Analyzing MPI-3.0 Process-Level Shared Memory:
A Case Study with Stencil Computations

Xiaomin Zhu,* Junchao Zhang,T Kazutomo Yoshii, Shigang Li} Yunquan Zhang,i Pavan BalajiT

*Shandong Computer Science Center (National Supercomputer Center in Jinan), China,
Shandong Provincial Key Laboratory of Computer Networks, China, zhuxm@sdas.org
T Argonne National Laboratory, USA, {jczhang, yoshii, balaji} @anl.gov
Hnstitute of Computing Technology, Chinese Academy of Sciences, China, {shigangli.cs, yunquan.cas} @ gmail.com

Abstract—The recently released MPI-3.0 standard introduced
a process-level shared-memory interface which enables processes
within the same node to have direct load/store access to each
others’ memory. Such an interface allows applications to declare
data structures that are shared by multiple MPI processes on the
node. In this paper, we study the capabilities and performance
implications of using MPI-3.0 shared memory, in the context of a
five-point stencil computation. Our analysis reveals that the use
of MPI-3.0 shared memory has several unforeseen performance
implications including disrupting certain compiler optimizations
and incorrectly using suboptimal page sizes inside the OS. Based
on this analysis, we propose several methodologies for working
around these issues and improving communication performance
by 40-85% compared to the current MPI-1.0 based approach.

Keywords-MPI-3.0, process shared memory, intranode commu-
nication, stencil, multicore

I. INTRODUCTION

The Message Passing Interface (MPI) [1] is the de facto
parallel programming model in high-performance computing.
It provides a message-passing application program interface
on distributed-memory machines. There are a few implemen-
tations of the MPI specification. Some are open-sourced and
freely available.

As we enter into the “big data” age, communication is
becoming increasingly important. Moreover, communication
is expected to make up a large part of power consumption in
the future [2]. Thus, the implementation and optimization of
MPI are even more critical.

MPI-3.0 standard recently introduced shared memory in-
terfaces for intranode communication. In this paper, we use
five-point stencil computations, which is also used in previous
work [3] [4], as a case study to show the usage, overhead,
and efficiency of MPI-3.0 shared memory. We introduce how
to use MPI-3.0 shared memory to implement five-point stencil.
Also, we analyze the overhead and find that the use of MPI-3.0
shared memory has several unforeseen performance implica-
tions including disrupting certain compiler optimizations and
incorrectly using suboptimal page sizes inside the OS. We then
propose several methodologies for working around these issues
to get rid of the overhead. As a result, the communication
performance is improved by 40-85% compared to the current
MPI-1.0 based approach, which is 10-60 % compared to the
previous work. Our contributions in this paper include:

1) Analysis of the effect of using MPI-3.0 shared memory
on compiler optimizations, and methodologies to over-
come the negative effect.

2) Analysis of the overhead of computation over shared
memory, including cache misses / memory conflicts
due to data access pattern, page faults / Translation
Lookaside Buffer (TLB) data misses due to page size.
Solutions to these issues are presented.

In this paper, we use MPI-3.0 to indicate the shared-
memory implementation and use MPI-1.0 to represent the
MPI_Send/Recv implementation for intranode communica-
tion. The remainder of this paper is organized as follows. In
Section II, the background of this paper is introduced, and then
the implementation details are given in Section III. In Section
IV we analyze the overhead and give solutions to avoid them.
Section V shows the improvement on communication from
using shared memory. Related work is introduced in Section
VI, followed by conclusions and discussions of future work
in Section VIIL.

II. BACKGROUND
A. Stencil

Stencil computation is a fundamental algorithm used in
many applications. It involves a large number of iterations,
in each of which the value of every element in a matrix is
updated using values of its neighbors (e.g., for a 2D five-
point stencil, each element has four neighbors: up, down, left
and right), as shown in Figure 1. In a parallel distributed
memory implementation, the local matrix on each process is
usually augmented to include buffers to store values of remote
elements on neighbor processes. These buffers are called ghost
area. Figure 1 shows a matrix partitioned by four processes
by row, as well as the ghost area. We can see that to update
element A we need the value of element B, which belongs to
another process. In order to use the value of B, communication
is carried out before updating, and the value of B is copied
to the local memory space, shown as B’ in the figure.

