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Abstract
Hybrid MPI+Threads programming has emerged as an alternative
model to the “MPI everywhere” model to better handle the increas-
ing core density in cluster nodes. While the MPI standard allows
multithreaded concurrent communication, such flexibility comes
with the cost of maintaining thread safety within the MPI imple-
mentation, typically implemented using critical sections. In contrast
to previous works that studied the importance of critical-section
granularity in MPI implementations, in this paper we investigate
the implication of critical-section arbitration on communication per-
formance. We first analyze the MPI runtime when multithreaded
concurrent communication takes place on hierarchical memory sys-
tems. Our results indicate that the mutex-based approach that most
MPI implementations use today can incur performance penalties
due to unfair arbitration. We then present methods to mitigate these
penalties with a first-come, first-served arbitration and a priority
locking scheme that favors threads doing useful work. Through eval-
uations using several benchmarks and applications, we demonstrate
up to 5-fold improvement in performance.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

Keywords MPI, threads, runtime contention, critical section

1. Introduction
Most parallel applications running on high-performance computing
(HPC) systems use the Message Passing Interface (MPI) [5] for
interprocess communication. Given the increasing difference in
growth of the number of cores and the remaining resources on the
node (e.g., memory, cache, network endpoints), MPI alone might
not always be the most efficient model for exploiting intranode
resources. To alleviate such issues, application developers are
looking for models that allow node resources to be shared. Recently,
an increasing number of applications have been adopting an MPI+X
hybrid model, where X often designates a threading model [7]. The
goal is to use MPI for interprocess communication while a threading
model such as OpenMP [2] or Intel Threading Building Blocks [25]
handles shared-memory parallelism within the same address space.
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This model, however, comes with the synchronization and memory
consistency costs related to data sharing between threads.

The MPI standard defines how such hybrid applications inter-
operate with an MPI library. In particular, MPI implementations
that offer multithreading support must guarantee thread safety. Such
thread-safety is guaranteed through a combination of processor
atomic operations and critical sections in virtually every MPI imple-
mentation today. In order to maintain performance, however, two
orthogonal dimensions of optimizations need to be investigated—(1)
granularity of critical sections and (2) arbitration of critical sections.
Most MPI implementations use coarse-grained critical sections due
to its relative simplicity, though some implementations have inves-
tigated fine-grained critical sections as well [6, 12, 16]. However,
all existing implementations ignore the orthogonal dimension of
critical section arbitration.

In this paper, we investigate how critical section arbitration can
affect communication performance. Specifically, we perform an
in-depth analysis of the MPICH [1] runtime, which forms the basis
of most MPI implementations in the world today. Our analysis
shows that POSIX thread mutexes, that are used by most MPI
implementations, is “biased” based on the memory hierarchy on the
node. We demonstrate that the deep memory hierarchies on modern
architectures promote threads closer to the previous owner of the
critical section as the new owner. This results in lock monopolization
causing threads having useful work to not get access to the critical
section for long periods of time, thus slowing overall progress.

We propose two approaches to mitigate the issue. The first ap-
proach is a simple first-come-first-served (FCFS) model that re-
moves any hardware-induced bias in the arbitration model. This
allows all threads to make progress thus avoiding lock monopoliza-
tion and starvation issues. The second approach is a custom critical
section arbitration model that reintroduces bias into the arbitration
process, but this time taking into account the execution paths in-
side the MPI runtime to favor threads with a higher probability of
doing useful work. We evaluate our methods against the baseline
mutex approach and show up to 5-fold improvement in performance
with various microbenchmarks, computation kernels, and a genome
assembly application.

The remainder of this paper is organized as follows. In Section 2
we discuss thread-safety challenges in MPI in general, and thread-
safety measures in MPICH in particular. We briefly describe the
testbed used for our experiments in Section 3. In Section 4 we
present an in-depth analysis of the critical-section arbitration process
and the design, implementation, and preliminary evaluation of our
solutions in Section 5. In Section 6 we evaluate and compare all
methods with microbenchmarks, 3D stencil and graph traversal
kernels, and a genome assembly application. Additional discussion
on the impact of the proposed work is presented in Section 7. In
Section 8 we discuss related work, and present concluding remarks
and ideas for future work in Section 9.
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Figure 1. Critical-section granularity. CS_ENTER and CS_EXIT
denote the protocol operations executed at the entry and exit of
a critical section, respectively. Atomic_OP refers to a lock-free
implementation of the operation OP.

2. Thread Safety in MPI
In this section we provide background information about thread
safety and its relation to MPI, and we discuss thready-safety efforts
in MPICH.

