
Improving concurrency and asynchrony in multithreaded
MPI applications using software offloading

Karthikeyan Vaidyanathan
Parallel Computing Lab, Intel

karthikeyan.vaidyanathan@intel.com

Dhiraj D. Kalamkar
Parallel Computing Lab, Intel
dhiraj.d.kalamkar@intel.com

Kiran Pamnany
Parallel Computing Lab, Intel
kiran.pamnany@intel.com

Jeff R. Hammond
Parallel Computing Lab, Intel
jeff.r.hammond@intel.com

Pavan Balaji
Math and Computer Science Division,

Argonne National Laboratory
balaji@anl.gov

Dipankar Das
Parallel Computing Lab, Intel

dipankar.das@intel.com

Jongsoo Park
Parallel Computing Lab, Intel

jongsoo.park@intel.com

Bálint Joó
Thomas Jefferson National Accelerator Facility

bjoo@jlab.org

Abstract
We present a new approach for multithreaded communication
and asynchronous progress in MPI applications, wherein we of-
fload communication processing to a dedicated thread. The central
premise is that given the rapidly increasing core counts on modern
systems, the improvements in MPI performance arising from ded-
icating a thread to drive communication outweigh the small loss
of resources for application computation, particularly when over-
lap of communication and computation can be exploited. Our ap-
proach allows application threads to make MPI calls concurrently,
enqueuing these as communication tasks to be processed by a ded-
icated communication thread. This not only guarantees progress
for such communication operations, but also reduces load imbal-
ance. Our implementation additionally significantly reduces the
overhead of mutual exclusion seen in existing implementations for
applications using MPI THREAD MULTIPLE. Our technique requires
no modification to the application, and we demonstrate significant
performance improvement (up to 2X) for QCD, 1-D FFT and deep
learning CNN applications.

Categories and Subject Descriptors C.5.1 [Computer System Im-
plementation]: Large and Medium Computers—Supercomputers;
D.2.2 [Software Engineering]: Design Tools and Techniques—
Software libraries; D.4.4 [Operating Systems]: Communications
Management—Network communication

General Terms Performance

The submitted manuscript contains contributions authored by UChicago Argonne,
LLC, Operator of Argonne National Laboratory (”Argonne”). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under Contract No.
DE-AC02-06CH11357, and by Jefferson Science Associates, LLC under U.S. DOE
Contract No. DE-AC05-06OR23177.

Publication rights licensed to ACM. ACM acknowledges that this contribution
was authored or co-authored by an employee, contractor or affiliate of the United
States government. As such, the United States Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to do so, for
Government purposes only.
SC ’15, November 15 - 20, 2015, Austin, TX, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
c© ACM ISBN 978-1-4503-3723-6/15/11. . . $15.00.

DOI: http://dx.doi.org/10.1145/2807591.2807602

1. Introduction
MPI+X continues to be the de facto standard programming model
for HPC applications. Scaling MPI+X applications to current large
supercomputers and beyond presents a number of challenges,
among which are: (1) overlap of communication and computation,
which includes asynchronous communication; (2) low overhead
for MPI calls, (3) high message-rate, even for lightweight cores;
and (4) low system noise, which precludes thread migration and
compels minimization of hardware interrupts. An additional re-
quirement in the case of applications that make concurrent calls
to MPI from multiple threads (i.e. MPI THREAD MULTIPLE) is the
need to avoid high overheads associated with mutual exclusion,
which are common in many MPI implementations today [6]. The
need for these features in next-generation supercomputers is illus-
trated in recent procurements, such as CORAL [13] and Trinity-
NERSC8 [4]. All application benchmarks therein use MPI, and
most use OpenMP R©; and while many applications today do not
require MPI THREAD MULTIPLE, it is a requirement in CORAL in
order to allow for programming model flexibility in the future.

To meet the challenges of scaling MPI+X applications, we focus
on the key underlying issue: servicing an MPI operation requires a
certain amount of computation within the MPI layer. For instance,
small message transfers commonly use an “eager” protocol, where
the MPI implementation allocates internal buffers, performs mem-
ory copies, initiates data transfer, and performs appropriate match-
ing (tags, communicator, source) to place incoming data in the right
memory buffer. In most MPI implementations, some or all of these
operations are handled in software. Large messages are often trans-
ferred using a rendezvous protocol, which on most systems requires
pinning the application buffer and sending a control message to de-
termine the buffer location for data transfer. Again, this requires
software intervention. Collectives such as reductions also require
compute resources, to configure a hierarchy for data exchanges or
to prepare buffers for scatter/gather operations. For nonblocking
MPI calls, this gets even trickier as compute resources are often
required to ensure progress of operations. For instance, a delay in

processing control messages during the rendezvous protocol can
result in exposing communication latencies to the application.

However, the typical MPI+X application uses all available
threads for its own compute needs. Communication is typically
funneled to a master thread that issues all MPI calls. In this model,
all MPI compute needs are met by the master thread, which must
therefore do more work than the other threads. The consequent load
imbalance hurts the application’s scalability.

It is extremely difficult to determine at what points during appli-
cation computation must MPI be invoked to ensure asynchronous
progress; if this is not done correctly, compute-communication
overlap cannot be achieved and performance will suffer. Moreover,
the thread used for this purpose will again cause imbalanced load.

When an application uses multiple threads for communication,
it can encounter high overheads associated with mutual exclusion
that are common in many MPI implementations.

We address all these challenges by dedicating a processor thread
in each MPI rank to which all MPI communication operations are
offloaded. The remaining threads, used by the application, may is-
sue MPI calls in any manner—serialized, funneled, or concurrently.
These are routed to the MPI offload thread via a lock-free com-
mand queue. This approach significantly reduces MPI call latency
and consequently allows better balanced load among the applica-
tion threads. The challenge of ensuring asynchronous progress is
met since the MPI offload thread tracks the progress of all MPI
operations constantly. The loss of a compute resource for the appli-
cation is outweighed by the improvements in communication per-
formance, and is in any case a small cost given the increases in core
counts seen in modern systems.

In this paper, we detail our approach and demonstrate that
its use in MPI+X applications results in excellent computation-
communication overlap; simplifies application implementation,
thereby reducing programmer effort significantly; and delivers high
performance with minimal overhead even for concurrently issued
MPI calls.

The remainder of the paper is organized as follows. In Section 2
we describe some current techniques used to manage these chal-
lenges. In Section 3 we detail our method of using a dedicated
thread for offloading MPI communication. In Section 4 we use mi-
crobenchmarks to show the benefits of our approach in a number
of areas, including operation latency and compute-communication
overlap; and in Section 5 we show these benefits on three well-
known HPC applications. In Section 6 we consider related work.
In Section 7 we summarize our conclusions and briefly consider
future work.

2. Background
In this section, we illustrate the challenge of overlapping commu-
nication with computation with a typical stencil computation code.
We describe two approaches used today to address this challenge.

Consider the code in Listing 1. The first step performed is MPI
initialization, using MPI Init thread(). An OpenMP parallel re-
gion follows, in which all threads prepare the boundary buffers for
communication (shown as boundary pack). A thread barrier is used
to ensure that all buffers are ready for communication, after which
the master thread initiates the boundary exchange by posting non-
blocking MPI calls (line 6). The remaining threads begin internal
volume processing (lines 7 through 17); the master thread joins in
this work once it has completed posting the nonblocking MPI calls.
The master thread then invokes MPI Waitall() to complete the
boundary exchange while the remaining threads wait at a barrier.
Finally, boundary processing is performed by all the threads.

