.

FT-MRMPI uses distributed masters to manage its job
execution. It maintains the globally consistent state of the
job and manages the workload distribution during initial-
ization and recovery. The master thread is responsible for
creating tasks, assigning tasks to processes, and monitoring
the task execution on each process. During the initialization
of the MapReduce application, the master threads traverse
the location of input files and divide these file among all
master thread. Each master thread splits the input files
into fixed-size chunks. Then, it creates one task for each
input chunk. The master thread uses a hashing-based task
assignment algorithm that calculates the rank of the process
for each task using its task ID. As all master threads per-
form the same procedure in creating and assigning tasks, no
coordination is needed in this stage. After this procedure,
each master thread maintains two task status tables: one for
local tasks and the other for global tasks. During the job
execution, the master thread monitors the progress of local
tasks and periodically broadcasts the status of local tasks
to other master threads. In such way, the global task status
table in each master thread can be updated to a consistent
state. Thus, they provide the crucial information for failure
recovery.

In addition to the job management, the master thread
also handles the data movement in fault tolerance. We will
discuss this later with the fault tolerance models.

3.4 Automated Load Balancing
Workload imbalance is a pervasive issue in MapReduce

due to the inherent non-uniformity in data [7, 30, 33]. The
recovery of failure can further aggravate the already skewed
workload distribution of a MapReduce when redistributing

the unfinished work of failed tasks. It can cause most pro-
cesses idle and waiting for the ones that handle the workload
of the failed process.

In FT-MRMPI, we use an online profiling-based auto-
mated load balancing approach. We add an agent thread
for each process. The agent monitors the input data size
and the processing time of each process. During the ex-
ecution of the job, the agent makes k observations of the
amount of time, that each process spends on processing its
data. As suggested in [38, 39], it derives a linear model be-
tween input data size and the completion time of map and
reduce phases:

ti,j = ai + bi ·Di + εj ,

where ti is the job completion time of the jth process in
the ith observation, Di is the corresponding input size and
εj is the error of jth process. We use linear regression to
obtain the parameters for all processes. Once a model is
obtained, the final completion time of a process is calcu-
lated by replacing Di with the actual input size. Based on
this prediction, FT-MRMPI proportionally divides and dis-
tributes the workload of the failed processes to ensure that
all surviving processes finish at the same pace.

4. FAULT TOLERANCE MODELS

4.1 Checkpoint/Restart Model
With the trace of the consistent states during the job ex-

ecution, we are able to create checkpoints by combining the
job states and intermediate data. It offers support for the
checkpoint/restart fault tolerance model. The failed MapRe-
duce job is terminated, and a new job will be started to
recover the execution from the last checkpoint.

As we mentioned in Section 2, the checkpoint/restart fault
tolerance model only requires failure detection and notifica-
tion, which we discovered can be achieved by exploiting the
error reporting semantics in current MPI-3. Since failures
are reflected as errors in the relevant communication calls,
we use a customized error handler to catch these errors.
In this way, some of the processes in the MapReduce pro-
gram can detect the failure and propagate it by terminating
themselves with the MPI_Abort call. The process manager
in MPI will broadcast the termination of the process and
trap all surviving processes into the error handler. Thus,
the failure notification will be propagated to all processes,
and the checkpoint/restart model will work as designed for.

We designed FT-MRMPI so as to periodically make check-
points during normal execution. As checkpointing intro-
duces overhead to the job execution, we carefully design
the checkpointing mechanism in FT-MRMPI to minimize
its performance impact.

 0

 50

 100

 150

 200

 250

 300

record chunk

J
o
b
 R

e
c
o
v
e
r

T
im

e
 (

s
)

Checkpoint Granularity

Initializtion
Recover Runtime

Skip/Reprocess

Figure 3: Recovery time
of different checkpoint
granularities.

 0

 200

 400

 600

 800

 1000

 1200

 1400

GPFS Local Copier

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

s
)

Figure 4: Performance
impact of different check-
point locations.

4.1.1 Asynchronous Checkpointing
Typically, checkpointing can be performed in two ways:

synchronously or asynchronously. Synchronous checkpoint-
ing requires all processes to coordinate when making the
checkpoints. It usually results in all processes writing check-
points to disks simultaneously. For MapReduce applications
that involve processing large amounts of data, synchronous
checkpointing can significantly slow down the job execution
due to the resource contention at the storage device. More
importantly, the inherent workload imbalance in MapRe-
duce jobs is a pervasive problem that makes all processes
unable to run in a synchronized pace [7, 21, 24]. Using syn-
chronous checkpointing will force fast processes to wait for
the slow ones and further reduce the job performance.

Thus, in FT-MRMPI we develop each process to perform
asynchronous checkpointing. This design reduces the over-
head of checkpointing and minimizes the performance im-
pact. FT-MRMPI synchronizes all processes at the end of
each phase to maintain the consistency of checkpoints. Be-
cause of the inter-process independency in the map, shuffle
and reduce phases, asynchronous checkpointing does not af-
fect the correctness of preserved job state.

4.1.2 Granularity of Checkpoints
The granularity of a checkpoint has significant impact on

the amount of lost work in failure. The finer the check-
point granularity is, the less the work is lost. Thus, the
fine-grained checkpointing can significantly reduce the re-
covering time.

