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Abstract—With the increasing prominence of many-core archi-
tectures and decreasing per-core resources on large supercomput-
ers, a number of applications developers are investigating the use
of hybrid MPI+threads programming to utilize computational
units while sharing memory. An MPI-only model that uses one
MPI process per system core is capable of effectively utilizing
the processing units, but it fails to fully utilize the memory
hierarchy and relies on fine-grained internode communication.
Hybrid MPI+threads models, on the other hand, can handle
intranode parallelism more effectively and alleviate some of the
overheads associated with internode communication by allowing
more coarse-grained data movement between address spaces. The
hybrid model, however, can suffer from locking and memory
consistency overheads associated with data sharing.

In this paper, we use a distributed implementation of the
breadth-first search algorithm in order to understand the per-
formance characteristics of MPI-only and MPI+threads models
at scale. We start with a baseline MPI-only implementation and
propose MPI+threads extensions where threads independently
communicate with remote processes while cooperating for local
computation. We demonstrate how the coarse-grained commu-
nication of MPI+threads considerably reduces time and space
overheads that grow with the number of processes. At large
scale, however, these overheads constitute performance barriers
for both models and require fixing the root causes, such as
the excessive polling for communication progress and inefficient
global synchronizations. To this end, we demonstrate various
techniques to reduce such overheads and show performance
improvements on up to 512K cores of a Blue Gene/Q system.

I. INTRODUCTION

While parallel computers with millions of cores are already
in production, the trend is toward higher core densities with
deeper memory hierarchies, although other node resources
are not scaling proportionally (e.g., memory capacity per
core). Consequently, parallel programming models need to
offer means to express communication, synchronization, and
memory-consumption-reducing algorithms in order to effi-
ciently run on these systems. The Message Passing Interface
(MPI) [1] is the predominant programming system on these
platforms, but MPI alone is often insufficient to take full
advantage of the memory hierarchy in the system. Consequently,
application developers are increasingly looking at using hybrid
programming models to utilize the computational units while
sharing memory.

Hybrid MPI+X programming, where “X” denotes a shared-
memory programming model, has recently emerged as a viable
model for many-core architectures. A common variant of this
model is to use OpenMP [2] or Pthreads for “X,” where multiple

threads are used for intranode parallelism while internode
communication is done with one or more communication
threads. Such a model, however, has its own pros and cons
compared with those of an MPI-only model. An MPI-only
model that uses one MPI process per system core can effectively
utilize the available processing units, but it fails to fully utilize
the memory hierarchy. Specifically, each process memory is
private, thus requiring message passing to move data between
cores, and often involving duplication of data between processes
to improve local access. The hybrid MPI+threads model, on the
other hand, can handle intranode parallelism more effectively
and can alleviate some of the interprocess data movement
constraints associated with the MPI-only model by allowing a
more coarse-grained “node-to-node” data movement (e.g., if
threads share all memory on a node), rather than having to send
a separate message to every core. The hybrid model, however,
can suffer from locking and memory consistency overheads
associated with data sharing. Moreover, the drawbacks of these
models that may cause performance issues at small scales may
differ from the ones that become prominent at large scales.
For example, our experiments indicated that communication
progress on requests whose number scales with the number
of processes, which does not cause much overhead at small
scales, can become a bottleneck at large scales.

In this paper, we use a distributed implementation of the
breadth-first search (BFS) algorithm in order to understand
the performance characteristics of MPI-only and MPI+threads
communication models at scale. We start with the MPI-only
implementation of BFS and then extend it to an MPI+threads
implementation where threads independently communicate with
remote processes while cooperating for local computation. Our
extensions take advantage of both driving communication by
multiple cores, offered by an MPI-only approach, and efficient
shared-memory parallel computation, offered by threading
models. At large scale, despite the fact that our hybrid method
outperforms the MPI-only method, both implementations hit
scalability barriers. Our analysis suggests that the inefficiencies
stem from a number of aspects including eager polling for
communication progress, inefficient global synchronization,
and thread contention in MPI. We demonstrate that our hybrid
design reduces some of these negative effects, because polling
for communication and performing global synchronization scale
with the number of processes P , where P is often larger for an
MPI-only model than for a hybrid model. However, a hybrid
approach only delays hitting the scalability wall and does not
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fix the root causes. We therefore propose various enhancements
including a lazy polling approach and a nonblocking process
synchronization (using the MPI-3 nonblocking barrier) to
minimize the impact of such communication management,
thereby improving the performance of both the MPI-only
and the hybrid methods. Through detailed experimentation
and analysis, we demonstrate that our techniques can reduce
the cited overheads at a very large scale and improve the
performance of BFS by 35-fold on 16,384 cores while scaling
to 524,288 cores of a Blue Gene/Q system.