The performance of this stencil code depends on several fac-
tors. Since the master thread alone issues all MPI calls, there is
an inherent load imbalance between it and the remaining threads

which manifests at the thread barrier in line 19. Further, when there
is sufficient internal volume processing to overlap the boundary
exchange communication, we would expect the master thread to
spend a minimal amount of time waiting for the boundary exchange
to complete at line 18. However, the MPI standard does not force
progress during nonblocking calls. For example, if an application
posts an MPI Irecv() followed by an MPI Isend() and then per-
forms computation before posting the corresponding MPI Wait()
calls, the communication often will not be overlapped with the
computation. This is because the implementation of the send call
requires the corresponding receive to be posted on the target be-
fore data transfer is initiated. Thus, data transfer actually occurs
during the MPI Wait() call even when there is enough computa-
tion to overlap, thus resulting in load imbalance and performance
degradation.

We refer to this as the baseline approach.

Baseline : THREAD LEVEL=MPI THREAD FUNNELED

Iprobe : THREAD LEVEL=MPI THREAD FUNNELED
PROGRESS= Pragma(‘‘omp master’’)
{ MPI Iprobe(...); }

Comm−self : THREAD LEVEL=MPI THREAD MULTIPLE

/∗ sample stencil code ∗/
{
1: MPI Init thread(THREAD LEVEL)

/∗ Progress thread starts (comm−self or
offload) ∗/

...

2: #pragma omp parallel
3: {
4: { /∗ boundary pack ∗/ }
5: #pragma omp barrier
6: #pragma omp master { MPI Irecv(...);

MPI Isend(...); }
/∗ internal volume processing ∗/

7: {
8: for x loop do;
9: PROGRESS
10: for y loop do;
11: PROGRESS
12: for z loop do;
13: ...
14: done
15: done
16: done
17: }
18: #pragma omp master { MPI Waitall(...); }
19: #pragma omp barrier
20: { /∗ boundary processing ∗/ }
21: }
}

Listing 1: MPI overlap challenges

2.1 Using Iprobes
The problem of lack of progress in the baseline approach can be
addressed by periodically invoking MPI during the internal volume
computation with an MPI Iprobe() call to facilitate progress. This
is illustrated in Listing 1 by the PROGRESS phase (lines 9 and
11). We refer to this as the iprobe approach. While this approach
provides some overlap of communication with computation, the
master thread lags even further behind other threads because of the
time spent inside the MPI Iprobe() call, which causes additional
load imbalance that can outweigh the benefits of the achieved
overlap. Moreover, it is extremely difficult to determine where and

how frequently to insert these calls for best overlap. For example,
a PROGRESS on line 9 might be more effective in achieving overlap
than on line 11, or vice versa.

2.2 The SELF communicator thread
Another approach dedicates a thread for this purpose, duplicating
the MPI COMM SELF communicator, and posting a blocking receive
on this duplicated communicator for which a corresponding send
is never posted. This leaves the thread always inside MPI which
uses it to drive the progress engine. Clearly, this reduces by one the
number of threads available to the application. However, it also re-
quires use of MPI THREAD MULTIPLE at MPI initialization, to allow
the master thread to make MPI calls. Thus, performance is largely
dependent on the underlying multithreaded MPI implementation
(which is typically poor). Furthermore, this approach does not ad-
dress the load imbalance issues caused by the master thread spend-
ing time inside MPI; on the contrary, because of contention with the
SELF communicator thread, the master thread typically sees more
time spent in MPI calls, resulting in greater load imbalance. We
refer to this as the comm-self approach.

Note that the term dedicated software thread or communication
thread or MPI thread refers to a physical core used explicitly for
handling communication related activities.

3. MPI Offload Infrastructure
In this section, we detail the design of our MPI offload infrastruc-
ture. The core idea is to decouple application computation from
MPI communication by providing an infrastructure that imposes
minimal overhead on the interaction between application threads
and MPI. We achieve this by dedicating a thread to drive MPI
and by offloading all application MPI calls to this thread via a
lightweight lock-free command queue.

Thus, the offload infrastructure consists of two parts: (1) an MPI
offload thread that services a command queue and invokes MPI to
process received commands and (2) a library that translates appli-
cation MPI calls into commands that are placed in the command
queue.

3.1 Decoupling computation from MPI communication
Figure 1 illustrates the overall design of our MPI offload in-
frastructure. For applications using MPI THREAD FUNNELED or
MPI THREAD SERIALIZED, the master thread communicates with
the offload thread using a circular command queue, as shown in
the figure (we describe support for MPI THREAD MULTIPLE later in
this section). When the application’s master thread makes an MPI
call, our library serializes the call parameters into a call-specific
structure and inserts this information into the command queue. The
offload thread polls this queue and on finding a command, extracts
the call parameters from the structure and issues the MPI call. Note
that the application thread never enters MPI itself; only the offload
thread does so.

For a blocking MPI call, the application master thread spins on
a done flag that will be set by the offload thread when it finishes
processing the MPI call. For a nonblocking MPI call however,
in order to minimize overhead, it is desirable for the application
thread to return immediately after the command is inserted into the
queue. However, as the offload thread has not yet invoked MPI at
this point, a valid MPI Request is not yet available to return to the
application. We address this by allocating an array of MPI Request
objects within the offload infrastructure; we assign a free object
from this pool to each nonblocking call and return its index to the
application as the MPI Request. We maintain this pool as an array-
based singly linked list in order to minimize allocation and free
time.

NIC NIC

MPI Rank A MPI Rank B

Application Command
queue

Application Command
Queuesthreads threads

Intel Xeon or Xeon Phi processorsIntel Xeon or Xeon Phi processors

MPI offload
thread

MPI offload
thread

Figure 1: MPI offload using a dedicated thread

Note that no additional memory copies are required with our
approach since the application threads and the MPI offload thread
run in the same address space.

We refer to this as the offload approach.

3.2 Improved asynchronous progress
As discussed in Section 2, the MPI standard does not force progress
during nonblocking MPI calls. For this reason, the offload thread
keeps track of all in-flight nonblocking MPI calls and ensures
progress on them by issuing MPI Testany() calls whenever its
command queue is empty. When one of these nonblocking MPI
calls completes, the offload thread sets its done flag. This approach
not only ensures asynchronous progress but also optimizes applica-
tion calls to MPI Wait(), MPI Waitany(), and MPI Waitall(),
since they only need to check the appropriate done flag.

3.3 Support for MPI THREAD MULTIPLE

Our MPI offload infrastructure supports applications that use
MPI THREAD MULTIPLE, i.e., use multiple threads to make MPI
calls simultaneously. This is not a widely used model because
of the performance loss caused by mutual exclusion and serial
bottlenecks present in typical MPI implementations that support
reentrancy, in accordance with the standard, but generally offer
limited true parallelism. For most MPI implementations, using
MPI THREAD MULTIPLE can significantly increase MPI call la-
tency, particularly when there is contention, but even without. Yet,
support for MPI THREAD MULTIPLE is increasingly important, as
evidenced by CORAL [13].

Our approach allows for highly efficient MPI THREAD MULTIPLE
support as follows. We use atomic operations to convert both the
offload thread’s command queue and the pool of MPI Request
objects into lock-free data structures, thereby allowing scalable
concurrent MPI calls. Further, in order to prevent the blocking MPI
call of one application thread from delaying the progress of the
calls of other threads, we convert all blocking calls into their non-
blocking equivalents and use MPI Test() calls to check for their
completion. This approach ensures that the offload thread is not im-
peded from processing MPI commands issued by other application
threads.

Our results in Section 4 demonstrate that our approach outper-
forms standard MPI THREAD MULTIPLE implementations despite
using a single thread to actually interact with the MPI layer.

We note that one of the advantages of this approach is that since
all communication is funneled through a single communication
thread (even in the case of MPI THREAD MULTIPLE), no locking is
required within the MPI implementation (i.e. it would be equiv-
alent to MPI THREAD FUNNELED or MPI THREAD SERIALIZED).
This feature, however, has the shortcoming that a single thread is
driving communication, which might not always be sufficient to
take complete advantage of the network, especially for small mes-
sages.