2.1 MPI Requirements for Thread Safety
The MPI standard defines four levels of thread
safety: MPI_THREAD_SINGLE, MPI_THREAD_FUNNELED,
MPI_THREAD_SERIALIZED, and MPI_THREAD_MULTIPLE. These
levels are listed in increasing order of thread safety. Given the
performance costs of thread safety, these levels allow adjusting the
MPI implementation to the needs of the target application without
incurring unnecessary overheads. In this work, we target the least
restrictive level, MPI_THREAD_MULTIPLE, which allows multiple
threads to call MPI routines concurrently.

Many aspects are considered when designing a thread-safe MPI
library. Critical-section granularity is an important parameter that
influences the degree of parallelism allowed for concurrent thread
executions. That is, the longer a critical section is, the more it incurs
serialization and thus hinders parallel performance. In prior work we
investigated different levels of critical-section granularity (Figure 1)
and their implications in terms of performance and implementation
complexity [6, 12]. In Figure 1, the granularity becomes increasingly
fine-grained from left (“Global”) to right (“Lock-free”). In practice,
most MPI implementations use a combination of “Global” and
“Lock-free”, with the latter applying to atomic updates of reference
counters that are required for managing internal MPI objects.

Regardless of the granularity, however, contention to enter a
critical section can still occur, and serialization is inevitable. Several
mechanisms, such as mutexes and spinlocks, have been developed
to implement mutual exclusion in order to protect a shared resource.
Such mechanisms usually differ in the way they handle contention,
the unnecessary lock/unlock overhead they incur in scenarios where
there is no contention, reducing synchronization granularities, and
time to transfer ownership of the lock. However, the serialization
order of the critical section and its effect on an MPI runtime
performance are less understood. To the best of our knowledge,
no existing work has studied thread synchronization from this
perspective.

2.2 Thread Safety in MPICH
In this section, we analyze thread-safety in MPI implementations
in the context of MPICH, though the analysis is largely true for
most other MPI implementations as well. On our platform, MPICH

thread safety is ensured by using a Native POSIX Threading Library
(NPTL) [22] global pthread mutex. Locking a default mutex in
NPTL is implemented as follows. First, a thread tries to acquire the
lock in the user space with an atomic compare-and-swap operation.
If not successful, the thread goes to sleep in the kernel space using
the FUTEX_WAIT operation of the futex (fast user-space mutex)
system call [13, 14]. The mutex holder wakes up at most one thread
in the futex queue, with the FUTEX_WAKE operation, when leaving
the critical section. The thread that wakes up again competes to
acquire the lock and the same process repeats if the lock acquisition
fails.

From an arbitration perspective two distinct arbitration policies
can be identified. In the kernel space the futex wake-up operations
are performed according to the kernel-scheduling policy. In the user
space, however, the policy obeys the fastest-thread-first rule. We note
two major implications. First, the overall arbitration is dominated
by the user-space policy since threads must try to acquire the lock
every time they leave the kernel space. Second, the current user
space arbitration model can yield to starvation since no mechanism
to maintain fairness is used. In Section 4, we analyze how such
starvation affects the MPICH runtime.

3. Testing Platform
All experiments reported in this paper were conducted on a com-
modity cluster with each node equipped with a dual-socket Intel
Nehalem processor where each socket contains 4 cores (simultane-
ous multithreading (SMT) is disabled). In addition, the cluster nodes
are interconnected with the Mellanox InfiniBand QDR fabric. The
detailed specification is summarized in Table 1. We used MPICH
3.2a1, which is configured to run with the Mellanox Messaging
Accelerator (MXM) interface.

Table 1. Target machine specification
Architecture Nehalem
Processor Xeon E5540
Clock frequency 2.6 GHz
Number of sockets 2
Cores per socket 4
L3 Size 8192 KB
L2 Size 256 KB
Number of nodes 310
Interconnect Mellanox QDR

4. MPI Runtime Analysis
In this section we first consider MPICH as a black box and perform
a simple performance evaluation and analysis in a multithreaded
scenario. We then present a detailed profiling in order to shed light
on the runtime inefficiencies. Unless specified otherwise, we bind
the first four threads to cores on the first socket and the rest to cores
on the second.

4.1 Initial Performance Evaluation
Here we present a simple evaluation that reflects the runtime
contention experienced with MPICH. We measure the point-to-
point throughput using a benchmark derived from osu_bw of the
OSU microbenchmarks suite [3]. We modified the benchmark to
fork a team of threads to perform the communication in parallel.
Since threads are not doing computation and MPICH uses a global
critical section, we expect to see serializaction in communication
which would result in no speedup. Figure 2a shows the message
rate as a function of message sizes and the number of threads
per node. We observe performance degradation proportional to
the number of threads reaching up to a four-fold reduction in
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Figure 2. Preliminary evaluation of multithreaded communication
performance

throughput. This experiment shows that there is contention in the
MPI runtime although it does not expose the primary source of
that contention. For large messages, network communication time
dominates rendering runtime inefficiencies negligible.