II. BACKGROUND

In the following we briefly introduce the MPI-only and
hybrid MPI+threads models and the baseline BFS algorithm.

A. MPI-Only and MPI+Threads Paradigms

In Fig.1 we present a conceptual comparison between the
MPI-only and the hybrid model. The MPI-only model has a
finer-grained internode communication model and enforces
explicit interprocess communication even within the same
physical node. In addition, data sharing is not possible between
address spaces, a feature that reduces further the ability of the
model to exploit the memory hierarchy. Moreover, the available
memory for the application is reduced compared with that of
a hybrid model because of often-duplicated boundary data
and the memory requirements of the MPI runtime. In contrast,
the hybrid model moves data between address spaces in a
coarser-grained manner while threads share the same address
space. Arguably, however, the threads’ shared-memory view
may incur overheads in order to maintain consistent execution
through locking, synchronization, and memory barriers.

The superiority of either model highly depends on the target
machine, such as the performance and density of the cores,
the memory and network performance, and the topology of the
components, as well as the characteristics of the application,
such as its computation and communication requirements, the
amount of parallelism, and the application’s ability to map to
the machine topology. However, the technology trend suggests
that hybrid models are likely to be better at handling large-scale
machines. The reason is primarily the increasing core density
in cluster nodes that requires efficient shared-memory parallel
execution and, combined with the growth in the number of
nodes, makes fine-grained core-to-core MPI operations difficult
to scale in terms of performance and memory consumption.
The implications of using either model are still not well
understood, however, and require further investigation with
various architectures, algorithms, and applications. Here we
study these two models using BFS. In addition, we execute
large-scale runs (up to 512K cores) and allow multithreaded
concurrent access to the MPI runtime in order to expose thread-
safety overheads of the hybrid model.

B. Interoperation between MPI and Threads

The MPI standard defines four levels of threading
support—MPI_THREAD_SINGLE, MPI_THREAD_FUNNELED,
MPI_THREAD_SERIALIZED, and MPI_THREAD_MULTIPLE—
to be specified when initializing MPI [1]. These levels are
listed in increasing order of threading support, and the user
can choose the desirable level depending on the needs of

Computational core Shared-memory node MPI process 
(address space)

Internode communication Intranode communication

MPI-Only Model Hybrid Model

Thread of execution

Fig. 1: Conceptual comparison between the MPI-only and the
MPI+threads hybrid model.

the target application. Threads in our BFS implementation
concurrently perform computation and communication in order
to maximize throughput and minimize idleness. Thus, we
require the MPI_THREAD_MULTIPLE threading support from
the MPI library.

C. Breadth-First Search

Here we describe the breadth-first search algorithm and its
baseline distributed implementation.

Given a graph G(V,E), where V is a set of vertices
and E a set of edges, and a root vertex r ∈ V , the BFS
algorithm explores the edges of G, in order to traverse all
the vertices reachable from r, and produces a breadth-first
tree rooted at r. Most parallel graph traversal algorithms
are performed level by level, where the vertices at the same
level are equidistant from the root. Because synchronization is
required between levels, this approach is referred to as level-
synchronized. We choose the baseline BFS algorithm from
the Graph500 benchmark [3] because it is widely used and
studied [4], [5], [6]. Assuming P MPI processes, we describe
the baseline MPI-only implementation in Fig.2 along with the
details of the underlying routines provided in Fig.3 and Fig.4.1

We assume in Fig.2 that the graph is already partitioned
between the processes. CQ and NQ are queues that store the
vertices at the current level and the ones that will be visited
at the next level, respectively. When a vertex is visited, it is
marked in the visited vector, and its parent is recorded in
the pred vector. Each process traverses the graph level by
level starting from the root vertex at level 0. First, the root
of the graph is enqueued in CQ (line 2). The graph traversal
is done by the main loop on line 3 with each loop iteration
corresponding to processing one level. Given a vertex in CQ,
its neighbors are processed in the loop on line 7. The newly
visited vertices will be enqueued in NQ ( in Update on line
9). At the end of each level, CQ and NQ are swapped so
that CQ contains the new vertices to be processed while NQ
reuses CQ’s memory to contain the next-level vertices. The
algorithm stops by breaking out of the main loop after NQs
of all processes are empty. Computation is carried out by the
Update routine, and the bulk of interprocess communication
is ensured by nonblocking point-to-point communication. The
algorithm simulates an event-driven execution by polling
for incoming communication (CheckIncomMsgs) and for
pending send operations (WaitPendSend). After all the