Another shortcoming of this approach is that not all blocking
calls have nonblocking equivalents (e.g. MPI WIN FENCE). We ac-
knowledge this shortcoming but note that (1) it exists only for ap-
plications using MPI THREAD MULTIPLE (a very small fraction of
existing applications) and (2) most MPI calls have nonblocking
equivalents and our approach can support all applications that do
not rely on the small set of functions that do not have a nonblock-
ing equivalent.

3.4 Support for unmodified applications
We enable applications to use our MPI offload infrastructure with-
out modification by using the LD PRELOAD feature to dynamically
interpose our library between the application and MPI. Our imple-
mentation intercepts all MPI calls—spawning the required thread
at MPI Init() and creating the necessary command queues—and
translates MPI calls into commands that are submitted to the com-
mand queue for processing by the offload thread. Thus, our ap-
proach does not require any code changes to the application.

4. Microbenchmarks
In this section, we use a number of microbenchmarks to evaluate
the performance and overheads of our MPI offload infrastructure
along a number of dimensions. We compare with a baseline that
uses MPI in the typical funneled manner as well as with two exist-
ing approaches that attempt to address the asynchronous progress
problem—iprobe, and comm-self (described in Section 2).

For all our experiments, we use the following two clusters:
Endeavor: This cluster consists of dual socket 14 core Intel R©

Xeon R© E5-2697 v3 processor nodes with 64 GB host memory.
Each node has a 61 core Intel R© Xeon Phi

TM
coprocessor with 8 GB

memory.1 The nodes are connected with InfiniBand FDR network
adapters. We use Intel MPI 5.0.2.044.

NERSC Edison: This Cray R© XC30 cluster consists of dual
socket 12 core Intel Xeon E5-2695 v2 processor nodes with 64 GB
host memory and 256 KB L2 cache. The nodes are connected with
Cray Aries using a DragonFly network topology. We use Cray MPI
2.03 and ICC 14.0.0.

Our experiments with these microbenchmarks focus on: (1)
evaluating the effectiveness of asynchronous progress by mea-
suring compute-communication overlap, (2) quantifying the over-
head of issuing nonblocking MPI calls such as MPI Isend() and
MPI Irecv(), also including nonblocking collectives, and (3) la-
tency and bandwidth measurements using the standard OSU single
and multithreaded microbenchmarks [5]. For all our experiments,
we use one MPI rank per socket.

4.1 Compute-communication overlap
We have developed an overlap benchmark for point-to-point MPI
calls across two processes that operates as follows. Each process
issues a nonblocking MPI Irecv() followed by a nonblocking
MPI Isend() to receive and send a message to the other process.
We measure the time taken for these calls, which we call the post
time. Next, each process issues two MPI Wait() calls to wait for
the nonblocking receive and send calls made earlier to complete.
The time these calls take to complete is the wait time. The total
time taken to complete all four calls is the communication time.

The overlap benchmark then repeats these calls, introducing
some computation between the nonblocking MPI Isend() call and
the first MPI Wait() call. The computation time is equal to the
communication time measured in the previous step.

We define the overlap time as the difference between the wait
times for the two steps, and report the post time, the wait time of

1 Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the
U.S. and/or other countries.

the second step, and the overlap time as a percentage of the commu-
nication time. For 100% overlap of compute with communication,
we expect the overlap time to match very closely with the commu-
nication time.

For measuring overlap on collectives, we use the standard IMB-
NBC suite distributed as part of Intel MPI; it uses a similar method-
ology.

 0

 20

 40

 60

 80

 100

0B 1B 8B 128B
4K

B
16K

B
128K

B
256K

B
1M

B

0B 1B 8B 128B
4K

B
16K

B
128K

B
256K

B
1M

B

0B 1B 8B 128B
4K

B
16K

B
128K

B
256K

B
1M

B

T
ot

al
 T

im
e

(%
)

Baseline Comm-self Offload

Message size

Overlap Percentage

MPI-Isend/Irecv Compute overlap MPI-Wait

Figure 2: Compute-communication overlap for nonblocking point-
to-point calls

Figure 2 shows post time, overlap time, and wait time as a per-
centage of communication time. For the baseline approach, we see
reasonable overlap between 70% and 80% for small messages up
to 4 KB. However, as the message size increases, the overlap drops
drastically to 1% for large messages (2 MB). This is expected be-
havior, as the MPI implementation uses the eager protocol for mes-
sages up to 128 KB, for which an internal memory copy is made
during MPI Isend(). Thus we see reasonable overlap for very
small messages, but the time spent in MPI Isend() increases as
the message size approaches 128 KB—reducing the overlap po-
tential. For messages larger than 128 KB, the MPI implementation
switches to the rendezvous protocol for which only a control mes-
sage handshake is performed at MPI Isend()—data transfer is de-
ferred. However, in the microbenchmark’s computation phase, MPI
is unable to process these control messages and therefore the entire
communication is handled only at MPI Wait() which results in
poor overlap. Note that the problem of non-blocking send progress
in the absence of a posted receive actually arises from MPI’s ren-
dezvous protocol that must be used for messages above a certain
size – with no receive posted, the sender cannot know where the
message should be written.

With the comm-self approach, multiple threads enter the MPI
region simultaneously. Thus, issuing the MPI Isend() call itself
takes longer which results in reduced overlap of 20% to 30% for
small messages of up to 4 KB. However, for large messages we
see that the comm-self approach allows up to 80% overlap since
the control messages of the rendezvous protocol are handled in a
timely manner by the comm-self thread.

With our offload approach, we see that overlap is consistently
above 85% for small messages and reaches up to 99% for large
messages. Since all MPI calls are offloaded, the time spent in the
calls themselves is significantly less, which results in maximum
overlap potential.

We see similar trends for overlap of nonblocking MPI collec-
tives with both small and medium messages in Figures 3(a) and
3(b).

 0

 20

 40

 60

 80

 100

Iallgather

Iallgatherv

Igather

Iscatter

Iscatterv

Ialltoall

Ialltoallv

Ireduce

Ireduce-scatter

Iallreduce

Ibarrier

O
ve

rla
p

%
Overlap of non-blocking MPI collectives (message size 8 bytes)

Baseline Comm-self Offload

 0

 20

 40

 60

 80

 100

 120

Iallgather

Iallgatherv

Igather

Iscatter

Iscatterv

Ialltoall

Ialltoallv

Ireduce

Ireduce-scatter

Iallreduce

O
ve

rla
p

%

Overlap of non-blocking MPI collectives (message size 16KB)

Baseline Comm-self Offload

Figure 3: Compute-communication overlap for nonblocking MPI collectives: (a) 8 bytes and (b) 16 KB

4.2 Nonblocking MPI call overhead
We have modified the OSU latency microbenchmark for point-to-
point and collectives by replacing blocking calls with nonblocking
calls followed by MPI Wait()s. We measure the time taken for
issuing these nonblocking calls separately.

Figure 4 shows the time spent in issuing a nonblocking MPI
call using the baseline, comm-self and offload approaches. We see
in Figure 4 that the baseline approach takes significantly longer
for MPI Isend()s for up to 128 KB messages, and much less
time for larger messages. As explained in the previous sub-section,
this arises from the MPI implementation’s switch from the eager
protocol to the rendezvous protocol.