4.2 Impact of NUMA on Critical Sections
Here we present the results of our experiments on throughput
performance when threads are bound to cores on the same socket
(Compact) vs. when they are bound to cores on different sockets
(Scatter). The goal was to determine the effect of nonuniform
memory access (NUMA) on the runtime contention. The results
are shown in Figure 2b. We observe that throughput is 1.5 to 2-
fold worse with a scatter binding. This suggests that the runtime
contention is sensitive to NUMA. Given that mutex uses a compare-
and-swap operation in user space, we point out two major drawbacks
that are amplified by NUMA. First, the hand-off time1 between
threads is amplified by the intersocket latency. Second, since mutex
does not guarantee fairness, ownership of the lock may not be
passed fairly between threads. We speculate that NUMA biases
the arbitration in favor of the threads on the same socket—more
analysis on this speculation is presented in the Section 4.3.

4.3 Arbitration Fairness Analysis
The speculation of critical section arbitration being biased by
NUMA architectures, as mentioned in Section 4.2, stems from the
nonuniform proximity of threads to the memory hierarchy (caches
and memory). Specifically, the thread that releases the lock dirties
the cache line holding the lock, which makes it most favorable for
other threads closest to this cache to acquire the lock.

To assess the degree of unfair arbitration, we manually instru-
mented MPICH to trace the lock acquisition, processed the collected
data, and compared mutex to a fair arbitration to analyse to which
extent mutex biases the arbitration. We further considered the role
of the memory hierarchy by analysing two levels at which the ar-
bitration may be biased. At the core level, given T threads waiting
to enter the critical section, we estimate the probability Pc that the
same thread reacquires the lock successively. At the socket level,
given N sockets, Ti the number of threads on socket i waiting to
enter the critical section, we estimate the probability Ps that the new
owner of the lock runs on the same socket j as the previous owner.

1 The elapsed time between when a lock holder marks the lock as free and
when the next owner detects it

We statistically estimate these quantities for both mutex and a fair
arbitration as follows:

Pc = (
L�

l=1

Xl)/L

Ps = (
L�

l=1

Yl)/L

Where, for a mutex arbitration:

Xl =

�
1 if same owner as l − 1

0 else

Yl =

�
1 if same socket as l − 1

0 else

and for a fair arbitration:
Xl = 1/Tl

Yl = Tj,l/(
N−1�
i=0

Ti,l)

We discretized the execution at the lock acquisition level using the
subscript “l” in our equations. L denotes the total number of lock
acquisitions and Xl and Yl are the probability of electing a thread
running on respectively the same core and the same socket during
lock acquisition l. Tl and Ti,l represent respectively the total number
of waiting threads and the number of waiting threads on socket i
during lock acquisition l. We then analyzed the arbitration with the
point-to-point throughput benchmark on our dual-socket system
for each message size. We compute Pc and Ps using the previous
equations and derive the ratio of the mutex probabilities over the
fair arbitration probabilities that we refer as Bias Factors. Theses
factors indicate to which degree mutex biases the arbitration where
a fair arbitration would have a bias factor of 1. The results of our
analysis are shown in Figure 3a. We notice that mutex biases the
arbitration by 2x at the core level and 1.25x at the socket level on
average across message sizes. These results confirm our assumption
regarding the unfair arbitration and our belief that NUMA amplifies
the problem.

In the next section we relate the unfair arbitration to the MPI
implementation internals and thus explain the performance conse-
quences.

4.4 Message Requests Analysis
Before we discuss our profiling method, we first describe how
requests are handled inside the runtime. For simplification, we
consider only nonblocking receive requests. The upper part of Figure
3b shows the state diagram of a receive request. When a user calls
MPI_Irecv, a request is issued internally. If the corresponding
message was already received in the unexpected queue,2 then the
request is marked as completed. Otherwise, the request is posted
in the posted queue. Later, if a message arrives and matches the
request, it will be marked as completed. MPI_Wait or MPI_Test or
their derivatives will be called and block the caller until the request
is found completed and then gets freed.

The point-to-point throughput benchmark performs two-sided
nonblocking communication (MPI_Isend and MPI_Irecv) on a
window of 64 requests, and MPI_Waitall is used to wait for all
the requests in batches (bottom of Figure 3b). In our multithreaded
version each thread manages its own window. In order to make
progress on communication, all requests need to be detected as
completed and then freed before moving to a new window. In a
multithreaded scenario, threads can mark other threads’ requests
as completed inside the runtime, but only the thread that waits for
the completion of a request can free it. In addition, we do not tag

2 A queue for incoming message handlers without matching receive requests



messages so that threads can match any message from the same
process and communicator.