B. Multicore, Many-Core, and Intranode Communication

In recent years, many vendors have tried to improve the
performance and efficiency of processors by increasing the
number of cores per CPU, and multicore CPUs are ubiquitous
and equipped on almost all supercomputers. With the increase

A | Process 0 |
B
| Process 1 |
| Process 2 |
| Process 3 |

Fig. 1: Element update and ghost area of five-point stencil

in cores in a processor, communication among intranode cores
plays an increasingly important role. Indeed, currently 50% of
the communication of most distributed applications is due to
intranode communication [5].

However, MPI abstracts the programming environment of
distributed-memory systems and assigns different ranks to
processes inside the same shared-memory node. This operating
system-level separation of processes forces MPI to perform un-
necessary memory copying for communications within shared-
memory nodes, which is suboptimal.

To address this situation, MPI implementors have focused
on optimizing the intranode communication in the most gen-
eral communication functions, MPI_Send/Recv, and some
optimizations have been integrated into the current MPI imple-
mentations. For example, the Network Interface Card (NIC)
loop-back without injection to the network method [6] is
used if the NIC detects that the destination rank is on the
same physical node. Nevertheless, two copy operations are
necessary for each message. The sender copies from its private
send buffer into a first-in-first-out (FIFO) queue or shared-
memory region, and the receiver copies data out into its private
receive buffer.

Clearly, a message-passing model based on such a memory
copy approach is still suboptimal in terms of memory, energy,
and time [7]. Therefore, other approaches for reducing the
memory copy times have been proposed. For example, a
one-copy method was proposed in [6][8]; and recently a
zero-copy technique was proposed in [7], which passes a
pointer from the sender to the receiver instead of copying the
data. These optimizations help improve the performance of
communication. However, data inside the same node can use
hardware shared-memory support, and they should be shared
spontaneously without any data copy. Moreover, although the
zero-copy method was implemented, it has yet been integrated
into any MPI implementations; and it has an overhead for
buffer allocation and freeing for each message.

In the recent MPI-3.0 standard [1], process-level shared-
memory interfaces are introduced as a part of the improved
one-sided communication, i.e., remote memory access (RMA)
interfaces. With such interfaces, processes in a shared-memory
domain (usually a node) can access each other’s memory
with direct load/store instructions. This approach offers the
possibility that programmers can have true zero-copy intranode
communication (We actually focus on doing no communica-
tion at all and instead use the shared memory capabilities)
if the data structure of the algorithm allows direct access to
remote memory without copying data to the structure first.
Note that MPI-3.0 RMA has two pieces. The first is put/get
like operations for data movement. The second is process-level
shared memory which we are focusing on. It does use the same
base infrastructure (window creation and epoch capabilities),
but not the put/get operations.

There are some specific kernel support for direct memory
access in some systems, and on traditional Linux, LiMIC [6]
and KNEM [9] kernel modules also work. However, with MPI-
3.0’s new shared memory interfaces, we get this capability in
a portable manner.

C. MPI-3.0 Shared Memory

Our objective is to use MPI-3.0 shared-memory interfaces
to replace MPI_Send/Recv for intranode communication
without any data copy. The way to use shared-memory is as
follows.

1) Communicator Split: Since MPI-3.0 shared memory
works only for processes in the same node, we need to
distinguish intranode processes from internode ones. Calling
MPI_Comm_split_type (comm, split_type, ...,
newcomm) with split_type = MPI_COMM_TYPE
_SHARED serves our needs. It splits the communicator
comm, and returns a shared-memory communicator of which
the current process is a member through the output parameter
newcomm. Then communication among processes belonging
to the same communicator can be implemented by the
following MPI-3.0 shared-memory functions.

2) Memory Allocation: We can use the new shared-memory
communicator newcomm in the MPI_Win allocate
_shared(...,info, newcomm, baseptr, win)
function to allocate memory. It is a collective function, and
returns the address of the memory in argument baseptr.
Please see the MPI-3.0 standard [1] for details. The memory
allocated in such a way allows direct accesses from another
process, in either load or store instructions, with a pointer
returned by the windows query function shown next.

3) Windows Query (pointer query): The pointer query
function is called MPI_Win_shared_query (win,
rank, ..., baseptr). The last parameter baseptr
is an output argument pointing to the shared memory of
the target process, which can be used to access the remote
memory as if it was local. If the shared memory is allocated
contiguously, one process can even access another process’s
shared memory based on offset to its private pointer initialized
in the MPI_Win_allocate_shared function.