 1

 4

 16

 64

 256

 1024

 4096

 16384

1 2 4 8 16 32 64 128
256
512
1K 2K 4K 8K 16K
32K
64K
128K
256K
512K
1M 2M 4M

T
im

e
(n

an
os

ec
on

ds
)

Message Size (bytes)

Time spent in posting MPI Isend

Baseline
Comm-self

Offload

Figure 4: Nonblocking MPI Isend call as part of OSU ping pong
test on 2 Endeavor Xeon nodes

The comm-self approach shows similar behavior, except that the
latencies are higher by 2.5 microseconds—this arises from the re-
quired use of MPI THREAD MULTIPLE which introduces overhead.

Our offload approach shows constant latency for MPI Isend()
of about 140 nanoseconds, irrespective of the message size. This
is due to the fact that all MPI calls are simply offloaded to a ded-
icated thread via a command queue. As a consequence, an appli-
cation thread making an MPI call will return quickly to join other
application threads in computation which results in significantly re-
duced load imbalance.

Figures 5(a) and 5(b) show similar trends for nonblocking MPI
collectives on 16 Endeavor Xeon nodes and further justify the need
to decouple application computation and MPI communication.

4.3 Overlap and load imbalance benefits in applications
While we have shown significant overlap and reduced load imbal-
ance as benefits of our offload infrastructure, it is important to un-
derstand how these benefits translate into application performance.
Here, we report the improvements in overlap and the reduction in
load imbalance seen in QCD and in 1-D FFT—overall application
performance is reported in Section 5.

Table 1 compares the baseline approach with the offload ap-
proach in QCD Dslash on a 323 × 256 lattice. This data was gath-
ered on the Endeavor Xeon cluster and we report the time as seen
by thread 0 of MPI rank 0. We measure the post time as the time
taken for posting all nonblocking MPI Irecv() and MPI Isend()
calls. We also include the time taken for boundary processing such
as pack and unpack operations and barrier time among the threads
and report it as misc time.

First, observe that the offload approach shows up to 5% slow-
down in internal compute as compared to the baseline approach.
This is a consequence of the use of a dedicated thread for commu-
nication offloading—the application has one less thread available
to it which causes an increase in internal compute time.

However, we see 99% overlap up to 128 nodes, and 33% over-
lap for 256 nodes with the offload approach. We also see >99%
reduction in post time. Observe that at 256 nodes, the post time
when using the baseline approach occupies a significant fraction of
the total time. Reducing this to a few nanoseconds with the offload
approach results in a significant reduction of overall runtime. The
reason for the large post time (50 microseconds) seen in the base-
line approach is that the communication message sizes across all
directions in the lattice goes down to 48 KB, crossing below the
rendezvous threshold. For this message size, as shown in Figure 4,
significant time is spent in posting the nonblocking calls when us-
ing the baseline approach. At 128 nodes, only two out of the six di-
rections in the lattice go below the rendezvous threshold and hence
we do not see a significant increase in post time (13 microseconds)
as compared to 256 nodes.

We see similar trends for 1-D FFT in Table 2—up to 96%
reduction in post time, 87% overlap, and a speedup of up to 31%
using the offload approach as compared to the baseline approach.
Due to the presence of multiple segments in FFT, the number of
nonblocking calls in each iteration increases. Thus, the post time
occupies a significant portion of overall time.

 0

 2

 4

 6

 8

 10

Ibcast

Iallgather

Igather

Iscatter

Ireduce

Iallreduce

T
im

e
(u

se
cs

)
Posting non-blocking collectives (message size 8 bytes)

Baseline
Comm-self

Offload

 0

 5

 10

 15

 20

 25

 30

 35

Ibcast

Iallgather

Igather

Iscatter

Ireduce

Iallreduce

T
im

e
(u

se
cs

)

Posting non-blocking collectives (message size 8KB)

Baseline
Comm-self

Offload

Figure 5: Nonblocking collectives MPI call latency: (a) MPI Icollectives 8 byte on 16 Endeavor Xeon nodes and (b) MPI Icollectives 8 KB
on 16 Endeavor Xeon nodes

Baseline (Time in microseconds) Offload (Time in microseconds) Internal Post Wait
Nodes Internal Post Wait Misc Total Internal Post Wait Misc Total Compute Time Time

Compute Time Time Time Time Compute Time Time Time Time Slowdown Reduction Reduction

8 3,448 7 623 174 4,252 3,625 <1 7 333 3965 5% >99% 99%
16 1,652 6 608 152 2,418 1,709 <1 4 257 1970 3% >99% 99%
32 400 5 344 78 827 417 <1 4 104 525 4% >99% 97%
64 164 7 278 50 499 166 <1 25 76 268 1% >99% 97%
128 86 13 212 48 359 87 <1 78 59 224 1% >99% 63%
256 62 50 67 47 226 64 <1 45 47 156 3% >99% 33%

Table 1: QCD Dslash Time spent per iteration for 323 × 256 lattice on Endeavor Xeon Cluster

Baseline (Time in milliseconds) Offload (Time in milliseconds) Internal Post Wait
Nodes Internal Post Wait Misc Total Internal Post Wait Misc Total Compute Time Time

Compute Time Time Time Time Compute Time Time Time Time Slowdown Reduction Reduction

2 314 0.085 358 313.9 986 320 0.008 44 322 686 2% 90% 87%
4 316 0.230 458 433.7 1,208 317 0.014 174 353 844 2% 94% 62%
8 313 0.759 501 432.2 1,247 329 0.027 340 311 980 5% 96% 32%

16 303 0.988 665 369.0 1,338 305 0.050 497 316 1,118 3% 95% 25%
32 303 2.334 705 431.6 1,442 308 0.084 546 322 1,176 2% 96% 22%

Table 2: FFT Time spent using Endeavor Xeon Phi coprocessor cluster

4.4 Improvements for MPI THREAD MULTIPLE

We report the message latency of the multithreaded OSU latency
benchmark that uses MPI THREAD MULTIPLE on the Endeavor
Xeon cluster in Figure 6. The benchmark creates several threads
in each rank; each thread creates a pair with a remote rank’s thread.
All the thread pairs perform the OSU latency benchmark in parallel
and the corresponding one-way latency is reported.

We see significant overhead when multiple threads enter MPI
which increases with the number of threads; this poor scala-
bility is common to many MPI implementations that support
MPI THREAD MULTIPLE. As a result, both the baseline and the
comm-self approaches suffer severely, showing up to 30 microsec-
onds one-way latency when using eight parallel threads (Fig-
ure 6(c)).

Our offload infrastructure offers significantly better scalabil-
ity arising from the lock-free algorithms used (described in Sec-
tion 3) in MPI call offloading. The dedicated MPI offload thread
issues MPI calls on behalf of the microbenchmark’s threads using

MPI THREAD FUNNELED, thereby escaping the poor scalability of
MPI’s multithreading support and reducing the message latency by
up to 6X as compared to the comm-self approach. Note that the
time reported here is the time for the message to be completely
sent and not the time taken only to post the request to the command
queue.

4.5 Overheads of offloading MPI calls
Finally, we characterize the overheads introduced by the comm-
self and offload approaches using the OSU latency and bandwidth
microbenchmarks.