Our profiling method relies on the notion of dangling requests,
that is, requests that are completed but not yet freed. We track
the number of these requests at sampling intervals corresponding
to successive lock acquisitions. We then define our metric as the
average number of dangling requests during the program execution.
To make rapid progress on communication, threads should detect
completed requests early, free them, and generate new requests to
feed the runtime and the network. Thus, this metric should be kept
low. In fact, with fair arbitration one would expect this metric to be
low since requests will be issued in batches, communicated through
the network, and detected by the threads evenly. The profiling results
with the throughput benchmark are plotted in Figure 3c. We notice
that the number of dangling requests is high. The reason is that the
window of a starving thread will likely take longer to be filled with
completed requests and that the requests inside incomplete windows
are counted as dangling. A chain reaction will result by delaying the
next requests to be issued and thus their network communication
and the matching process. Consequently, the overall communication
progress will be slowed. In the next section we propose alternatives
to the original mutex-centered design with the goal of improving
the progress of threads inside the MPICH runtime.

5. Reducing Contention
The analysis in the previous section confirmed that the threads have
unfair access to the critical section. Here we explore two alternative
locking methods that take into account fairness and communication
progress in the arbitration policy.

5.1 First-In First-Out Arbitration
One alternative ensures fairness through a first-in first-out critical
section arbitration. In Section 2 we pointed out that changing the
scheduling policy in the kernel space does not affect the arbitration
in the user space. To alter the lock arbitration, we rely on a locking
method that is entirely implemented in the user-space through busy
waiting. Several locking methods, for example, MCS [19] and ticket
[18], establish a first-in first-out threads ordering in the user space.
Ahe recent study by David et al. showed that the ticket lock performs
well on most modern many-core architectures and in various con-
tention scenarios [9]. The principle behind the ticket lock is simple.
Each thread gets a ticket at the entry of a critical section and waits
for its turn. Figure 4 shows a basic implementation. We note that
only one atomic operation (fetch_and_increment) is needed. In
addition, the busy-wait condition does not involve extensive cache
traffic, unlike a compare_and_swap–based spinlock. Thus, our first
step is to use a ticket lock to implement the MPICH global critical
section.

After integration in the MPICH runtime, we compare the new
design to the mutex-based runtime by analyzing dangling requests.
The results are shown in Figure 5a. We observe that using ticket
keeps the number of dangling requests very low and, according
to our analysis, should have a positive effect on performance. We
investigated the effect of the degree of concurrency and the NUMA
effect by scaling the number of threads per core. The results are
shown for compact and scatter bindings in Figure 5b. In a compact
binding, the ticket method reduces contention compared with mutex
and improves the performance by 68% with four threads. With
scatter binding and two threads per node, the ticket method loses
slightly to mutex, suggesting that the ticket method incurs more
intersocket synchronization. Indeed, the mutex socket-level lock
monopolization reduces the amount of intersocket synchronization
compared with that of the ticket method. However, the benefit of fair
arbitration grows with the degree of concurrency. We conclude that
for a scatter binding and a low degree of concurrency, the overhead

int next_ticket;
int now_serving;

ticket_acquire_lock ()
{

my_ticket = fetch_and_incr(next_ticket );
/* Wait for my turn */
while(my_ticket != now_serving) ;

}

ticket_release_lock ()
{

now_serving ++;
}

Figure 4. Pseudo-algorithm for a ticket lock

of intersocket thread synchronization may outweigh the benefit of
fair arbitration. A common method for solving this issue is to spawn
one process per socket and to use threads within a socket to avoid
intersocket synchronization and data movements. In such cases, the
ticket method will be more effective than mutex. Figure 5c shows
throughput comparison between the two methods with respect to the
message size. We notice that the ticket method outperforms mutex
by 30% on average for messages below 4 KB. The gap between
the methods decreases until reaching 32 KB, from which point
performance differences become negligible.

5.2 Priority Locking Scheme
In this section, we describe our custom lock implementation, which
takes into account MPICH internal details to prioritize threads with
higher chances of making progress. We follow with an example
benchmark where this method is superior to a flat fair arbitration.