4) Synchronization and Data Consistency: Using shared
memory for communication generally needs an explicit syn-
chronization, which otherwise is implicitly implemented in the
MPI_Send/Recv mechanism. Programmers are responsible
for the synchronization, in other words, the data consis-
tency of the two communicating processes. This is imple-
mented by MPI_Win_sync and MPI_Barrier functions.
MPI_Win_sync synchronizes the private and public win-
dow copies, and MPI_Barrier synchronizes the processes
sharing the memory. MPI_Barrier is easy to use, but it
requires synchronization among all shared-memory processes.
Arguably, process synchronization can be implemented in
other ways, such as shared flag checking, synchronizing only
with necessary processes.

III. IMPLEMENTATION

We use the MPI-3.0 shared memory functions introduced
above to implement the five-point stencil computation. Since
our goal is zero-copy and direct load/store, we remove the
ghost region, which is in fact a receive buffer. Our approach
enables the data of the target process to be accessed directly
with the pointer to the shared memory, and the memory
consumption is bx x by instead of (bx + 2) x (by + 2) (for
partition on both axes), where bz and by are height and width
of the matrix, respectively.

This approach does add programming difficulties and com-
plexity, since the element update computation is not uniform
and particular treatment must be paid to the border ele-
ments that demand shared-memory access. The pseudo-code is
shown in Algorithm 2, following Algorithm 1 of the MPI-1.0
version. As shown in the numbered lines, the algorithms differ
in memory size, matrix offset, communication, and computa-
tion. In the MPI-3.0 algorithm, we divided the whole matrix
into several parts with partition along the y-axis; then each
process has only “north (up)” and “south (down)” neighbors,
so the top and bottom row should be handled separately. If the
partition is done on both axes, the four corner elements need
to access the memory of two other processes.

IV. ANALYSIS AND OPTIMIZATION

We implemented the algorithm with the objective of better
communication performance; this improvement will be shown
in next section. Here we describe the results of profiling the
computation part, namely, the element update part; and we
present solutions we found to avoid the overhead.

We conducted overhead analysis of this section and perfor-
mance evaluation of next section on three platforms (Fusion,
Blues and MIC) at Argonne National Laboratory, whose con-
figurations are shown in Table I. Also, we used a workstation,
whose configuration is shown in the last row of Table I, for
the page size related analysis.

Specifically, we found a performance gap between the MPI-
1.0 and MPI-3.0 versions, especially when the matrix size
was large. We did a series of profiling studies and determined
that three factors were contributing to the performance gap:
compiler optimizations, cache misses, and page faults.

Algorithm 1: MPI-1.0 implementation
Data:
Matrix size : bx, by
Iteration: times
Result:
Heat Value: heat
begin
heat < 0.0;
1 double * mem <+
malloc(2 x (bx + 2) x (by + 2) x sizeof (double));
double * aold < mem;
2 double * anew < mem + (bx + 2) x (by + 2);
for iter < 0 to times — 1 do

/x Some Intialization to aold */
/+ Communication x/
MPI_Send/Recv;

4 for i + 1 to bx + 1 do

for j«— 1toby+1do

anewli, j] = LG;O[Z’J] +
(aold[i—1,j]4aold[i+1,j]+aold[i,j—1]+aold[i,j+1])
8.0

b}

heat+ = anewli, j;

| Swap(anew, aold);

return heat,

To address these factors, we abstracted the algorithm to a
simpler one, which just assigns a value to each element of an
array instead of the stencil computation. The code is shown
in Algorithm 3. The only difference between the MPI-1.0 and
MPI-3.0 implementations is the memory-allocating methods,
numbered 1 and 2 in the algorithm. We did the profiling on the
simple code first, and then extended it to the complex stencil
computation.