Figure 7(a) shows the one-way latency achieved by the baseline,
comm-self, and offload approaches using the OSU microbench-
marks run on Intel Xeon processors on the Endeavor Xeon cluster.
We see that the offload approach shows an additional latency of 0.3
microseconds as compared to the baseline approach for small mes-
sages. This additional latency cost is a consequence of the offload
process—converting the MPI call to a command and inserting the

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

La
te

nc
y

(u
se

cs
)

Message Size (bytes)

OSU Latency THREADS=2

Baseline
Comm-self

Offload

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

La
te

nc
y

(u
se

cs
)

Message Size (bytes)

OSU Latency THREADS=4

Baseline
Comm-self

Offload

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

La
te

nc
y

(u
se

cs
)

Message Size (bytes)

OSU Latency THREADS=8

Baseline
Comm-self

Offload

Figure 6: OSU multithreaded latency benchmark: (a) 2 threads, (b) 4 threads and (c) 8 threads

 0

 5

 10

 15

 20

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

La
te

nc
y

(u
se

cs
)

Message Size (bytes)

OSU Latency

Baseline
Comm-self

Offload

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 4 8 16 32 64 128
256
512
1K 2K 4K 8K 16K
32K
64K
128K
256K
512K
1M 2M 4M

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

OSU Bandwidth

Baseline
Comm-self

Offload

Figure 7: OSU microbenchmarks on Intel Xeon processors: (a) Latency and (b) Bandwidth

 0

 5

 10

 15

 20

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

La
te

nc
y

(u
se

cs
)

Message Size (bytes)

OSU Latency on Intel Xeon Phi coprocessors

Baseline
Offload

 0

 1000

 2000

 3000

 4000

 5000

1 2 4 8 16 32 64 128
256
512
1K 2K 4K 8K 16K
32K
64K
128K
256K
512K
1M 2M 4M

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

OSU Bandwidth on Intel Xeon Phi coprocessors

Baseline
Offload

Figure 8: OSU microbenchmarks on Intel Xeon Phi coprocessors: (a) Latency and (b) Bandwidth

command into the command queue, followed by the offload thread
picking up the command, issuing the MPI call and updating the
response, further followed by the calling thread’s retrieval of this
response.

For the comm-self approach, we observe a much larger over-
head of 11 microseconds which is a consequence of the use of
MPI THREAD MULTIPLE in the MPI layer.

Figure 7(b) shows the uni-directional MPI bandwidth using the
baseline, comm-self, and offload approaches. We see little to no
degradation in bandwidth for medium to large messages from the
offload approach as compared to the baseline approach.

However, we see that bandwidth drops by 50% for messages
between 4 KB and 256 KB with the comm-self approach which

can again be attributed to the overheads of MPI THREAD MULTIPLE
support in the MPI layer.

We see similar trends for manycore platforms in Figures 8(a)
and 8(b), although offload overhead increases to 1.7 microseconds
due to lower single thread performance.

5. Applications
In this section, we provide brief descriptions of three significant
HPC applications: QCD, FFT, and CNN, and present their perfor-
mance using the baseline, iprobe and comm-self approaches as well
as with our offload approach.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

8 16 32 64 128 256 8 16 32 64 128 256

D
sl

as
h

P
er

fo
rm

an
ce

 (
G

F
LO

P
s)

323*256 lattice 483*512 lattice

	Number of Endeavor Xeon Nodes

QCD Dslash Performance

Baseline
Iprobe

Comm-self
Offload

 0

 20000

 40000

 60000

 80000

 100000

 120000

8 16 32 64 128 256 512 768 1152

D
sl

as
h

P
er

fo
rm

an
ce

 (
G

F
LO

P
s)

Number of Edison Nodes

QCD Dslash with 483*512 lattice

Baseline
Iprobe

Cray Core Specialization
Offload

Figure 9: QCD Dslash performance: (a) Endeavor and (b) NERSC Edison

5.1 QCD
Lattice Quantum Chromodynamics (LQCD) [7, 9] is a four dimen-
sional hypercubic lattice, with fermion (quark) fields ascribed to
the lattice sites and gauge (gluon) fields ascribed to the links be-
tween sites. The Wilson-Dslash operator is used as the gauge co-
variant derivative in a variety of lattice Dirac Fermion operators.
A large proportion of time in LQCD applications is spent solving
linear systems with these operators typically using sparse iterative
solvers, such as Conjugate Gradients (CG) [19] or BiCGStab [34].
This operator is very much like a 4-dimensional nearest-neighbor
stencil (9 point stencil in 4 dimensions) with the added elaboration
that the data at the lattice sites (so called spinors), and on the lattice
links (gauge fields) are now respectively represented by complex
valued matrices. Further when accumulating the stencil for the cen-
tral point, the neighboring spinors must be multiplied by the gauge
matrix ascribed to the link connecting the neighbor and the central
site.

The communication pattern is primarily a nearest-neighbor
point-to-point as described in Joo et al. [20]. Typical multi-node
implementations overlap computation of the body with the com-
munication of the faces. For the Wilson-Dslash operator, the faces
(boundaries or ghost regions) are projected into separate commu-
nication buffers. Next, the boundary buffers are exchanged with
the nearest neighbors using non-blocking MPI point-to-point calls.
Once the internal volume (body) computation and boundary ex-
change completes, the received faces are multiplied appropriately
with gauge links, and their contribution to Dslash is accumulated.
Since the faces are non-contiguous in memory and require a pro-
jection, our previous implementation [20] packs the boundary ex-
change buffers using the parallelism available within the system,
then initiates the send operation for each dimension in both for-
ward and backward directions. In the CG and BiCGStab solvers,
the matrix-vector product used is composed primarily of applica-
tions of the Dslash operator. Also, some level 1 BLAS operations
are required as well as some global reductions for inner-product
and vector norm operations, which are further exposed to latencies
from MPI Allreduce() operations. Hence, typically the solver
has a lower performance than the Dslash operator in isolation.

Here, we work with a four dimensional hypercubic space-
time lattice, and we consider the set of MPI processes as run-
ning on a four dimensional virtual processor grid with dimensions
(Px, Py, Pz, Pt). We place one MPI task per socket and consider
the MPI ranks to run lexicographically through our virtual proces-

sor grid, partitioning on the largest dimension followed by the other
three dimensions (first T, then Z, followed by Y and finally X).
Wilson-Dslash performance: Figure 9(a) demonstrates the strong
scaling performance of the Wilson-Dslash operator on the En-
deavor cluster for 323×256 and 483×512 lattices with increasing
number of nodes.

We see that our offload approach performs similarly to the other
approaches until 16 nodes. Beyond this, our approach begins to
outperform the others – the highest impact is observed at 256 nodes
where we see 2X improvement, delivering 33 TFLOPs using 256
nodes for the 323 × 256 lattice.

We observe that the comm-self approach shows reasonable ben-
efit for smaller node counts, but degrades significantly at 256 nodes.
The message sizes at this scale are about 48 KB; we know from our
experiments in Section 4.2 that this approach has large overhead
for small and medium messages and this overhead outweighs the
benefits of asynchronous progress. However, when we increase the
lattice size to 483×512, we see that the comm-self approach begins
to show improvement. The large lattice not only increases the mes-
sage sizes, but also increases the surface to volume ratio which au-
tomatically gives more room for overlapping communication with
computation.

Nonetheless, even for the larger lattice, our offload approach
offers the best and our highest ever reported performance of 67
TFLOPs on 256 nodes. Note that we see super-linear speedup for
256 nodes as compared to 128 nodes mainly because the lattice
starts to fit in cache. For 323 × 256 lattice, we see super-linear
speedup at 32 nodes.

We see similar trends in performance using the NERSC Edison
cluster as shown in Figure 9(b). Here, we additionally compare with
the built-in Cray core specialization feature [28] for better asyn-
chronous progress. We see that our offload approach significantly
outperforms all the other approaches and again delivers our highest
ever reported performance of 116 TFLOPs on 1152 nodes for the
483 × 512 lattice.