The main consequence of unfair arbitration is the possibility
that threads monopolizing the lock may not yield useful work while
penalizing a starving thread that can make progress. It is not trivial to
know a priori which thread is going make progress after getting the
lock, since this situation depends in many cases on external events
such as message reception. Nevertheless, we can identify unbalanced
execution paths within the runtime that yield different amounts of
work within the critical section. Our examination of the MPICH
runtime exposed two coarse-grained execution paths as shown in the
simplified flowchart of Figure 6a: (1) a main path that each thread-
safe routine implements differently and (2) a progress loop that some
MPI routines enter to poll for communication progress. For instance,
MPI_Irecv may allocate resources and enqueue the request in a
queue in the main path, while not going through the progress loop.
On the other hand, a blocking call such as a MPI_Wait will enter
the communication progress engine until the corresponding request
completes. An important observation is that threads in the main path
have more chances to yield useful work and thus are unlikely to
waste a lock acquisition. There is an exception, however, for some
MPI operations that may not make progress even in the main path
such as MPI_Test. The ticket lock gives threads equal chances to
acquire the lock independently from the path they take, for example,
in cases where threads are blocked at the entry of the main path
while waiting for threads in the progress loop to release the lock.
Such cases may also yield to wasted lock acquisitions.

Given these observations, we propose a custom locking scheme
that favors threads in the main path. This can be achieved by as-
signing a high priority to threads at the entry of MPI routines, then
lowering their priorities if they enter the progress loop. To avoid lock
monopolization, we ensure fair arbitration between threads of the
same priority. To achieve this goal without using a heavyweight lock-
ing mechanism, we implement the lock acquisition and relinquish
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Figure 3. Analysis of unfair arbitration and its consequence on communication progress in the point-to-point throughput benchmark
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Figure 5. Analysis and performance comparison between using mutex or the ticket lock with the throughput benchmark

operations with ticket locks (Figure 7). More specifically, we use
three ticket locks: ticket_H for the high-priority threads in the main
path; ticket_L for the low-priority threads in the progress loop;
and ticket_B for the high-priority threads to block low-priority
ones. We emphasize that using a ticket lock for the high-priority
threads to block the low-priority ones is necessary. Failing to do so
may generate lock monopolization in favor of low-priority threads.

A consequence of prioritizing the main path is feeding the
runtime with requests at a higher rate than with the ticket lock.
Our design also maintains a low overhead in case the prioritization
does not improve the communication progress. Thus, we expect
to have some cases with performance improvements and others
with performance similar to that of the flat ticket or with a slight
overhead. In the following experiment we performed an all-to-all
communication pattern named N2N. The benchmark is derived from
the multithreaded throughput benchmark with the exception that
each process sends/receives a continues stream of messages to and
from all the other processes. The results in Figure 6b show that the
priority lock improves the throughput of the N2N benchmark by 33%
on average for messages below 32 KB. Here, executing the main path

is more critical than with the point-to-point communication pattern.
In the point-to-point throughput benchmark, threads can match
any message since they all come from the same source, the same
communicator, and all have the same tags. In the N2N benchmark,
however, threads cannot match certain messages. For instance, if a
thread is blocked at the entrance of the main path while attempting to
post a receive for a certain process, another thread inside the runtime
may process the incoming message and put it in the unexpected
queue. As a result, the request matching is delayed, slowing the
issue and matching of requests and thus the overall communication
progress. Prioritizing the main path solves this issue by promoting
request generation.

6. Evaluation
In this section we compare the performance of the original design
with that of our methods using microbenchmarks, application
kernels, and a genome assembly application.
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6.1 Microbenchmarks
We begin by presenting results with multithreaded two-sided point-
to-point throughput and latency benchmarks. We also evaluate MPI
one-sided operations with asynchronous progress.

6.1.1 Two-Sided Communication
Figure 8 summarizes the results with throughput and latency
benchmarks of all methods using 8 threads per node. In addition,
we provide a comparison with single-threaded performance (i.e.
MPI_THREAD_SINGLE). The latency benchmark was derived from
osu_latency of the OSU microbenchmarks suite. We observe that
the throughput achieved with the ticket and priority methods are
similar (Figure 8a) and outperform mutex but are only 36% that of
single-threaded performance. Figure 8b shows that the ticket method
reduces latency by up to 3.5x over mutex. The priority method adds
around 11% overhead over the ticket method for small messages but
performs similarly with large messages. The latency with the ticket
method is 1.66x that of the single-threaded approach with messages
below 128 bytes. Surprisingly, however, multithreaded latency with
the ticket and priority methods is up to 3.6x better than with a single
thread for messages larger than 128 bytes. The reason is that the
multithreaded communication issues several requests inside the run-
time instead of an individual request, as in the single-threaded case,
and helps feed the network resources. For small messages, thread
synchronization and runtime contention hide this benefit.

6.1.2 Remote Memory Access with Asynchronous Progress
Remote memory access (RMA) provides a powerful model where
processes can access memory outside their address space and even
outside the physical node they are running on. This concept is at the
heart of many programming models, such as Global Arrays (GA)
[23], that offer a shared-memory view on top of distributed-memory
systems. Here we evaluate the performance of ARMCI-MPI [10], an
implementation of the Aggregate Remote Memory Copy Interface
(ARMCI) [24], which uses MPI one-sided operations. ARMCI-MPI
is an important interface that is used, for instance, by the chemistry
package NWChem [28].