In FT-MRMPI, the input data of a MapReduce job is di-
vided into multiple input chunks. Each process is assigned
multiple input chunks. As MapReduce flushes the intermedi-
ate data to disks when one input chunk is processed, it makes
a natural checkpoint. However, when a checkpoint is made
at the input chunk level, all work on partially processed
input chunks will be lost after the failure. The job need to
reprocess these parts of the work when restarted. Depending
on the complexity of the job, reprocessing can be substan-
tially expensive. Since FT-MRMPI can trace the consistent
state of individual records, we can also make checkpoints at
the record level. In this case, the lost work in failure can
be minimized. The restarted job will have to read the input
data and skip the processed records, which is much cheaper
than reprocessing.

Figure 3 shows the recovery time of pagerank benchmark
with different checkpoint granularities. The results show
that when checkpointing at the input chunk level, the job

recovery time is 38% longer than the case of checkpoint-
ing at the record level. The decomposition of the recovery
time shows that reprocessing takes significant longer time
than record skipping does. Base on these observations, we
use record level checkpointing in FT-MRMPI for improved
recovery performance.

However, the major drawback of fine-grained checkpoint-
ing is its high overhead to the job execution. In FT-MRMPI,
the number of records in one checkpoint is a user customiz-
able parameter. It needs to be carefully tuned according to
the performance and characteristics of the storage system.
We will discuss the overhead of the fine-grained checkpoint-
ing in Section 6.

4.1.3 Location of Checkpoints
As the size of each record and its intermediate data is

usually small, checkpointing at such a fine granularity results
in many small I/O operations. In a typical HPC cluster,
the persistent storage is a shared storage system, which is
usually optimized for large I/O operations. The small I/O
from fine-grained checkpointing can easily slow down the job
execution speed.

To reduce the performance impact of checkpointing, FT-
MRMPI makes checkpoints to local disks or the scratch file
system and uses the master thread to move these check-
points to the persistent storages. In this way, FT-MRMPI
can aggregate the checkpoints and avoid the performance
impact of small I/O. This also overlaps the I/O operations
to the shared storage with the computation of the tasks,
and avoids causing tasks to wait for checkpointing. Figure 4
shows the job completion time of wordcount benchmark due
to different checkpointing locations. Using the background
copier significantly reduces the delay due to checkpointing
to persistent disks.

In summary, the checkpoint/restart approach provides the
basic fault tolerance for MapReduce using the features of the
current MPI standard. But it has major drawbacks. First,
the local disk is not available in all HPC clusters. In clus-
ters that does not have local disks, making checkpoints to
shared storage systems incurs significant overhead. Second,
it needs the user intervention to recover since the failed job
needs to be resubmitted. The resubmitted job may have to
wait for hours in the queue on a busy HPC cluster. Third,
it is vulnerable to failures in the restarted job. Continuous
failures can result in an endless loop of failing and restart-
ing. Fourth, restarting a failed job makes all processes to
read their checkpoints, which results in a significant amount
of disk I/O and long recovery time. In order to address
these issues, we design a second fault tolerance model for
MapReduce on HPC clusters.

4.2 Detect/Resume Model
The detect/resume fault tolerance model is evolved from

the detect/restart model in the conventional MapReduce.
The major difference between these two models is that de-
tect/resume model performs failure recovery by redistribut-
ing the workload of the failed processes to the surviving
ones rather than restarting the new processes. The recov-
ered MapReduce job will run with fewer processes, but it
avoids the incompatibility between the detect/restart model
and the HPC schedulers. In FT-MRMPI, the detect/resume
model uses the User-Level Failure Mitigation (ULFM) inter-
face to mask failures without restarting the job. It recovers

the work of failed processes in either a work-conserving or a
non-work-conserving way.

4.2.1 Failure Masking with ULFM
ULFM is designed to provide the minimal interface nec-

essary to restore the complete MPI capability to transport
messages after failures. It defines the set of functions that
can be used by applications to repair the state of MPI. In
the design of the detect/resume model for MapReduce, we
use ULFM for uniform failure notification and rebuilding the
communicator.

When processes attempt to recover, they need to propa-
gate the detected failure and interrupt the normal execution
of other processes. ULFM provides the MPI_Comm_revoke

function for failure notification. When one process invokes
this function on a communicator, MPI first declares the com-
municator as revoked locally, then sends out a revoke packet
to other processes. Each process that receives the revoke
packet revokes all ongoing communication calls on the re-
voked communicator and traps into the error handler. It
is similar to the MPI_Abort used in the checkpoint/restart
model with the exception that it does not abort the pro-
cess. Instead, it interrupts the normal job execution flow
and marks the communicator inoperable for the application.
Note that, the tasks in map and reduce phases are indepen-
dent from each other, and the failure in one task does not
requires all tasks to stop normal execution to recover. How-
ever, all master threads have to to stop normal execution of
tracking job progress since they need to identify the failed
tasks and redistribute workload coordinately.