To better understand the sources of the performance improve-
ments enabled by our approach, we show where time is spent in the
Wilson-Dslash operator for the 323×256 lattice in Figure 10 when
using the baseline and offload approaches on both the Intel Xeon
and Intel Xeon Phi platforms. We see that due to better overlap in
the offload approach, the time spent in waiting for communication
to finish (shown in blue) is significantly lower when compared to
the baseline approach. This is especially evident at 64 Intel Xeon
nodes, where wait time is less than 5% for the offload approach

 0

 20

 40

 60

 80

 100

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64

T
ot

al
 T

im
e

(%
)

Baseline Offload Baseline Offload

 # Endeavor Xeon Nodes # Endeavor Xeon Phi coprocessor Nodes

QCD Dslash Time Distribution

Internal Compute Boundary Processing MPI Wait Time

Figure 10: Wilson-Dslash timing splitup

whereas the baseline approach shows about 25%. A similar trend
holds for Intel Xeon Phi coprocessors.
QCD Solver Performance: In Figure 11, we show the full QCD
solver performance, including CG and BiCGStab operations. The
presence of global calls such as MPI Allreduce() and the use
of BLAS-like kernels which do not scale as well as the Wilson-
Dslash operator naturally reduce the achieved performance, thus
the maximum performance seen is 34 TFLOPs, with our offload
approach.
Wilson-Dslash performance with MPI THREAD MULTIPLE: We
explore the impact of allowing multiple application threads to
concurrently issue MPI calls by modifying the Wilson-Dslash
operator code to do so. In previous work [33], we have demon-
strated a thread-groups library that enables simplified applica-
tion use of MPI THREAD MULTIPLE by allowing groupings of
threads to increase compute and communication parallelism. We
use this library and study the impact of its use coupled with
MPI THREAD MULTIPLE over each approach. We report perfor-
mance relative to the corresponding performance without the li-
brary and with MPI THREAD FUNNELED, to highlight the benefits of
improved multithreading in MPI.

Figure 12 shows these results, for the baseline, iprobe, comm-
self, and offload approaches. We see that our offload approach
outperforms all the others and shows up to 15% improvement in
performance relative to using MPI THREAD FUNNELED. This result
emphasizes the potential performance benefit to applications from
effective multithreaded MPI.

5.2 FFT
Distributed 1-D FFT is a widely used HPC kernel that stresses the
underlying communication infrastructure considerably. Three all-
to-all data exchanges are required in the Cooley-Tukey 1-D FFT
factorization [12], which is used by virtually all high-performance
FFT implementations [17]. A low-communication FFT algorithm
called SOI FFT has recently been devised that reduces the number
of all-to-all exchanges from three to one at the expense of more
computation [32]. The SOI FFT algorithm also facilitates overlap-
ping of computation and communication by partitioning the input
on each node into multiple segments and then by pipelining the
computation and communication of the segments.

Figure 13(a) shows the FFT performance on the Endeavor Xeon
cluster when using increasing numbers of Intel Xeon nodes. We
use a problem size of 229 double precision complex numbers per
node and demonstrate the weak scaling performance. For smaller

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

16 32 64 128 192 256 16 32 64 128 192 256

S
ol

ve
r

P
er

fo
rm

an
ce

 (
G

F
LO

P
s)

CG Solver BiCGStab solver

	Number of Endeavor Xeon Nodes

QCD Solver Performance for 483*512 lattice

Baseline
Comm-self

Offload

Figure 11: QCD solver performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

128 256 256

R
el

at
iv

e
D

sl
as

h
P

er
fo

rm
an

ce

323*256 Lattice 483*512 Lattice

Number of Endeaovr Xeon Nodes

QCD Dslash with MPI-THREAD-MULTIPLE

Baseline
Iprobe

Comm-self
Offload

Figure 12: QCD performance with MPI THREAD MULTIPLE

node counts, we see up to 20% performance improvement using
the offload approach as compared to the baseline approach. The
comm-self approach also performs well.

As node count increases to 128, due to the fact that all-to-all
bandwidth does not scale with increasing node counts, we notice
that the performance benefits from the offload approach reduce to
10% relative to the baseline approach, and 5% relative to the comm-
self approach.

At 256 nodes, the problem becomes communication-bound and
there is little computation available to overlap, thus we see only
marginal improvement from our approach.

Figure 13(b) shows FFT performance on Intel Xeon Phi co-
processors. Here, we use a problem size of 225 double precision
complex numbers per node and demonstrate the weak scaling per-
formance. As MPI THREAD MULTIPLE is unsupported on this plat-
form, we cannot evaluate the comm-self approach. In this figure,
we see 43% performance improvement up to 4 nodes and 26% per-
formance improvement at 64 nodes from the offload approach rela-
tive to the baseline approach. These improvements arise primarily
from overheads in the MPI implementation on manycore platforms
which are hidden when using offload.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2 4 8 16 32 64 128 256

P
er

fo
rm

an
ce

 (
G

F
LO

P
s)

Number of Endeavor Xeon Nodes

FFT Performance

Baseline
Comm-self

Offload

 0

 200

 400

 600

 800

 1000

2 4 8 16 32 64

P
er

fo
rm

an
ce

 (
G

F
LO

P
s)

Number of Endeavor Xeon Phi coprocessors Nodes

FFT Performance

Baseline
Offload

Figure 13: FFT performance: (a) Intel Xeon processors and (b) Intel Xeon Phi coprocessors

5.3 CNN
Convolutional Neural Networks (CNNs) [26] have emerged as the
algorithm of choice for image, face, and speech recognition due to
the superior quality of classification. This is reflected in CNNs win-
ning visual understanding contests like the ImageNet [29] contest
in recent years. CNN consists of multiple layers, each having a set
of feature maps (matrices), and performing operations on the set of
feature maps of the previous layer to produce output stored in fea-
ture maps of the current layer. These operations vary from convo-
lutions, dot-products, pooling, normalization, and others. There are
two computational problems pertaining to the use of CNNs: train-
ing and classification. The training problem takes as input a set of
labeled images, and produces the set of weights for each layer by
solving an optimization problem. The classification problem takes
an image as input and performs the set of operations to produce a
classification of the image. Of these, the training problem is diffi-
cult to parallelize across multiple nodes due to limited data paral-
lelism (restricted to a small set of data points called a minibatch),
while the classification problem is trivially data-parallel. Hence we
present experimental results for training.

There are several ways to parallelize CNN training: data paral-
lelism involves partitioning a minibatch of images into nodes, and
model parallelism partitions the CNN into parts such that each node
operates on multiple images only for a part of the CNN model. A
hybrid parallelism scheme uses both data and model parallelism,
data parallelism for the convolutional layers and model parallelism
for the fully connected layers. These schemes are shown to have
best-in-class scaling of the training problem [35]. We study the hy-
brid parallelism approach in this work.

The data parallel parts in the convolutional layers of the CNN
have all-to-all exchange operations to exchange the set of weights
and weight gradients on multiple nodes [22]. The backpropaga-
tion operation on convolution layers in one iteration passes data to
the corresponding layers for forward propagation in the next itera-
tion, which gives the potential for overlapping communication with
computation. However, the fully connected layers in CNNs, which
implement a slight variant of model parallelism, require synchro-
nized all-to-all exchanges which pass the activations/gradients of
activations from one stage to the next in the same iteration.

Figure 14 shows the performance of a CNN training implemen-
tation on the Endeavor Xeon cluster using different approaches. We
observe that performance is roughly similar up to 8 nodes. This is
because the compute time is significantly greater than the commu-
nication time, thus any improvements in overlap does not translate

 0

 0.5

 1

 1.5

 2

2 4 8 16 32 64R
el

at
iv

e
P

er
fo

rm
an

ce
 Im

ag
es

/s
ec

 (
H

ig
he

r
th

e
be

tte
r)

Number of Endeavor Xeon Nodes

ImageNET-CNN Relative Performance

Baseline
Comm-self

Offload

Figure 14: Deep learning CNN performance

to a performance improvement. However, as we increase the scale
to 64 nodes, we notice that the comm-self and offload approaches
both outperform the baseline approach by 2X, with the offload ap-
proach doing 15% better than the comm-self approach.

6. Related Work
The implementation of asynchronous progress on nonblocking MPI
calls has been considered. Broadly speaking, four models for asyn-
chronous progress have been studied.