A. Compiler Optimizations

The experiments in this part were carried out on Blues.
Note that for the simple code, we allocated memory of
the same size in codes of MPI-1.0 version and MPI-
3.0 version, which is different from the stencil code be-
cause of the removal of the ghost area. In the MPI-
3.0 code, the shared memory address is got by the
local process with MPI_Win_allocate_shared, and
by other remote processes with pointers returned by
MPI_Win_shared_query. In the MPI-1.0 code, the mem-
ory is allocated by malloc. Our initial expectation was that
compiler should generate the same binary code and have
the same performance. However, in practice we found that
even with the same memory size, the two memory allocation
methods have quite different performance impacts on the same
computation. We predicted this difference was partially due to
compiler optimizations.

With further analysis, we found the prototype of the
malloc function in glibc has a special attribute decoration,

TABLE I: Evaluation Platforms

Name CPUs in a Node and Type Memory Bandwidth | Cores | Linux Kernel | MPI Version
Fusion 2 X 4-core Intel Xeon E5540 @ 2.53GHz 25.6 GB/s 8 2.6.18 MVAPICH2-2.0[10] with Intel icc 13.1.3
Blues 2 x 8-core Intel Xeon E5-2670 @ 2.60GHz 51.2 GB/s 16 2.6.32 MVAPICH2-2.0 with Intel icc 13.1.3
MIC 1 x Intel Xeon Phi 7120a @ 1.238 GHz 352 GB/s 61 2.6.38 Intel MPI5.0 [11] with gcc 4.4.7
Workstation 2 x Intel Xeon CPU X5650 @ 2.66 GHz 32 GB/s 24 3.11.0 MPICH3.1.3 [12] with gcc 4.8.1

Algorithm 2: MPI-3.0 implementation
Data:
Matrix size : bx, by
Iteration: times
Result:
Heat Value: heat
begin
heat < 0.0;
double * mem;
1 MPI_Win_allocate_shared(2 x bx x by x

sizeof (double), ,mem,);
double * aold + mem;
2 double x anew <+ mem + (bx X by);
for iter <+ 0 to times — 1 do
/* Some Intialization to aold */
/* No Communication here */
3 MPI_Win_sync;
MPI_Barrier;
4 Computing :

— Update first row

— Update middle rows

— Update last row
Swap(anew, aold);

return heat;

__attribute_ ((_malloc__)). This is a GCC ex-
tension and is supported by both GNU and Intel compilers.
It tells the compiler that a function is malloc-like, i.e., that
the pointer P returned by the function cannot alias any other
pointer valid when the function returns, and moreover no
pointers to valid objects occur in any storage addressed by
P. Using this attribute can improve optimization. Functions
like malloc and calloc have this property because they
return a pointer to uninitialized or zeroed-out storage. Func-
tions like realloc do not have this property, as they can
return a pointer to storage containing pointers. In contrast,
MPI_Win_allocate_shared returns the memory allo-
cated through the baseptr argument instead of the return
value, and hence does not have this attribute. For safety, the
compiler has to assume that the returned pointer might alias
other valid pointers, and even more the pointer might point to
other pointers. Thus the compiler is conservative at optimiza-
tions. To overcome this defect, we found a simple approach is
to add the restrict keyword provided by the C Standard
to the pointer passed to MPI_Win_allocate_shared, as

Algorithm 3: A simpler code with memory
allocated either with MPI-1.0 malloc or MPI-3.0
MPI Win_allocate_shared

Data:

Size : n
Result:

Time cost: time
begin
heat < 0.0;
double * mem;
/* Select either MPI-1.0 or MPI-3.0

memory allocation method */
1 MPI-1.0: mem + malloc(n x sizeof(double));
2 MPI-3.0: M PI_Win_allocate_shared(n x
sizeof(double), ...,mem, ...);
time -= currenttime;
double temp = 0.0;
for iter <+ 0 ton —1 do

memliter] < (double)iter;

L temp += memliter];

time += currenttime;
print(temp);
return time;

shown in the bottom of Algorithm 4. The restrict keyword
conveys the compiler the same information that the pointer
does not alias other valid pointers. For the simple code, we also
found another approach (shown in the middle of Algorithm 4),
that is to declare a second pointer (mem?2) after shared memory
allocation and assign mem to mem2, which guarantees mem2
will never point to itself, and thus the compiler can optimize
the for loop.