1The communication routine names are similar to those in the MPI standard
but are truncated in order to keep the pseudo-algorithm simple.
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1 R← RANK(); . Get my rank
2 ENQUEUE(CQ, root);
3 while (True) do
4 IRECV(AnySource);
5 for (u ∈ CQ) do
6 CHECKINCOMMSGS;
7 for (v ∈ Neighbors(u)) do
8 O ← Owner(v); . Get owner of v
9 if (R = O) then UPDATE(u,v) ;

10 else
11 if (Pending Send to O) then
12 WAITPENDSEND(O);

13 Buffer(v, u, O); . Put (v,u) in O’s buffer
14 if (O’s buffer full or last message) then
15 Isend(O); . Send buffer content to O

16 SYNCHRONIZE;
17 count← |NQ|;
18 ALLREDUCE(count);
19 if (count = 0) then
20 break; . NQ of all processes is empty

21 SWAP(CQ, NQ);

Fig. 2: Pseudo-algorithm executed by each process for the
Graph500 BFS reference simple implementation

1 UPDATE(u, v):
2 if (visited[v] = 0) then
3 visited[v]← 1;
4 pred[v]← u;
5 ENQUEUE(NQ, v);

6 CHECKINCOMMSGS:
7 CHECKREQUESTS;

8 WAITPENDSEND(p):
9 while (Pending Send to p) do

10 CHECKREQUESTS;

11 SYNCHRONIZE:
12 for (each remote process p) do
13 ISEND(EmptyMessage, p) . Signal that I am done

14 repeat CHECKREQUESTS until All processes done;

Fig. 3: Details of the routines from the algorithm in Fig.2

vertices of CQ are processed, the processes synchronize globally
by exchanging empty messages (Synchronize). Progress
on communication is ensured by polling for incoming and
outgoing requests using the CheckRequests routine.

III. DESIGN AND IMPLEMENTATION

Our hybrid implementation builds on top of the baseline
algorithm described in Section II. The main difference is that
within the same node both computation and communication are
driven by OpenMP threads instead of separate MPI processes.

1 CHECKREQUESTS:
2 if (TESTRECV()) then
3 for ((v, u) ∈ RecvBuff ) do UPDATE(u,v) ;
4 IRECV(AnySource);

5 for (each remote process p) do
6 if TESTSEND(p) then
7 FREEBUFF(p) . Mark the buffer as free

Fig. 4: Communication progress routine

A thread is considered here as an independent entity with an
execution flow similar to the process execution flow of the
baseline method. We show in Fig.5 where the team of threads
is spawned (line 3) and later joined. That is, threads do all the
work in parallel except the Allreduce operation. We describe
below how computation and communication are implemented.
In the rest of the document, we refer to the problem size by
the graph scale, where scale = log2 |V |. In addition, we use
Kronecker graphs [7] as inputs for our experiments.

A. Computation

Various optimizations were explored during the past decade
to improve the efficiency of BFS on shared-memory archi-
tectures, among which several are exploited in our hybrid
implementation. First, we inherit the visited vector bitmap
representation to reduce the memory footprint of the graph and
reduce the amount of data movement [8]. Second, we update
the shared visited and pred vectors and the CQ and NQ
queues in a lock-free and atomic-free manner. More precisely,
the CQ is read-only so it does not cause any issue. Writing to
NQ, however, needs to be protected, so we use private queues
per thread and then merge them at the end of each level. This
strategy also improves data locality because vertices visited
by the same thread will be gathered contiguously in NQ, and
it increases the opportunities for data reuse when reading the
same vertices from CQ.

Our method shares many similarities to the shared-memory
BFS implementation of Chhugani et al. [9]. One major

1 ENQUEUE(CQ, root);
2 while (True) do
3 foreach thread parallel do
4 IRECV(AnySource);
5 for (u ∈ CQ) do
6 . Do local computation, send operations, and

process incoming messages
7 SYNCHRONIZE;

8 count← |NQ|;
9 ALLREDUCE(count);

10 if (count = 0) then
11 break; . NQ of all processes is empty

12 SWAP(CQ, NQ);

Fig. 5: Multithreading extension to the baseline BFS 2
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difference is that we do not maintain an array for the depth of
the vertices that was exploited by their algorithm to confirm
whether a vertex is visited. Instead, we initialize the parent of
each vertex with a negative value and test against it to achieve
the same atomic-free algorithm as shown in Fig.6. Although
the algorithm exhibits possible data races, it guarantees the
generation of a correct BFS tree on architectures that ensure
atomic loads/stores (see [9] for a detailed explanation). Fig.
7a shows a single-node performance comparison between the
baseline MPI-only design and our multithreaded implemen-
tation on a Blue Gene/Q node. While both methods scale
with the number of cores, the multithreaded method achieves
close to 2x better performance. Although the performance of
the multithreaded computation can be improved, we do not
optimize the computation part any further since we ignore
whether it will constitute a bottleneck at large scale. In
fact, we show later that the primary shortcomings of both
implementations are related to the communication rather than
the computation performance.