Hardware-Supported Asynchronous Progress Some architec-
tures have provided hardware support for different operations,
where a hardware agent ensures that communication progresses.
Mellanox R© InfiniBand [2], for example, allows triggered opera-
tions, where the application (or MPI library) can post a chain of
operations and the hardware asynchronously triggers operations
when their dependent operations have completed. In the past, the
Quadrics network architecture [27] provided capabilities similar to
those of the Mellanox InfiniBand architecture. IBM R© Blue Gene
machines provide additional hardware to provide some collective
operations such as the barrier [31]. Once initiated by a process, the
hardware fully asynchronously handles the completion of the op-
eration without additional software intervention. Hardware-based
asynchronous progress is not restricted to collective operations
alone. Portals-based networks such as Cray Seastar [10] provided

capabilities for hardware progress on point-to-point operations that
require matching semantics (such as MPI send/recv).

In each case, asynchronous progress is made possible via some
agent that drives the network in the absence of application calls into
MPI to drive the progress engine. Offloading to specialized hard-
ware such as a network card that has some or all of the capability
to drive MPI operations is, however, limited to what hardware is
available. No machine that we are aware of provides enough hard-
ware to cover the full spectrum of operations in MPI that can make
use of asynchronous progress (e.g., the full set of reductions or tag-
matching). Thus, some software intervention is needed.

Offload engines for other protocols also exist. A common ex-
ample that is often discussed is the TCP offload engine [8, 15]
for TCP/IP. However, we believe that TCP is not an appropriate
comparison as it is a very different environment compared to MPI.
Our focus is on MPI+OpenMP applications in which even func-
tion call issue overheads can cause load imbalance and bad per-
formance. This extreme sensitivity to the latency does not apply
to typical TCP environments (e.g., web servers) where there are
no tight parallel loops. In addition, MPI has a shared single rank
and message ordering constraints that need to be managed. For in-
stance, the Berkeley sockets interface to TCP has no concept of
“messages”, but only that of bytes—if byte-level ordering is de-
sired the user has to do it herself. Finally, in TCP, converting block-
ing calls to nonblocking calls is not the same. Nonblocking calls in
TCP are not message hand-offs (since there are no messages). In
our proposed approach, nonblocking calls are used for actual com-
munication hand-offs in terms of messages.

Interrupt-Based Asynchronous Progress A common model that
allows hardware to trigger a software operation when needed is
interrupt-driven asynchronous progress. Both Cray and IBM sys-
tems offer interrupt-driven asynchronous progress, as described
in [28] and [21, 23–25]. While interrupt-driven asynchronous
progress is a generic progress model, its performance tradeoffs are
well understood in the community. Performance tradeoffs in the
context of asynchronous one-sided communication with persistent
(i.e., polling) and transient (i.e., interrupt-driven) agency on Blue
Gene/P are discussed in [18]. In both cases, a low-level progress
mechanism is involved, which uses a platform-specific API that is
aware of the hardware features.

Threads-Based Asynchronous Progress A more customized
asynchronous progress model can be implemented as part of an
MPI implementation. For example, in MPICH and its various
derivatives (including MVAPICH, Intel MPI, and Cray MPI), asyn-
chronous progress can be provided by dedicating a thread that re-
mains in the progress engine for the lifetime of the application.
Often, this thread spins, consuming an entire hardware thread. A
more critical issue with this approach of dedicating a software
thread to poll on the progress engine is that it must hold a mutex
while processing the message queue, thus preventing other threads
from doing so. The performance consequences and a number of
strategies for mitigation are discussed in [6].

Perhaps the closest work to the approach proposed in this pa-
per can be found in [24], which describes the communication
threads approach used on the IBM Blue Gene/Q architecture for
asynchronous progress. The general idea of using communication
threads to hand off work units by using atomic enqueue/dequeue
operations is common between this work and our proposed ap-
proach. Two important distinguishing factors with this work is
that the Blue Gene/Q approach is based on a low-level network
layer, rather than the MPI implementation itself, and that it does
not elide mutual exclusion in the MPI implementation. Rather, it
relies upon per-object locking [14], which is finer grain than that
of other implementations, but means that multiple mutexes must

be acquired and released for every MPI operation. This is because
asynchronous progress is provided within the PAMI library that sits
underneath MPI. While PAMI provides more general asynchronous
progress that supports a variety of programming models, it does not
obviate mutual exclusion. While there are conceptual similarities
in our approach, the PAMI layer is highly dependent on special
hardware and kernel support whereas our approach is completely
portable.

Shared-Memory-Based Asynchronous Progress Another ap-
proach is to avoid the need for mutual exclusion inside of MPI
by using OS processes as asynchronous agents, rather than threads.
This approach is described in [30] for the case of one-sided MPI
communication (RMA). A major shortcoming of this approach is
that the mechanism is valid only for MPI RMA and not for other
operations. It can be generalized to two-sided and collective com-
munication in cases where interprocess memory access primitives
are available [11] (some implementation details are described in
[16]). However, such approaches require special support from the
operating system that is not available from commodity operating
systems (e.g. the common Linux distributions).

7. Conclusions and Future Work
In this paper, we demonstrated a novel method for concurrent
and asynchronous MPI communication in multithreaded appli-
cations. The software offload approach elides mutual exclusion
by funneling communication work to a dedicated thread using
a lock-free queue. This allows application threads to make con-
current MPI calls without the usual overheads associated with
MPI THREAD MULTIPLE and ensures strong progress, and therefore
overlap of communication and computation. All of these properties
are desirable for high-performance MPI+X applications, and the
cost of dedicated CPU resources for software offload is nominal
on modern multicore systems with dozens of hardware threads. We
have demonstrated the benefits of our approach with a number of
microbenchmarks, and with three HPC applications for which we
show performance increases of up to 2X.

The next steps for this project include the replacement of MPI as
the communication conduit with low-level (and therefore platform-
specific) APIs such as the OpenFabrics Interface [3], InfiniBand
Verbs or Cray uGNI [1]. This will allow us to use multiple threads
for software offload, for the APIs that support independent com-
munication endpoints within a single process. We also intend to
explore efficient implementations of other MPI operations, includ-
ing RMA (i.e. one-sided).

8. Acknowledgements
We would like to thank James Dinan and Srinivas Sridharan for
their useful insights on the comm-self approach used in this paper.
We acknowledge the Endeavor Scientific Computing Center and
National Energy Research Scientific Computing Center (NERSC
Edison) for providing HPC resources that have contributed to the
results reported in this paper. B. Joo gratefully acknowledges sup-
port by the U.S. Department of Energy, Office of Science, Office of
Nuclear Physics under contract DE-AC05-06OR23177 and by the
U.S. Department of Energy, Office of Science, Offices of Nuclear
Physics, High Energy Physics and Advanced Scientific Computing
Research under the SciDAC-3 program.

References
[1] Using the GNI and DMAPP APIs. Technical Report S-2446-

5002, Cray, Mar. 2013. URL http://docs.cray.com/books/
S-2446-5002/S-2446-5002.pdf.

[2] Mellanox Technologies. http://www.mellanox.com.

[3] Trinity / NERSC-8 RFP. http://ofiwg.github.io/libfabric/. URL http:
//ofiwg.github.io/libfabric/.

[4] Trinity / NERSC-8 RFP. http://www.nersc.gov/users/computational-
systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/. URL
http://www.nersc.gov/users/computational-systems/
cori/nersc-8-procurement/trinity-nersc-8-rfp/.

[5] OSU Micro-benchmarks 4.4.1. http://mvapich.cse.
ohio-state.edu/benchmarks/.