/* High/Low priority ticket locks */
ticket_lock_t ticket_H;
ticket_lock_t ticket_L;
/* Lock to block lower priority */
ticket_lock_t ticket_B;
/* Let high priority go through */
int already_blocked;

high_priority_acquire_lock ()
{

ticket_acquire_lock(ticket_H );
if(! already_blocked)
{

ticket_acquire_lock(ticket_B );
already_blocked = true;

}
}

low_priority_acquire_lock ()
{

ticket_acquire_lock(ticket_L );
ticket_acquire_lock(ticket_B );

}

high_priority_release_lock ()
{

if(last high priority thread)
{

/* Let low priority pass */
ticket_release_lock(ticket_B );
already_blocked = false;

}
ticket_release_lock(ticket_H );

}

low_priority_release_lock ()
{

ticket_release_lock(ticket_B );
ticket_release_lock(ticket_L );

}

Figure 7. Priority locking pseudo-algorithm with two levels of
priority
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Figure 8. Performance comparison between mutex, ticket, priority,
and single-threaded execution with the two-sided point-to-point
throughput and latency benchmarks

We conducted an experiment in which one process does RMA
operations (put, get, and accumulate) to or from other processes
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Figure 9. Performance comparison of all methods when doing RMA contiguous data transfer using ARMCI-MPI with asynchronous progress

on contiguous data. This benchmark is single threaded; however,
we enabled MPICH asynchronous progress that triggers progress
on communication in the background by forking an additional
thread. Thus, when asynchronous progress is enabled, MPICH uses
internally MPI_THREAD_MULTIPLE since two threads are running
concurrently inside the runtime. The results of this experiment
are shown in Figure 9 when running with 8 processes. Although
only two threads are running concurrently, we notice a substantial
performance difference between mutex and our methods. The reason
is that the progress thread, which is most of the time in the progress
loop, heavily monopolizes the lock since it does not do useful work
most of the time. Thus, enforcing fairness produces a tremendous
speedup. We also note that our methods improve performance up to
5x over mutex. Similar to the two-sided communication results, the
difference between ticket and priority is not perceptible.

6.2 Kernels
In this section we evaluate some computational kernels often
encountered in real applications.

6.2.1 The Graph500 Benchmark BFS
The Graph500 benchmark is a communication-intensive code used
for ranking large-scale systems in terms of graph processing capa-
bilities [4]. It is composed of multiple kernels, but we consider only
breadth-first search (BFS) in this work. More specifically, the base-
line algorithm is an MPI-only level-synchronized BFS that relies on
nonblocking point-to-point MPI communication for data exchanges.
We do not discuss the details of the BFS reference implementa-
tion here; readers can refer to the work by Suzumura et al. [26]
for a detailed description. Our hybrid MPI+OpenMP implementa-
tion extends the MPI-only design by allowing multiple threads to
cooperate for computation and independently communicate with
remote processes. Moreover, both computation and communication
are lock-free and atomic-free, inspired by the single-node imple-
mentation of Chhugani et al. [8]. Each thread maintains outgoing
buffers corresponding to each remote process and one buffer for in-
coming messages. Threads repeatedly check for completed requests
using MPI_Test and eventually do computation and generate new
outgoing requests.

First, we evaluated the performance of our implementation on a
single node (Figure 10a). The problem size is expressed by the
scale of the graph in terms of number of vertices.3 We notice

3 We use a logarithmic scale: scale = log2 (#vertices)

that our implementation scales linearly up to 4 cores and loses
10% efficiency with 8 cores. The loss in efficiency is likely due to
intersocket data movements since our implementation is not socket-
aware. We conducted simple thread-scaling experiments similar
to those of Section 5.1. Here, the difference with the throughput
benchmark is that threads are doing computation in addition to
MPI communication. Consequently, the time spent by one thread
inside the MPI runtime may overlap with the computation of
another thread. Combined with a parallelized computation, speedups
over a single-threaded execution may occur. Indeed, the results
in Figures 10b show that speedups do occur when threads are
located on the same socket and a fair lock is used with up to 4
threads. With mutex no speedup is apparent, suggesting that the
unfair arbitration generates contention and consequently wastes the
speedup of the parallel computation. When both sockets are involved,
thread synchronization across sockets is an obvious bottleneck;
but unlike mutex, our methods avoid slowdowns compared with
using a single-threaded method. Figure 10c shows the results of a
weak-scaling performance comparison of all methods. We notice
performance improvements close to 2x for our methods. The priority
method does not show signs of superiority in this case. We explain
this by the fact that threads do not busy wait in the progress loop
since they use only immediate MPI_Test calls. That is, all threads
always have the same high priority inside the runtime.