After all processes are notified of the failure, the applica-
tion starts the recovery by replacing the broken communi-
cator and restoring the full communication capacity. ULFM
supports this by providing the MPI_Comm_shrink function
that creates a new functional communicator based on an ex-
isting, revoked communicator. It does this as follows. First,
it reaches an agreement among all surviving processes about
the group of failed processes. Then it creates a new group of
all processes but the failed ones and creates a new communi-
cator based on this group. At this point, the detected failure
is masked and the processes are ready for normal execution.

4.2.2 Resuming Job Execution
After masking the failure, the workload of the failed pro-

cesses needs to be redistributed to the remaining processes
to resume normal execution. In FT-MRMPI, we provide two
ways to resume: work-conserving and non-work-conserving.

The work-conserving method is to integrate the detect/re-
sume model with the checkpointing capability. Similar to
the checkpoint/restart model, the detect/resume model pe-
riodically makes checkpoints to save the job state and in-
termediate data. During the workload redistribution, the
remaining processes will recover the lost work by loading
the checkpoints of the failed processes. Therefore, the work
of all finished tasks is preserved. Comparing to restarting
the entire job, the surviving processes in the detect/resume
model only need to read the checkpoints of the failed pro-
cesses, which significantly reduces the I/O load and boosts
the recovery speed.

On the other hand, the detect/resume model can also use
the non-work-conserving method to perform recovery. In
this case, the surviving processes recover the lost work by
re-running all the tasks from the failed processes. Since

all the intermediate data can be recovered throughout the
re-execution, it does not need to make checkpoints to pre-
serve job state. However, this also results in longer recovery
time, especially for jobs that involves intensive computa-
tion. Also, because the recovered MapReduce job will run
with a shrunken size, reprocessing lost work can significantly
prolong the overall completion time. We will discuss the
performance impact and trade-offs of work-conserving and
non-work-conserving detect/resume model in Section 6.

5. IMPLEMENTATION AND REFINEMENTS
We implement FT-MRMPI based on the MapReduce-MPI

(MR-MPI) library [32]. We reuse the communication code
and rewrite the rest of the library to support FT-MRMPI’s
job framework. Then, we add the checkpoint/restart and de-
tect/resume models to the new library. We also develop two
refinements that improve the performance of FT-MRMPI.

5.1 Prefetching for Recovery
FT-MRMPI saves checkpoints on local disks and uses the

master thread to move data to persistent storage. This sig-
nificantly reduces the overhead of checkpointing, but it also
increases the recovery time as processes need to read check-
points from the shared persistent storage. We address this
issue by enabling prefetching for recovery. Since all check-
points are made in chronological order, it is easy to predict
access order of these checkpoints. Hence, we again utilize the
master thread to move the checkpoints from persistent stor-
age to node-local disks during the recovery. Processes only
need to recover from local disks, reducing the I/O overhead
of recovery.

5.2 Two-pass KV-KMV Conversion
The KV-KMV conversion is the process that groups the

key-value pairs by their keys. It is an essential process in
the shuffle stage. Because it accesses all the intermediate
data on disks, it is critical to the performance of the shuffle
stage. The original MR-MPI used a complex algorithm that
reads and writes the intermediate data four times. It not
only decreases the speed of shuffle stage, but also makes
tracking shuffle progress a complex task, as these four passes
are nested together.

In FT-MRMPI, we propose and develop a two-pass KV-
KMV conversion that improves the shuffle performance and
reduces the complexity of tracking shuffle progress. The first
pass reads the key-value pairs in the input buffer and tries
to put the values of the same key together. Inspired by the
log-structure file system [34], we divide the output buffer
of the first pass into small fixed-size segments. The values
of different keys are saved in different segments. Due to
the randomness of key-value pair distribution, the values of
one key can have multiple non-contiguous segments. After
the first pass finishes, the second pass merges these non-
contiguous segments into one large segment and finishes the
KV-KMV conversion. The two-pass KV-KMV conversion
significantly reduces the I/O operations during shuffle and
simplifies the progress tracking of the shuffle phase.

6. EVALUATION
We perform the following experiments on a 256-node Intel

processor-based HPC cluster where each node is equipped
with a 2-way 8-core Intel Xeon X5550 CPU, 36 GB memory,

250 GB SATA hard drive. These nodes are connected using
Mellanox Infiniband QDR in a fat-tree topology. We used
a branch of Open MPI 1.7 with ULFM additions [5] as our
MPI environment. In the experiments, we set the processes
per node (ppn) to 8. We reserve the 256 nodes from the
cluster for experiment use. We evaluate FT-MRMPI with a
maximum of 2048 processes.

6.1 Benchmarks and Applications
Wordcount - Wordcount is a common benchmark for

MapReduce. It is a single stage MapReduce job. It counts
the occurrences of each word in a large collection of docu-
ments. The map tasks parse input data and emit <word,count>
tuples. The reduce tasks add up the counts for a given word
from all map tasks and outputs the final count. It is a good
example to study the performance and communication effi-
ciency of a MapReduce library as the job involves very little
computation.

Breadth First Search - BFS is a representative bench-
mark for graph processing. It is a single stage iterative
MapReduce job. The map tasks visit and color vertices.
The reduce tasks combine the visiting information of each
vertex. It repeats the map and reduce tasks until the input
graph is fully traversed.