With the Intel icc-13.1.3 compiler on Blues, we veri-
fied the above analysis by passing -vec-reporté6 and
-par—-report to icc. Without the restrict keyword
or the alias mem2, icc reported “loop was not vectorized:
existence of vector dependence”, and pointed out the reason
was the flow and anti-dependence on the mem variable in
the loop body. With the restrict keyword or the alias
mem?2, the compiler reported “LOOP WAS VECTORIZED”.
Vectorization has a big performance impact. We tested the
simple and stencil codes with or without these two approaches
with one process. The performance results are show in Figure
2, where the execution time are normalized to that of the MPI-
3.0 version. We can see the huge improvement (up to 42%)

Algorithm 4: Decoration of shared memory pointers
Data:
Item size : n
Original begin
double x mem;
/+ shared memory allocation,
simplified afterwards */
MPI_Win_allocate_shared(n x
sizeof (double), ..., &mem, ...);
for iter < 0 to n — 1 do
L memliter] < (double)iter;

Alias begin
double * mem;
MPI_Win_allocate_shared(...&mem...);
1 double x mem2 < mem;,
for iter + 0ton —1 do

L mem2[iter] « (double)iter;

restrict begin
2 double * restrict mem;
MPI_Win_allocate_shared(...&mem...);
for iter +— 0 ton —1 do

| memliter] < (double)iter;

with usage of the restrict keyword or alias variables. The
performance improvement with the stencil code is not as large
as the simple code, likely because the stencil computation is
more complex than the simple code. In a word, the restrict
keyword and the alias approach do help compiler optimizations
for some relatively simple and regular computations.

However, we found a gap still existed between the MPI-3.0
and MPI-1.0 versions in the memory initialization part. Note
that the initialization time was not included in data shown in
Figure 2. This gap also existed in the computation part (i.e.,
the loop body), though it was small. We will analyze the gap
in the following sections.

Comparision on the different computations
on memories with different declarations

100
EMPI-1.0
s¢ 80
[} -
$ 60 E MPI-3.0
L
[
S 40 - : MPI-3.0+
5 .
e alias
20 J . “ MPI-3.0+
0 || restrict

simple stencil

Fig. 2: Performance comparison with/without restrict keyword
and alias

B. Cache Misses and Memory Bank conflicts

Another factor we think responsible for the performance
gap is cache misses and memory bank conflicts. These two
factors are related to data size, data layout, and data access
patterns. According to the data access pattern of the five-point
stencil, we can easily get the data access stride for one process
and among all processes. Since code in the MPI-3.0 version
removes the ghost area, the data access pattern is different
from that in MPI-1.0 version. For example, for a matrix of
size m x n, the relative offsets of the left, right, up and down
neighbors of an element are —1,1, —(m + 2) and (m + 2)
in the MPI-1.0 code, whereas for the MPI-3.0 code, they are
—1,1, —m and m, respectively. In terms of parallel data access
pattern, we can see that the stride between two processes are
multiples of m x n for MPI-3.0 and multiples of (m + 2) x
(n + 2) for MPI-1.0.

It is better if the data access stride is not multiple of the
cache line size; otherwise, it may generate more cache misses.
Also, it is better that different processes do not access the
same memory bank simultaneously. Since the cache miss and
memory bank conflict are different with different size, we
profiled different matrix sizes. In theory the performance of
MPI-1.0 and MPI-3.0 should be the same as a whole. But for
almost all cases, MPI-1.0 outperforms MPI-3.0 (shown in the
next subsection). Note that for stencil problems, many data
padding and re-layout techniques (e.g. [13] [14]) have been
proposed for reducing cache miss and memory bank conflict;
further discussion is out the scope of this paper.

C. Page Sizes

MPI-3.0 shared-memory functions allocate shared memory
by the MPI_Win_allocate_shared function, and this
is the only difference from the regular memory allocation
method. In the aforementioned profilings, we found that this
affected the computation performance in both the simple code
and the stencil code when the allocated memory size was over
2MB. We therefore turn our focus to page sizes, which will
affect page faults and TLB data misses (TLB misses for short).

Note that, we did profiling on Blues to find out what the
problem is in the “Profiling with the Simple Code” part below.
While the “Solutions” and “Performance Improvement” parts
were conducted on the Workstation listed in Table I, which
we have root privilege as required by some experiments.

1) Profiling with the Simple Code: Using the built-in perf
command and PAPI [15] we profiled the number of page faults
and data TLB misses. We found that the MPI-3.0 version
experienced more page faults and TLB misses than the MPI-
1.0 version.