6.2.2 3D 7-Point Stencil Kernel
Stencil codes are a class of iterative methods found in many sci-
entific and engineering applications. Here, the problem domain is
iteratively updated by using the same computational pattern, called a
stencil. We implemented a hybrid MPI+OpenMP 3D 7-point stencil
code that simulates a heat equation. Our decomposition methodol-
ogy tries to reduce the internode communication by dividing the
domain along all dimensions, while we avoid splitting the process
subdomain along the most strided dimensions for better cache perfor-
mance. The basic communication method is to perform nonblocking
send/receive operations at each iteration followed by MPI_Waitall
to wait for all the requests. Common hybrid stencil codes typically
require the MPI_THREAD_FUNNELED threading support, where the
computation is done in parallel by a team of threads but only the
main thread is driving the communication. In our implementation,
all threads independently do computation and communication and
synchronize only at the end of an iteration.

We conducted a strong-scaling experiment on 64 nodes, using
all 8 threads per node, while increasing the problem size. The
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Figure 10. Performance comparison of all methods with the Graph500 BFS kernel. In (a) the single-node results do not involve MPI processes.
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Figure 11. Strong-scaling comparison of all methods with the 3D
7-point stencil kernel

results in Figures 11a and 11b show that our methods improve
performance for relatively small problems (<= 1 MB per core). The
reason is that, as demonstrated by our microbenchmarks, the runtime
contention is more critical for relatively small messages; in addition,
the computation takes more time than does the communication,
as shown in Figure 11b. Arguably, the benefit of our methods is
less pertinent for stencil applications on this typical platform, since
bigger problems are often run in production. Nevertheless, given the
increase in core counts and the trend of reduced memory per core,
we expect that our solutions will play a more important role when
running stencil applications on platforms with less memory per core,
such as current systems equipped with many-core accelerators and
future systems. We note that the priority locking does not improve
performance over the ticket lock method. The reason is that since
threads have few requests (8 receive and send operations), the rate at
which the critical section is entered from the main path is negligible
compared with polling for communication in the progress loop. That
is, most threads will fall back to low priority, which is equivalent to
the ticket method. As a result, giving priority to the main path has
negligible effect.

6.3 Genome Assembly Application
Genome assembly is an important process for many fields, such
as biological research and virology. It refers to the process of
reconstructing a long DNA sequence, such as the chromosome of
an organism, from a set of reads (short DNA sequences) by aligning
and merging them together. The reads originate from automated
sequencing machines, which can generate billions of reads to be
processed by assembly applications. As a result, these applications
exploit high-performance computing systems and explore efficient
parallel solutions in order to cope with the ever-increasing generated
sequencing data.

We evaluated our methods using the SWAP-Assembler [21],
an application that targets processing massive sequencing data on
large-scale parallel architectures. It abstracts the genome assembly
problem with a multistep bidirected graph and relies on a scalable
framework, SWAP (Small World Asynchronous Parallel) [20], to
perform computational work in parallel (Figure 12a). The SWAP
framework is implemented on top of MPI to ensure interprocess
communication. Each process spawns two threads, one for sending
and another for receiving data from other processes using blocking
MPI_Send/MPI_Recv operations. We performed a strong-scaling
experiment with a synthetic sequence of 1 million reads, where each
read contains 36 nucleotides. The results are shown in Figure 12b.
For each data point we used four processes per node and two threads
per process to utilize all cores. We observe an average 2x speedup
independent of the core count. We note that this improvement in
processing time did not incur any modification in the application or
the underlying hardware. This fact is important for applications in
production environments, since no additional investment is required
to speed up the time to solution.

7. Discussion
In our introduction to thread-safety in Section 2, we considered a
critical-section granularity as orthogonal to how it is arbitrated. That
is, regardless of the granularity, resource acquisition–related issues
such as starvation may occur, and appropriate arbitration methods
will be required. Thus, we believe that combining those approaches
will have a synergistic effect on reducing the runtime contention.
However, a cost-effectiveness study of both methods on the same
testbed is still warranted. Such a study can guide the development
process of a thread-safe library. A possible model would be to start



(a) Genome assembly process in SWAP-Assembler [21]
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Figure 12. Description of the genome assembly process and performance of the SWAP-Assembler using all methods

with a global critical section, explore effective arbitration methods,
reduce granularity if high contention persists, and repeat the process.