PageRank - PageRank is a representative benchmark
for multi-stage iterative MapReduce job. In each iteration,
PageRank has two stages. Each stage is a complete map
and reduce process. It parses the links on each web page
and calculates the pagerank. The iteration continues until
all links have been evaluated, and the algorithm converges.

MR-MPI-BLAST - MR-MRI-BLAST [37] is a parallel
BLAST, which is used for comparing primary biological se-
quence information. MR-MPI-BLAST uses high-level meth-
ods of the NCBI C++ Toolkit. It is designed as an iterative
MapReduce job. The map task searches sequences against
a given DB partition. The reduce task sorts each search hit
by the E-value and append hits to files.

6.2 Overhead of Checkpointing
Checkpointing in FT-MRMPI is used in both the check-

point/restart model and the detect/resume model. Because
checkpointing introduces additional operations to job exe-
cution, it is important to understand its performance im-
pact. Here we use a wordcount benchmark job to study
checkpointing overhead. We use 128 GB input data and
measure the job completion time of wordcount in a run
without any failure. We compare the performance of FT-
MRMPI using the checkpoint/restart model and the detec-
t/resume model in both work-conserving (WC) and non-
work-conserving (NWC) mode with MR-MPI. We disabled
the two refinements in our implementation for a fair com-
parison. We repetitively test FT-MRMPI with the number
of processes ranging from 32 to 2048 to obtain the strong
scalability trend.

Figure 5 shows the normalized job completion time of the
wordcount job. The results show that FT-MRMPI takes
10%−13% longer time to finish the job when using the check-
point/restart and the detect/resume (WC) model. However,
FT-MRMPI using the detect/resume (NWC) model, which
does not perform checkpointing, achieved similar job com-
pletion time as MR-MPI. We conclude that the performance
difference is mainly due to the overhead of checkpointing.
The strong scaling results of the test job shows poor scal-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

32 64 128 256 512 1024 2048

N
o
rm

a
liz

e
d
 J

o
b
 C

o
m

p
le

ti
o
n
 T

im
e

Number of Processes

MR-MPI
Checkpoint/Restart

Detect/Resume (WC)
Detect/Resume (NWC)

Figure 5: Normalized job completion time without
failure.

 0

 20

 40

 60

 80

 100

 1 10 100
 1000

 10000
 100000

 1x10
6

 1x10
7

C
h
e
c
k
p
o
in

ti
n
g

 P
e
rc

e
n
ta

g
e
 O

v
e
rh

e
a
d
 (

%
)

Records per Checkpoint

Figure 6: Percentage overhead of checkpointing
granularity.

ability beyond 256 processes. After testing with the IOR
benchmark [6], we conclude that this is a performance bot-
tleneck on the shared storage systems. The storage bottle-
neck further increases the overhead of checkpointing as the
checkpoints need more time to be moved to the persistent
storage.

Checkpointing at fine granularity reduces the loss of work,
but also increases the overhead. In the previous experiment,
we make checkpoints at every 100 records. Here we run the
same wordcount job with 256 processes with different check-
pointing granularities. Figure 6 shows the percentage over-
head of checkpointing. The overhead is huge when making
checkpoints at very high frequency (one record per check-
point) and drops significantly when the checkpoint frequency
is reduced from every record to every 100 records. Note that
the ideal frequency of making checkpoints depends on the
application and the cluster. For our test, the average num-
ber of records per process is about 4 × 107. Checkpointing
every 105 records provides a reasonably low overhead with-
out losing much benefit from fine-grained checkpointing.

FT-MRMPI uses a background copier thread to move
checkpoints from local disks to the persistent storage. As
the copier thread uses the CPU core with the main thread
that does the computation, it is important to know the per-
formance impact of the copier thread. Figure 7 shows the de-
composition of the job completion time of MR-MPI and the
checkpoint-restart model in FT-MRMPI. The results show
that CPU time of the copier thread is only 3% of the total
job execution time. This is mainly due to the simple design
of the copier. However, due to the increase I/O operation of
checkpointing and data movement between local disks and

 0

 20

 40

 60

 80

 100

MR-MPI Checkpoint/Restart

E
x
e
c
u
ti
o
n
 T

im
e
 P

e
rc

e
n
ta

g
e

CPU time copier
I/O wait

CPU time main

Figure 7: Overhead of copier
thread.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

32 64 128 256 512 1024 2048

N
o
rm

a
liz

e
d
 J

o
b
 C

o
m

p
le

ti
o
n
 T

im
e

Number of Processes

MR-MPI
Checkpoint/Restart

Detect/Resume (WC)
Detect/Resume (NWC)

Figure 8: Normalized job comple-
tion time of failed and recovery
run.

 0

 100

 200

 300

 400

 500

 600

MRMPI

Checkpoint/Restart

Detect/Resume (WC)

Detect/Resume (NWC)

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

s
)

Recover Run
Failure Run
Reprocess

Figure 9: Completion time of fail-
ure and recovery runs.