B. Communication

To avoid thread contention at the application level, we
manage the communication following the same methodology as
with the computation part. Since accessing the communication
buffers is critical, we use thread-private buffers mapped to
remote processes. This approach ensures asynchronous progress
and thread independence where the only synchronization point
is the implicit barrier at the end of the parallel region. In
particular, synchronization inside the parallel region is avoided
through the use of OpenMP nowait clauses. We note that the
Synchronize step in Fig.5 is also performed by all threads.
Each thread sends to all processes a termination message and
expects the same type of message from each remote process.
In the following, we model the communication analytically in
order to compare the communication costs of running with
only processes or with one process and multiple threads per
node.

1) Communication Characterization

Assuming P processes, V a set of vertices in the graph, and
an edge factor of e, we estimate C, the total number of vertices
communicated, as

C(P, V ) = 4e|V |P − 1

P
. (1)

The derivative ∂C
∂P is always positive and proves that C grows

proportionally with the number of processes. If we assume
that P in an MPI-only model is larger than that of a hybrid

1 UPDATE(u, v):
2 if (visited[v] = 0) then
3 visited[v]← 1;
4 if (pred[v] = −1) then
5 pred[v]← u;
6 ENQUEUE(NQi, v); . Add v to thread i’s NQ

Fig. 6: Multithreaded Update routine

model by a factor α, then the growth in communication can
be estimated by

C(αP, V )

C(P, V )
=

αP − 1

α(P − 1)
. (2)

We note that for systems where the number of nodes is
significantly larger than the core density (P � α), the increase
in communication of the MPI-only over a hybrid method
is negligible. For a small-diameter cluster with high core-
density nodes, however, the reduced internode communication
of the hybrid model can be significant. For instance, with
128 processes and 16 threads per process, we estimate and
confirm experimentally the total amount of communication
and show the message count in Fig.7b and Fig.7c, respectively.
Although the gain by the hybrid method in terms of reduced
communication is not large in this case, the MPI-only method
incurs a larger communication overhead by sending more
messages. This message count increase stems from finer-grained
graph partitioning between the processes and empty messages
during the global synchronizations.

2) Scalability of the Global Synchronization

In our design, a thread sends an empty message to each
remote process, to signal that it is done sending and expects
to receive an empty message from each process. Although
we could join the threads beforehand and perform the global
synchronization by a single thread, we choose to involve all
the threads in this step to process the incoming messages in
parallel. Despite the fact that all threads participate in the
synchronization, this method is more scalable than in the MPI-
only case. Let us assume M cores per node, N nodes, one
process per core for the MPI-only method, and one process
per node and one thread per core for the hybrid method. Then
the number of empty messages scales as O(M2N2) for the
MPI-only method and as O(MN2) for the hybrid method. As
a result, the hybrid method reduces by M -fold the overhead
of the global synchronization.

IV. EVALUATION AND ANALYSIS

In this section we present our initial evaluation of both
approaches, followed by a series of analyses of the bottlenecks
and their corresponding optimizations. The evaluation was
conducted on a Blue Gene/Q system (Table I) while interprocess
communication was ensured by using MPICH 3.1.1. Because
of the larger memory footprint and the suboptimal performance
when using more that one process per core, we use only one
hardware thread per core. For fairness reasons, the MPI-only
method dictates the problem sizes and thread count per process
for the hybrid method that uses one MPI process per node.
The maximum achievable performance by the latter method is
higher than what is shown in the present document because
bigger problems can be run and better results were observed
with 32 threads instead of 16. Thread safety in MPICH is
guaranteed through a global critical section. Although MPICH
supports fine-grained critical sections on Blue Gene systems,
it has a higher overhead on the fast path, that is, the execution
path free of lock contention. Hence, without proof of contention
in the runtime, the application developer is advised to configure
MPICH with the global critical section support.