[6] A. Amer, H. Lu, Y. Wei, P. Balaji, and S. Matsuoka. MPI+threads:
Runtime contention and remedies. In Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP 2015, pages 239–248, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-3205-7. . URL http://doi.acm.org/10.1145/
2688500.2688522.

[7] R. Babich, M. A. Clark, and B. Joó. Parallelizing the QUDA Library
for Multi-GPU Calculations in Lattice Quantum Chromodynamics. In
Proceedings of SC10: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2010.

[8] P. Balaji, W. Feng, Q. Gao, R. Noronha, W. Yu, and D. K. Panda.
Head-to-TOE Evaluation of High Performance Sockets over Protocol
Offload Engines. In Proceedings of the IEEE International Conference
on Cluster Computing (Cluster), Boston, Massachusetts, Sep. 27–30
2005.

[9] P. Boyle. The BlueGene/Q supercomputer. Proceedings of Science,
Lattice Field Theory, 2012.

[10] R. Brightwell, K. Pedretti, and K. Underwood. Initial performance
evaluation of the cray seastar interconnect. In High Performance
Interconnects, 2005. Proceedings. 13th Symposium on, pages 51–57,
Aug 2005. .

[11] R. Brightwell, K. Pedretti, and T. Hudson. Smartmap: Operating
system support for efficient data sharing among processes on a multi-
core processor. In Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, SC ’08, pages 25:1–25:12, Piscataway, NJ, USA,
2008. IEEE Press. ISBN 978-1-4244-2835-9. URL http://dl.acm.
org/citation.cfm?id=1413370.1413396.

[12] J. W. Cooley and J. W. Tukey. An Algorithm for the Machine Com-
putation of Complex Fourier Series. MATHCOMP, 19(2):297–301,
1965.

[13] A. CORAL: Collaboration of Oak Ridge and Livermore National Lab-
oratories. DRAFT CORAL BUILD STATEMENT OF WORK. Tech-
nical Report LLNL-PROP-636244, Lawrence Livermore National
Laboratory, Dec. 2013. URL https://asc.llnl.gov/CORAL/
RFP components/02 draft CORAL Build SOW 12-31-13.pdf.

[14] G. Dózsa, S. Kumar, P. Balaji, D. Buntinas, D. Goodell, W. Gropp,
J. Ratterman, and R. Thakur. Enabling concurrent multithreaded
MPI communication on multicore petascale systems. In R. Keller,
E. Gabriel, M. Resch, and J. Dongarra, editors, Recent Advances
in the Message Passing Interface, volume 6305 of Lecture Notes in
Computer Science, pages 11–20. Springer Berlin Heidelberg, 2010.

[15] W. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda. Perfor-
mance Characterization of a 10-Gigabit Ethernet TOE. In Proceedings
of the IEEE International Symposium on High-Performance Intercon-
nects (HotI), Palo Alto, CA, Aug. 17–19 2005.

[16] A. Friedley, T. Hoefler, G. Bronevetsky, A. Lumsdaine, and C.-C. Ma.
Ownership passing: Efficient distributed memory programming on
multi-core systems. In Proceedings of the 18th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP
’13, pages 177–186, New York, NY, USA, 2013. ACM. ISBN 978-1-
4503-1922-5. . URL http://doi.acm.org/10.1145/2442516.
2442534.

[17] M. Frigo and S. G. Johnson. The Design and Implementation of
FFTW. IEEEP, 93:216–231, 2005.

[18] J. R. Hammond, S. Krishnamoorthy, S. Shende, N. A. Romero, and
A. D. Malony. Performance characterization of global address space
applications: a case study with NWChem. Concurrency and Compu-
tation: Practice and Experience, 24(2):135–154, 2012. ISSN 1532-
0634. . URL http://dx.doi.org/10.1002/cpe.1881.

[19] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for
Solving Linear Systems. Journal of Research of the National Bureau
of Standards, 1952.

[20] B. Joo, D. D. Kalamkar, K. Vaidyanathan, M. Smelyanskiy, K. Pam-
nany, V. W. Lee, P. Dubey, and W. W. III1. Lattice QCD on Intel Xeon
Phi. In Proceedings of ISC13: International Conference for Super
Computing, 2013.

[21] M. Krishnan, J. Nieplocha, M. Blocksome, and B. Smith. Evaluation
of remote memory access communication on the IBM Blue Gene/P
supercomputer. In International Conference on Parallel Processing -
Workshops, 2008. ICPP-W ’08., pages 109–115, Sept 2008. .

[22] A. Krizhevsky. One weird trick for parallelizing convolutional neural
networks. In Computing Research Repository (CoRR), 2014.

[23] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen, M. E. Gi-
ampapa, M. Blocksome, A. Faraj, J. Parker, J. Ratterman, B. Smith,
and C. J. Archer. The deep computing messaging framework: gener-
alized scalable message passing on the Blue Gene/P supercomputer.
In ICS ’08: Proceedings of the 22nd annual international conference
on Supercomputing, pages 94–103, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-158-3. .

[24] S. Kumar, A. Mamidala, D. Faraj, B. Smith, M. Blocksome, B. Cer-
nohous, D. Miller, J. Parker, J. Ratterman, P. Heidelberger, D. Chen,
and B. Steinmacher-Burrow. PAMI: A parallel active message in-
terface for the Blue Gene/Q supercomputer. In Parallel Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th International, pages
763–773, 2012. .

[25] S. Kumar, Y. Sun, and L. Kale. Acceleration of an asynchronous mes-
sage driven programming paradigm on IBM Blue Gene/Q. In Parallel
Distributed Processing (IPDPS), 2013 IEEE 27th International Sym-
posium on, pages 689–699, May 2013. .

[26] Y. LeCun, F. Huang, and L. Bottou. Learning methods for generic ob-
ject recognition with invariance to pose and lighting. In In Computer
Vision and Pattern Recognition, CVPR, 2004.

[27] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The
Quadrics Network (QsNet): High-Performance Clustering Technol-
ogy. In HotI ’01, 2001.

[28] H. Pritchard, D. Roweth, D. Henseler, and P. Cassella. Leveraging
the cray linux environment core specialization feature to realize mpi
asynchronous progress on cray xe systems. In Proceedings of the Cray
User Group Conference, 2012.

[29] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. In
International Journal of Computer Vision (IJCV), 2015.

[30] M. Si, A. J. Pena, J. Hammond, P. Balaji, M. Takagi, and Y. Ishikawa.
Casper: An asynchronous progress model for MPI RMA on many-
core architectures. 29th IEEE International Parallel & Distributed
Processing Symposium (IPDPS), May 2015. URL http://www.mcs.
anl.gov/papers/P5221-1014.pdf.

[31] I. S. B. G. Solution. Blue Gene/P application development redbook,
2008. http://www.redbooks.ibm.com/abstracts/sg247287.
html.

[32] P. T. P. Tang, J. Park, D. Kim, and V. Petrov. A Framework for Low-
Communication 1-D FFT. In Proceedings of SC12: International
Conference for High Performance Computing, Networking, Storage
and Analysis, 2012.

[33] K. Vaidyanathan, K. Pamnany, D. K. Kalamkar, A. Heinecke,
M. Smelyanskiy, J. Park, D. Kim, A. Shet, B. Kaul, B. Joo, and
P. Dubey. Improving Communication Performance and Scalability of
Native Applications on Intel Xeon Phi Coprocessor Clusters. In Pro-
ceedings of IPDPS: International Parallel and Distributed Processing
Symposium, 2014.

[34] H. A. van der Vorst. BI-CGSTAB: a fast and smoothly converging
variant of BI-CG for the solution of nonsymmetric linear systems.
SIAM J. Sci. Stat. Comput., 1992.

[35] R. Wu, S. Yan, Y. Shan, Q. Dang, and G. Sun. Deep Image: Scaling
up Image Recognition. In Computing Research Repository, 2015.