 0

 0.2

 0.4

 0.6

 0.8

 1

64 128 256 512 1024 2048

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Number of Processes

reduce
merge
shuffle

recovery
map

(a) checkpoint/restart

 0

 0.2

 0.4

 0.6

 0.8

 1

64 128 256 512 1024 2048

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Number of Processes

reduce
merge
shuffle

recovery
map

(b) detect/resume (WC)

Figure 10: Decomposition of the aggregated time
for all processes.

the persistent storage, the I/O wait time is 11% longer than
MRMPI. The main overhead for periodically checkpointing
is still the increased number of I/O operations.

6.3 Performance Benefit of Fault Tolerance
Although enabling fault tolerance models in FT-MRMPI

introduces overhead to the job execution, it significantly re-
duces the potential time needed for recovering the job after
failure. Here we demonstrate the performance benefit of
fault tolerance. We run a wordcount job with 128 GB input
data. We measure the total time of two runs. The first run
has one failed process at the reduce phase. The second run
is the recovery run without any further failure. The total
time of these two runs as the performance metric.

Figure 8 shows that FT-MRMPI using the checkpoint/restart
model outperforms MR-MPI by up to 33%. Since MR-MPI
is not fault tolerant, we use the total time of a failed run and
a successful run for comparison. FT-MRMPI using the de-
tect/resume (WC) model not only outperforms MR-MPI by
up to 39%, it also achieves 10%−12% shorter job completion
time than using the checkpoint/restart model. FT-MRMPI
using the detect/resume (NWC) spends 12% − 17% longer
time to finished the job. The extra time is used to reprocess
all the tasks of the failed process.

Figure 9 shows the completion time of the failure and
recovery runs with 256 processes. Comparing the check-
point/restart model with MR-MPI, it is clear that recovering
from checkpoints significantly reduces the time in the recov-
ery run. We also observe the impact of using checkpointing
with the detect/resume model. The detect/resume (NWC)
model, which has no checkpointing, takes 15% longer than
the detect/resume (WC) model does due to the reprocess-

 0

 500

 1000

 1500

 2000

 1 2 4 8 16 32 64 128 256

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

s
)

Number of Absent Processes

work-conserving
non-work-conserving

reference

Figure 11: Completion time for PageRank with con-
tinuous failures.

ing of all tasks in the failed process. However, for simple
MapReduce jobs like wordcount, the detect/resume (NWC)
model still offers decent performance compared to MR-MPI.

The checkpoint/restart model and the detect/resume (WC)
model achieved close performance in this case. The differ-
ence in the overall time of these two models is mainly be-
cause of the recovery time. As detect/resume only needs to
read the checkpoints of the failed processes, it takes signif-
icantly less time to recover. Figure 10 shows the decompo-
sition of job completion time of the checkpoint/restart and
detect/resume (WC) models. It is clear that the recovery
in the checkpoint/restart model takes longer than the detec-
t/resume (WC) model does.

6.4 Mitigating Continuous Failures
One major reason that FT-MRMPI supports the detec-

t/resume fault tolerance model is to mitigate continuous fail-
ures. The in-place recovery capability of the detect/resume
makes it the best choice for this scenario. Here we use the
BFS and the PageRank benchmarks to evaluate how FT-
MRMPI handles continuous failures in complex jobs.

For each job, we prepared 250 GB of input data. We run
these jobs with 256 processes to avoid the I/O performance
bottleneck. Continuous failures are injected by randomly
terminating one process every 5 seconds. We measure the
job completion time of both the work-conserving and the
non-work-conserving detect/resume models and compare to
a reference time. The reference time is measured as the
failure-free job completion time with the same number of
absent processes.

Figure 11 shows the job completion time of pagerank with
different number of failed nodes. The results show a signif-

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 4 8 16 32 64 128 256

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

s
)

Number of Absent Processes

work-conserving
non-work-conserving

reference

Figure 12: Completion time for BFS with continu-
ous failures.

icant performance difference between the work-conserving
and the non-work-conserving detect/resume models. The
reason is that the non-work-conserving job will lose all pre-
viously finished work. In the case of continuous failures,
the MapReduce job cannot produce any useful work until
no more failures occur. The work-conserving detect/resume
model has a clear advantage in this case as no previously
finished work will be lost. It also results in better perfor-
mance as some of the work is done when there were more
living processes. Figure 12 shows the same experiment with
BFS benchmark. The results concord with the observation
from the pagerank benchmark.

Note that the job completion time of reference can be
higher than that of the work-conserving detect/resume model.
In the reference, we mimics the scenario of no in-place recov-
ery for the running job, i.e. the absence of processes forces
the whole job running with less working processes. On the
contrast, in the work-conserving detect/resume model, the
job starts with the full capacity and gradually loses pro-
cesses. The average number of working processes can be
higher than the reference number. Thus, the work-conserving
detect/resume model achieved shorter job completion time
than the reference did.

6.5 Performance with MR-MPI-BLAST
Porting scientific applications to HPC clusters can be chal-

lenging when the applications are designed as a serial pro-
gram. MapReduce offers automated data paralleling pro-
cessing, which can be very useful in parallelizing serial sci-
entific applications. One good example is MR-MPI-BLAST,
which enables parallel BLAST using the serial NCBI BLAST
library. Here we study how this type of scientific applications
can benefit from FT-MRMPI. For this experiment, we mod-
ified the original MR-MPI-BLAST to use the new interfaces
that FT-MRMPI offers. We built the query dataset which
contains 12,000 queries from the NCBI RefSeq database.