To count the page faults and data TLB misses accurately,
we used the simple code as before. In addition, we used the
underlying mmap function directly to implement the abstracted
simple code. The only difference is that malloc calls anony-
mous mmap whereas MPI-3.0 shared memory calls file-backup
mmap via /dev/shm. We then separate the first-time access
to the memory from the subsequent accesses in order to see
page faults, which are shown in Figure 3. We can see the

trend of page faults with increasing memory size. An obvious
breakpoint is shown in the figure when the memory size is
2MB for MPI-1.0, while for MPI-3.0 it increases steadily.

—~<MPI-1.0

» > © g D © o D> o A > o
S R A AR e SR RV N
VN7 AT GV S P P F SO
RGN S R PR g g
. S AN
Memory Size(Bytes)
MPI-1.0
140000
120000 - MPI3.0
100000
& 80000
£)
i 60000
40000
20000 //
0 L——ﬁf——a———c——1——ﬁ:——u——iﬁ—~¢——ur—ir——£”¢

T S S N S S A S

g R g P gt
W o NS &

SR SR AN RS

Memory Size(Bytes) °
MPI-3.0
Fig. 3: Page faults with increasing memory size

& e el
AR
&P S

1000

900 x
800 —~<MPI-1.0
700

$ 600
£ 500
= 400
300
200

100

N
o\ 2 O o
N K
Memory Size(Bytes)

MPI-1.0

140000
120000
100000
w
$80000
i 60000
40000
20000

~©-MPI-3.0

Memory Size(Bytes)
MPI-3.0

Fig. 4: Data TLB misses with increasing memory size

2) Explanation: Based on the profiling results, especially
the breakpoint at memory size 2 MB, we conjectured that the
cause was the different page sizes. Our subsequent analysis
confirmed this, as follows.

MPICH shared-memory functions use mmap to allocate
memory by default, while malloc also calls mmap internally
for larger buffer sizes. ! The mmap function only creates
a new range within the process’s virtual address space; it
does not immediately allocate physical memory unless the
MAP_POPULATE flag is specified. When the user-space
program attempts a write access on an unpopulated page for
the first time, the processor raises a page fault interrupt and
the Linux kernel allocates a physical memory page and installs
a page table entry into main memory, which usually costs a
couple of thousands CPU cycles. A page table is used for the
virtual-to-physical address translation. Loading a page table
every time from main memory for the address translation is
impractical, so TLB caches translation information. Similar
to other cache mechanisms, cache misses, so-called “TLB
misses”, occur, which influences on memory performance.
In addition to the default page size such as 4 KB on x86,
the memory management unit in a modern processor usually
supports larger page sizes such as 2MB which can reduce
the number of page faults and TLB misses, thus it improve
memory performance. In relatively newer Linux kernels with
proper kernel configurations, users can use large page sizes
either explicitly or transparently.

With these configurations, newer Linux kernels can
transparently back up a virtual memory range with huge pages.
This feature is called transparent huge pages (THP). No source
code modification or linking with libraries is required, while
it has no guarantee that THP can always back up a virtual
memory range with huge pages. THP is used by default if
/sys/kernel/mm/transparent_hugepage/enabled
is set to “always”. Also, it needs to increase
the amount of shmem permitted per segment in
/proc/sys/kernel/shmmax and increase the total
amount of shared memory in terms of page number in
/proc/sys/kernel/shmall. However, THP does not
work with file-backup mmap, so MPI-3.0 shared-memory
functions can use only the regular page size(4 KB). Hence,
the page size is different, as are the page faults and TLB
misses.

3) Solutions: MPICH uses mmap function for shared
memory (this is configurable; an alternative in Linux is
shmget) allocation; however, the mmap is not anony-
mous but file-backup and can not use THP. In order
to use huge pages with MPICH, we need more sys-
tem settings, including setting the hugepage number in
/proc/sys/vm/nr_hugepages and setting the group id
of huge page in /proc/sys/vm/hugetlb_shm_group.
These two can also be done by the sysctl command
by the root, or they can be set in the configuration file
/etc/sysctl.conf.