In addition to the lower overhead of the ticket lock compared with
the priority lock (fewer atomic operations), cases may arise where
the ticket method will perform better because of fair arbitration.
MPI runtimes are sensible to the number of queued requests because
the associated internal data structures and algorithm complexity are
proportional. Since the priority lock gives high priority to feeding
the runtime with requests, ticket may reduce the rate of issuing
requests and thus their associated overhead. However, there exists
another related issue that affects the cache performance of the
MPI runtime and applications. The order in which threads acquire
resources can affect the data locality of MPI internal structures, such
as shared queues, and thus runtime performance. Similarity, it can
also affect the computation part of an application. Assuming that
the aggregated threads working sets cannot all fit in the last level
of cache, critical section arbitration might impact the amount of
data reuse and cache line evictions. These intricacies require further
analysis and experimentation.

The idea of using a socket-aware high-priority method that
prioritizes threads on the main path and the same socket before
moving to another socket seems attractive for reducing intersocket
synchronization. However, this approach may lead to starvation.
For instance, if the user issues nonblocking operations and waits
for them by polling with MPI_Test, threads on the same socket
will monopolize the lock. We also did not consider a mutex-based
priority arbitration. Changing the kernel scheduling is not effective,
as discussed in Section 2. Using three mutex locks to establish a
two-level hierarchy, similar to our priority lock, is also not effective
because mutexes do not guarantee fairness within the same priority
class and, worse, low-priority threads can monopolize the lock over
the high-priority threads.

8. Related Work
Several researchers have addressed the issue of thread-safety chal-
lenges in MPI implementations. Gropp et al. [16] presented an
exhaustive thread-safety requirement analysis of MPI functions and
their implementation issues. Performance implications of thread
safety were exemplified with an efficient algorithm for generating
context ids. Thakur et al. also proposed a method to obtain insight

into the performance of multithreaded MPI implementations [27].
The method consists of a test suite composed of multiple bench-
marks that simulate typical application scenarios. This method is
useful for comparing different multithreaded MPI implementations
or measuring the impact of certain optimizations, such as using
a dedicated progress thread. However, it gives only a general per-
formance feedback and does not pinpoint the exact performance
bottlenecks.

Efficiency and thread safety can be orthogonal objectives that
are difficult to achieve at the same time when designing a software
library. Goodell et al. showed that concurrent accesses from multiple
threads to MPI objects can be a bottleneck when using reference
counts [15] and proposed more scalable solutions. Hoefler et al.
identified that multithreaded MPI messaging involving MPI_Prob
is thread unsafe and that a conventional lock-based implementation
is not scalable [17]. They proposed an efficient solution that goes
beyond the implementation level and requires changing the MPI
standard.

The tradeoff between using threads for efficient intranode com-
putation and relying on multiple processes to drive the network
makes tuning a hybrid implementation a difficult task. For instance,
application developers try to tune the number of number of pro-
cesses per node and the number of threads per processes in order to
improve performance. This challenge, thread-safety overheads, and
a number of programmability considerations pushed the community
to consider extending the MPI standard to better support multi-
threaded communication. As a result, concepts such as MPI End-
points emerged as an attractive solution, which ensures contention-
free multithreaded communication through independent endpoints
[11]. However, MPI Endpoints are not yet part of the MPI standard,
and no MPI implementation supports this feature at the moment of
this writing.

A large body of work has been dedicated to efficient synchroniza-
tion on multiprocessors. Busy-waiting methods, such as spinlocks,
were criticized for their heavy usage of memory barriers and induced
coherency traffic. Researchers have studied traditional spinlocks,
such as TAS, TTAS, and ticket lock, and proposed alternative locks
that spin on local cache lines (e.g., MCS [18]). A recent study by
David et al. [9] compared synchronization constructs, including
spinlocks, queue-based locks, and software transactional memory



on modern SMP architectures. One of their main conclusions was
that the ticket lock, despite its simplicity, performs well on most
platforms and in various contention scenarios. Although fairness
was one of the goals addressed by previous works, their main target
was to study the performance of the methods in a general context,
thus ignoring arbitration policies that could enhance a more specific
workload such as the case with communication runtimes.

9. Conclusion
We addressed in this work the MPI runtime inefficiency with
multithreaded communication. Our analysis demonstrated that one
of the major drawbacks is unfair arbitration inside the MPI runtime
caused by using a mutex-based critical section. We then addressed
this issue by ensuring FCFS access to the critical section. In addition,
we proposed another method that biases the arbitration to favor
threads with higher probability of making progress. Our results with
various benchmarks, application kernels, and a genome-assembly
application showed up to 5-fold improvements over mutex.

Despite those benefits, the performance difference between our
methods and a pure-MPI setting with a simple throughput bench-
mark suggests that room for improvement remains. We are currently
investigating even more flexible methods that target reducing wasted
time by the threads inside the MPI runtime. One example is selec-
tive thread wake-up triggered by events such as message arrival. We
are also considering combining fine-grained critical sections with
custom lock arbitrations.
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