Figure 13 shows the normalized job completion time with
no failure. The results show that FT-MRMPI takes 5%−6%
longer time to finish the job when using the checkpoint/restart
and detect/resume (WC) models. The results also show that
FT-MRMPI using detect/resume (NWC) model achieved sim-
ilar job completion time as MR-MPI did. The overhead
of checkpointing with MR-MPI-BLAST is smaller than it
with wordcount benchmark. The reduction of the overhead
is mainly because MR-MPI-BLAST uses the NCBI C++
Toolkit library to process the queries. FT-MRMPI was not
making checkpoints when the control path is in the exter-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

32 64 128 256 512 1024 2048

N
o
rm

a
liz

e
d
 J

o
b
 C

o
m

p
le

ti
o
n
 T

im
e

Number of Processes

MR-MPI
Checkpoint/Restart

Detect/Resume (WC)
Detect/Resume (NWC)

Figure 13: Normalized job completion time of MR-

MPI-BLAST.

 0

 20

 40

 60

 80

 100

 120

 140

MRMPI

Checkpoint/Restart

Detect/Resume (WC)

Detect/Resume (NWC)

R
e
c
o
v
e
ry

 T
im

e
 (

m
in

)

Figure 14: Recovery time of MR-MPI-BLAST.

nal libraries. FT-MRMPI can only provide limited fault
tolerance since the failure in the external libraries is no re-
coverable.

However, this limited fault tolerance still greatly reduces
the time required to recover from failure. Figure 14 shows
the average recovery time of MR-MPI-BLAST with 256 pro-
cesses. The results show that FT-MRMPI with checkpoint/restart
model and detect/resume (WC) model outperformed MR-
MPI with 65% and 91% shorter average recover time, re-
spectively. The detect/resume (NWC) model achieved sim-
ilar recovery time with MR-MPI, which is due to the high
cost of reprocessing in MR-MPI-BLAST. It is clear that the
significant reduction in the recovery time worth the overhead
of checkpointing for computation intensive MapReduce job.

6.6 Impact of Performance Refinements
We developed two refinements to improve the performance

of FT-MRMPI. Here we study the performance impacts of
them using wordcount benchmark and 128 GB input data.

We developed a prefetching mechanism for recovery. Fig-
ure 15 shows the recovery time of reading checkpoints from
local disk, GPFS, and GPFS with prefetching. The results
show that enabling prefetching for reading from GPFS re-
duces the recovery time by 52%−57%. It effectively bridges
the performance gap between recovery from the local disks
and recovery from GPFS. We designed and develpoed the
two-pass KV-to-KMV conversion for FT-MRMPI. Figure 16
shows the performance of the KV-to-KMV conversion in FT-
MRMPI and MR-MPI. By reducing the 4-pass conversion al-
gorithm with the 2-pass conversion algorithm, FT-MRMPI
significantly reduces time of KV-to-KMV by more than 50%.

 0

 10

 20

 30

 40

 50

64 128 256 512 1024 2048

R
e
c
o
v
e
r

T
im

e
 (

s
)

Number of Processes

Local Disk
GPFS

GPFS w/ Prefetching

Figure 15: Recovery performance impact of
prefetching.

 0

 500

 1000

 1500

 2000

 64 128 256 512 1024

J
o
b
 C

o
m

p
le

ti
o
n
 T

im
e
 (

s
)

Number of Absent Processes

FT-MRMPI
MR-MPI

Figure 16: Performance of the KV-to-KMV conver-
sion in FT-MRMPI and MR-MPI.

7. RELATED WORK
MapReduce is a popular programming model and a soft-

ware framework to support distributed computing and reli-
able large data processing on clusters of commodity hard-
ware [16]. Fault tolerance is a one of major features of pop-
ular MapReduce implementations like Hadoop [1]. It is able
to tolerate failures of different types including node crashes,
task process crashes, task software faults, and hanging tasks.
Hadoop achieves this by using its own distributed file sys-
tem and cluster scheduler that grant MapReduce full control
of the cluster. There are a few studies on further improving
the fault tolerance of MapReduce [14, 29, 35]. However, they
only focus on the resilience of the distributed file system or
intermediate data. None of them explores the fault toler-
ance issues of MapReduce in clusters where the full-control
is not available.

Fault tolerance for HPC clusters is not a new subject. Re-
search specifically on the checkpoint/restart model [8, 40] has
been going on for years. Berkeley Lab Checkpoint/Restart
(BLCR) [18] is the checkpoint/restart library most com-
monly used by applications and MPI implementations. It
provides a way for saving full-system checkpoints. BLCR
support was added to many MPI implementations including
the most popular open source implementations MPICH [4]
and Open MPI [25]. However, system-level checkpointing
is too heavy-weight for MapReduce applications. The large
memory footprint increases the time spent writing check-
points, which makes them less favorable for MapReduce.