After we finished the above settings, we modified the source
code of MPICH 3.1.3 to use huge pages for the MPI-3.0 shared
memory. Users can use the huge page support in the Linux

Ithe malloc calls the brk for smaller buffer sizes. The threshold value
to switch between mmap and brk is managed in a C library.

kernel by using either the mmap system call or standard SYSV
shared-memory system calls (shmget, shmat). Both of them
are supported in MPICH and can be controlled by a configure
option.

First, we implemented the version with shmget and found
that huge pages can be used. However, the amount of space
allocable with SYSV is limited. If the user tries to allocate
too much space, it will fail.

Then we turned to file-backup mmap. We mounted the
hugetlbfs explicitly and modified the source code of MPICH.
In src/util/wrappers/mpiu_shm_wrappers.h, the
path should be the mounted hugetlbfs; In src/mpid/ch3/
channels/nemesis/src/ch3_win_fns.c, the
PAGESIZE variable is changed from 4096 (4KB) to
2097152 (2MB). Some other accessory modifications
(removal of write operation to the file and removal of
munmap function) are necessary.

4) Performance Improvement: With the above modifica-
tions to system settings and MPICH source code, the compu-
tation performance of MPI-3.0 version was improved in terms
of page faults and TLB misses.

The number of the page faults is reduced to the same level as
the MPI-1.0 version when the requested memory size is over
2 MB. This page fault overhead is once, while the TLB misses
overhead is multi times, which occurs during the computing
over the memory and affects the computing performance. Then
we used the time consumption to evaluate it, and selected 30
different matrix sizes with stride 2. The profiling involved two
processes, and the performance is shown in Figure 5. We can
see that generally MPI-3.0 with huge pages performed as same
as MPI-1.0 which uses huge pages implicitly. Also, the gap
between MPI-1.0 and MPI-3.0 without huge pages is plotted.

+MPI-3.0_SmallPage(4KB)
“MPI-3.0_HugePage
“MPI-1.0_HugePage

Time Cost(s)
N
S
®

4538 4542 4546 4550 4554 4558 4562 4566 4570 4574 4578 4582 4586 4590 4594
Matrix Size(NXN)

Fig. 5: Computation performance comparison between MPI-
1.0 and MPI-3.0

V. COMMUNICATION PERFORMANCE EVALUATION

We did the evaluation on the first three platforms shown in
Table I, with three cases: MPI-1.0, MPI-3.0, and OneCopy.
OneCopy was used in [4], which also used five-point stencil
as a case study with one data copy. The communication
performance is shown in Figure 6. Note that for the MPI-
3.0 version, since no data copy is needed, the communication
time is the time for synchronization. We can see that with

MPI-3.0 we can get an improvement of about 40% to 60% on
Fusion, 70% on Blues, and 50% to 85% on MIC, compared
with MPI-1.0 version. Compared with the OneCopy method,
the improvement is from 10% to 60%.

~<MPI-1.0

~&-OneCopy

MPI-3.0

Time Cost(s)
o
=
w

20000 18000 16000 14000

Matrix Size(N¥N)

12000 10000

~MPI-1.0 ~A-OneCopy MPI-3.0

Blues

Time Cost(s)
o
N

20000

18000

16000 14000
Matrix Size(N¥N)

12000 10000

“<MPI-1.0

~4-OneCopy

MPI-3.0

MiIC

Time Cost(s)
o
o
w

18000 17800 15600 14400 13200 12000 11800 8600 8400 7200 6000
Matrix Size(N¥N)

Fig. 6: Communication improvement on three platforms

VI. RELATED WORK

Previous work on using MPI-3.0 shared memory to improve
communication is discussed by Hoefler et al. [3][4]. However,
their method needs one data copy. They introduced the related
overheads but did not analyze them in such depth as ours.

Some methodologies on optimizing intranode communica-
tions are proposed, such as the NIC-level loop-back without
message injection into the network, which has been integrated
in some MPI implementations. But with this optimization, two
copies are needed. Some one-copy methods are proposed in
[6][8]. A zero-copy method is proposed in [7], but it has an
overhead of buffer allocation and freeing for each message and
has not been integrated into MPI implementations. Another

option is to use MPI + threads, that is, to spawn multiple
threads within an MPI process on a node, so that threads can
share each other’s memory. However, a drawback is that it
requires multi-threading support from MPI, which complicates
MPI implementations and often adds considerable overhead
to communication. The drawbacks of thread-based MPI and
multi-threaded MPI applications are analyzed in [2], and
these make the MPI-3.0 shared-memory functions even more
important, as it leverages the shared memory as well as avoids
the overhead caused by multithreading.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce how to use new MPI-3.0 shared-
memory functions to optimize intranode communication. We
analyze the related overheads and give solutions for reducing
them. With these solutions, the computation over the shared
memory has the same performance as with locally allocated
memory. With regard to communication performance, we can
see an improvement over 40% and up to 85% compared with
MPI-1.0 version.