Researchers began to explore ways to improve the time
necessary to write each checkpoint for large applications.
Initially, the focus was on moving the checkpointing model

from a synchronous model, where all processes simultane-
ously write a checkpoint to disk after quiescing the network,
to a more asynchronous one, where checkpoints could be
taken independently and messages between the checkpoints
are logged to allow the system to replay them after rolling
back to a previous checkpoint [12]. This work improved the
checkpoint time but also increased the memory requirement
of checkpointing due to the message logging. More work was
then done to make checkpoints even smaller and store only
the most necessary information. This led to a large body
of work involving application-level checkpointing including
FTI [9], SCR [31], or GVR [2].

While fault tolerance in MPI has been studied exten-
sively [11, 19, 22, 28], our previous work User-Level Fail-
ure Mitigation (ULFM) [10] is a relative newcomer. Its
goal is to form the foundational tools necessary to allow
any model of resilience (roll-back recovery, roll-forward re-
covery, application-based fault tolerance, natural fault tol-
erance, transactions, etc.) to be constructible based on the
provided interface in MPI. ULFM enables the application
to determine the data that needs to be saved during the
failure mitigation and recovery process. Our previous work
provides the interfaces for us to develop the detect/resume
fault tolerance model for FT-MRMPI.

8. CONCLUSION
Running MapReduce jobs on HPC clusters using MPI of-

fers a useful programming model for high performance data
analytics. However, the lack of support for fault tolerance
in MPI and the incompatibility between MapReduce fault
tolerance model with gang schedulers make reliable job ex-
ecution exceptionally hard in HPC clusters. In this pa-
per, we design FT-MRMPI, the first fault tolerant MapRe-
duce framework for HPC clusters. It has a novel task run-
ner design with distributed masters for tracking job execu-
tion. By exploiting the existing semantics in error handling,
FT-MRMPI supports the checkpoint/restart fault tolerance
model without changing the MPI library. We use the User-
Level Failure Mitigation interfaces for MPI to implement a
work-conserving detect/resume fault tolerance model that is
tailored for MapReduce in HPC clusters. We implemented
FT-MRMPI as a library on top the MPI and evaluated its
effectiveness on a 256-node HPC cluster with representative
benchmarks. Experimental results show that FT-MRMPI
is able to reduce the overall completion time of a failed job
by as much as 39%. FT-MRMPI effectively masks failures
during job execution.

The future work will exploiting the multiple communi-
cator and communication group in MPI-3 to further im-
proves the efficiency of failure detection and recovery in FT-
MRMPI.

Acknowledgement
This material is based upon work supported by the U.S.
Department of Energy Office of Science, Office of Advanced
Scientific Computing Research, under contract number DE-
AC02-06CH11357, and NSF CAREER award CNS-0844983
and research grants CNS-1217979 and CNS-1422119. We
gratefully acknowledge the computing resources provided on
Fusion, a high-performance computing cluster operated by
the Laboratory Computing Resource Center at Argonne Na-
tional Laboratory.

9. REFERENCES
[1] Apache Hadoop Project. http://hadoop.apache.org.

[2] Global view resilience. https://sites.google.com/site/
uchicagolssg/lssg/research/gvr.

[3] MPI: A message-passing interface standard. http://
www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.

[4] MPICH. http://www.mpich.org.

[5] Open MPI with User-Level Failure Mitigation.
http://www.fault-tolerance.org.

[6] The IOR HPC Benchmark.
http://sourceforge.net/projects/ior-sio.

[7] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and
T. N. Vijaykumar. ShuffleWatcher: Shuffle-aware
scheduling in multi-tenant mapreduce clusters. In
Proc. of the USENIX conference on Annual Technical
Conference (ATC), 2014.

[8] G. Barigazzi and L. Strigini. Application-transparent
setting of recovery points. In Proc. of IEEE Int’l
Symposium on Fault-Tolerant Computing (FTCS),
1983.

[9] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch,
F. Cappello, N. Maruyama, and S. Matsuoka. Fti:
High performance fault tolerance interface for hybrid
systems. In Proc. of Int’l Conference for High
Performance Computing, Networking, Storage and
Analysis (SC), 2011.

[10] W. Bland, G. Bosilca, A. Bouteiller, T. Herault, and
J. Dongarra. A proposal for user-level failure
mitigation in the mpi-3 standard. In Tech. Rep.,
Department of Electrical Engineering and Computer
Science, University of Tennessee, 2012.

[11] W. Bland, P. Du, A. Bouteiller, T. Herault,
G. Bosilca, and J. Dongarra. A checkpoint-on-failure
protocol for algorithm-based recovery in standard mpi.
In Euro-Par 2012 Parallel Processing, 2012.

[12] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali,
G. Fedak, C. Germain, T. Herault, P. Lemarinier,
O. Lodygensky, F. Magniette, V. Neri, and
A. Selikhov. MPICH-V: Toward a scalable fault
tolerant mpi for volatile nodes. In Proc. of ACM/IEEE
Conference on Supercomputing (SC), 2002.

[13] F. Cappello. Fault tolerance in petascale/ exascale
systems: Current knowledge, challenges and research
opportunities. Int’l Journal of High Performance
Computing Applications, 23(3):212–226, Aug. 2009.

[14] P. Costa, M. Pasin, A. N. Bessani, and M. Correia.
Byzantine fault-tolerant mapreduce: Faults are not
just crashes. In Proc. of the IEEE Int’l Conference on
Cloud Computing Technology and Science
(CLOUDCOM), 2011.

[15] T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen.
High performance linpack benchmark: A fault tolerant
implementation without checkpointing. In Proc. of the
Int’l Conference on Supercomputing (ICS), 2011.

[16] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. In Proc. of the
USENIX Symposium on Operating System Design and
Implementation (OSDI), 2004.

[17] C. Di Martino, Z. Kalbarczyk, F. Baccanico, J. Fullop,
and W. Kramer. Lessons learned from the analysis of
system failures at petascale: The case of blue waters.
In Proc. of IEEE/IFIP Int’l Conference on

Dependable Systems and Networks (DSN), 2014.

[18] J. Duell. The design and implementation of berkeley
lab’s linuxcheckpoint/restart. In Technical Report
LBNL-54941, 2002.

[19] G. E. Fagg and J. Dongarra. Ft-mpi: Fault tolerant
mpi, supporting dynamic applications in a dynamic
world. In Proc. of the European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface, 2000.

[20] D. G. Feitelson and L. Rudolph. Gang scheduling
performance benefits for fine-grain synchronization.
Journal of Parallel and Distributed Computing
(JPDC), 16:306–318, 1992.

[21] R. Gandhi, D. Xie, and Y. C. Hu. PIKACHU: How to
rebalance load in optimizing mapreduce on
heterogeneous clusters. In Proc. of the USENIX
conference on Annual Technical Conference (ATC),
2013.

[22] W. Gropp and E. Lusk. Fault tolerance in message
passing interface programs. Int’l Journal of High
Performance Compututing Applications,
18(3):363–372, Aug. 2004.

[23] Y. Guo, J. Rao, C. Jiang, and X. Zhou. FlexSlot:
Moving hadoop into the cloud with flexible slot
management. In Proc. of ACM/IEEE Int’l Conference
on High Performance Computing, Networking, Storage
and Analysis (SC), 2014.

[24] Y. Guo, J. Rao, and X. Zhou. iShuffle: Improving
hadoop performance with Shuffle-on-Write. In Proc. of
USENIX Int’l Conference on Autonomic Computing
(ICAC), 2013.

[25] J. Hursey, J. Squyres, T. Mattox, and A. Lumsdaine.
The design and implementation of checkpoint/restart
process fault tolerance for open mpi. In Proc. of IEEE
Int’l Parallel and Distributed Processing Symposium
(IPDPS), 2007.

[26] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In Proc. of the ACM
European Conference on Computer Systems
(EuroSys), 2007.

[27] M. A. Jette. Performance characteristics of gang
scheduling in multiprogrammed environments. In
Proc. of the ACM/IEEE Conference on
Supercomputing (SC), 1997.

[28] A. Kanevsky, A. Skjellum, and A. Rounbehler.
MPI/RT-an emerging standard for high-performance
real-time systems. In Proc. of the Int’l Conference on
System Sciences, 1998.

[29] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta. Making
cloud intermediate data fault-tolerant. In Proc. of the
ACM Symposium on Cloud Computing (SOCC), 2010.

[30] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia.
SkewTune: Mitigating skew in mapreduce
applications. In Proc. of the ACM SIGMOD, 2012.

[31] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d.
Supinski. Design, modeling, and evaluation of a
scalable multi-level checkpointing system. In Proc. of
Int’l Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2010.

[32] S. J. Plimpton and K. D. Devine. Mapreduce in mpi
for large-scale graph algorithms. Parallel Computing,

37(9):610–632, Sept. 2011.

[33] K. Ren, Y. Kwon, M. Balazinska, and B. Howe.
Hadoop’s adolescence: An analysis of hadoop usage in
scientific workloads. In Proc. of VLDB, 2013.

[34] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. In
Proc. of the ACM Symposium on Operating Systems
Principles (SOSP), 1991.

[35] A. Sangroya, D. Serrano, and S. Bouchenak. MRBS:
Towards dependability benchmarking for hadoop
mapreduce. In Proc. of the Int’l Conference on
Parallel Processing Workshops (Euro-Par), 2012.

[36] B. Schroeder and G. A. Gibson. Understanding
failures in petascale computers. Journal of Physics:
Conference Series, 78, 2007.

[37] S.-J. Sul and A. Tovchigrechko. Parallelizing BLAST
and SOM algorithms with MapReduce-MPI library. In
Proc. of IEEE Int’l Symposium on Parallel and
Distributed Processing Workshop and PhD Forum
(IPDPSW), 2011.

[38] A. Verma, L. Cherkasova, and R. H. Campbell. ARIA:
automatic resource inference and allocation for
mapreduce environments. In Proc. of the ACM Int’l
Conference on Autonomic Computing (ICAC), 2011.

[39] A. Verma, L. Cherkasova, and R. H. Campbell.
Resource provisioning framework for mapreduce jobs
with performance goals. In Proc. of the
ACM/IFIP/USENIX Int’l Conference on Middleware,
2011.

[40] A. Y. H. Zomaya, editor. Parallel and Distributed
Computing Handbook. McGraw-Hill, Inc., New York,
NY, USA, 1996.