We leave dynamic and automatic detection and usage of
huge pages in MPICH as future work.

ACKNOWLEDGMENT

This work is partially supported by the Promotive research
fund for excellent young and middle-aged scientists of Shan-
dong Province under Grant BS2013DX028, the State Key
Program of National Natural Science of China under Grant
No.61432018, and the National Natural Science Foundation of
China under Grant No. 61272136. Additionally, this material
was based upon work supported in part by the U.S. Depart-
ment of Energy, Office of Science, under contract DE-ACO02-
06CH11357.

REFERENCES

[1] “MPI: A Message-Passing Interface Standard,” http://www.mpi-forum.
org/docs/mpi-3.0/mpi30-report.pdf, Sep. 2012.

[2] A. Friedley, G. Bronevetsky, T. Hoefler, and A. Lumsdaine, “Hybrid
MPI: efficient message passing for multi-core systems,” in Proceedings
of SC13: International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2013, p. 18.

[3] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell,
W. Gropp, V. Kale, and R. Thakur, “Mpi+ mpi: a new hybrid approach
to parallel programming with mpi plus shared memory,” Computing,
vol. 95, no. 12, pp. 1121-1136, 2013.

[4] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. W. Barrett, R. Brightwell,
W. Gropp, V. Kale, and R. Thakur, Leveraging MPIs one-sided commu-
nication interface for shared-memory programming. Springer, 2012.

[51 L. Li, X. Zhang, J. Feng, and X. Dong, “mplogp: a parallel computation
model for heterogeneous multi-core computer,” in Cluster, Cloud and
Grid Computing (CCGrid), 2010 10th IEEE/ACM International Confer-
ence on. 1EEE, 2010, pp. 679-684.

[6] H.-W. Jin, S. Sur, L. Chai, and D. K. Panda, “Limic: Support for high-
performance mpi intra-node communication on linux cluster,” in Parallel
Processing, 2005. ICPP 2005. International Conference on. IEEE,
2005, pp. 184-191.

[7] A. Friedley, T. Hoefler, G. Bronevetsky, A. Lumsdaine, and C.-C.
Ma, “Ownership passing: efficient distributed memory programming on
multi-core systems,” in ACM SIGPLAN Notices, vol. 48, no. 8. ACM,
2013, pp. 177-186.

[8] W. Huang, M. J. Koop, and D. K. Panda, “Efficient one-copy MPI shared
memory communication in virtual machines,” in Cluster Computing,
2008 IEEE International Conference on. 1EEE, 2008, pp. 107-115.

[9] B. Goglin and S. Moreaud, “Knem: A generic and scalable kernel-
assisted intra-node mpi communication framework,” J. Parallel Distrib.
Comput., vol. 73, no. 2, pp. 176-188, Feb. 2013.

The Ohio State University, “MVAPICH: MPI over InfiniBand, 10GigE/
iWARP and RoCE,” http://mvapich.cse.ohio-state.edu, 2014.

Intel Corporation, “Intel MPI library,” http://software.intel.com/en-us/
intel-mpi-library, 2014.

Argonne National Laboratory, “MPICH — High-Performance Portable
MPL” http://www.mpich.org, 2014.

T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ramanujam, and
P. Sadayappan, “Data layout transformation for stencil computations on
short-vector simd architectures,” in Compiler Construction. Springer,
2011, pp. 225-245.

J. Jaeger and D. Barthou, “Automatic efficient data layout for mul-
tithreaded stencil codes on cpu sand gpus,” in High Performance
Computing (HiPC), 2012 19th International Conference on. 1EEE,
2012, pp. 1-10.

“PAPI,” http://icl.cs.utk.edu/papi/.

[10]
[11]
[12]

[13]

[14]

[15]

GOVERNMENT LICENSE

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(’Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
ACO02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the
Government.