5

0

10

20

30

40

50

60

70

1 2 4 8 16

P
e

rf
o

rm
a

n
c
e

 (
M

T
E

P
S

)

Number of Cores

MPI-only Hybrid

(a) Single-node performance

0

5

10

15

20

25

30

35

1024 2048 4096

T
o

ta
l 
C

o
m

m
u

n
ic

a
ti

o
n

 (
G

B
)

Number of Cores

MPI-Only Hybrid Mpi-Only_est Hybrid_est

(b) Total communication

1

10

100

1000

1024 2048 4096

N
u

m
b

e
r 

O
f 

M
e

s
s

a
g

e
s

 (
M

il
li

o
n

s
)

Number of Cores

MPI-Only Hybrid

(c) Total message count

Fig. 7: (a) Performance comparison between the MPI-only and the hybrid implementations on a single BG/Q node with a problem
size of 21. (b) Total amount of communication aggregated across all processes with a problem size 26, one process/thread per
core for the MPI-only/hybrid method, respectively. (c) Corresponding total message count. MPI-Only_est and Hybrid_est
are the estimated communication for the MPI-only and the hybrid methods, respectively.
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Fig. 8: (a) Preliminary weak-scaling performance results with problem sizes from 25 to 35, with 16 processes per node (PPN)
for MPI-only and 1 PPN and 16 TPN (threads per node) for the hybrid version. (b) Execution breakdown of the weak-scaling
experiment for the MPI-only method. (c) Execution breakdown of the weak-scaling experiment for the hybrid method.

TABLE I: Target platform specification

Architecture Blue Gene/Q
Processor PowerPC A2
Clock frequency 1.6 GHz
Cores per node 16
HW threads/Core 4
Number of nodes 49152
Interconnect Proprietary
Topology 5D Torus
Compiler GCC 4.4.7
Network driver BG/Q V1R2M1

A. Preliminary Evaluation

We performed a comparative analysis between the baseline
process implementation and our hybrid method. We show in
Fig.8a weak-scaling performance results. We observe that at
small scales, the hybrid method performs worse than MPI-
only. At larger scale (≥4K cores), however, the MPI-only
implementation stops scaling, whereas the hybrid method
performs better and stops scaling only after 64K cores. We
do not show data points after 32K cores with the reference
implementation because it runs out of memory. This issue

arises during the graph construction when using a flat-MPI
model and has been reported by previous authors [6]. The
trend is obviously toward worse performance. Most of the
inefficiency of the hybrid method at small scale stems from
runtime contention which is discussed in Section IV-D.

To understand the source of the performance breakdown, we
profiled the the previous experiments and show the results
in Fig.8b and Fig.8c. Thread load imbalance is estimated
by the average time spent between the end of the global
synchronization step and the end of the OpenMP parallel region
and is shown as OMP_Sync in the hybrid model profiling
figures. The non-overlapped communication cost is estimated
by summing the time spent in the MPI runtime (MPI_Test,
and MPI_Others2) and the time spent polling at the user
level (outside the MPI runtime). Figure 8b shows that the
main bottleneck in the reference implementation is polling for
communication progress outside the MPI runtime. The analysis
in Section III showed that the difference in communication

2MPI_Isend, MPI_Irecv, MPI_Allreduce, and other routines in-
volved in the global synchronization implementation of Section IV-C
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volume between the two methods is small and does not justify
such a gap in the communication cost. We notice that the loop
for checking outgoing requests in the communication progress
routine (Fig.4) scales as O(P ). Although the same routine is
used by the hybrid solution, it is more scalable because P is
smaller by a factor equal to the number of cores per node.
Nevertheless, since the hybrid method scales with the number
of nodes, this issue is only delayed; and the hybrid approach
breaks down at 64K cores. Hence, fixing the root issue is
necessary.

B. Reducing Synchronization between Endpoints

Polling for outgoing requests completion with
CheckRequests is performed at several execution
points. In short, the algorithm eagerly checks the requests in
order to mark buffers as free as early as possible. We point
out that doing so is not necessary, however, because a buffer
may effectively be needed only at a later time. Although
regularly checking for incoming messages is essential, for
outgoing messages we propose a heuristic that delays polling
until the buffer is needed. That is, we avoid checking outgoing
requests at each iteration of the main loop and at the global
synchronization step. In addition, waiting for a buffer to be
freed involves only the corresponding outgoing request and
avoids polling for O(P ) requests. We refer to this method as
lazy polling (LP) and illustrate the changes to the routines
in Fig.9. The performance gain of this optimization is shown
in Fig.10a. We notice that with LP, both the MPI-only and
MPI+threads methods are more scalable. The profiling results
in Fig.10b and Fig.10c confirm that the lazy polling policy
substantially reduces the polling overhead. Although not
experimented here, it may be possible to reduce further
the overhead of maintaining a large number of requests by
eliminating the dependency on the number of processes and
using a pool of a fixed number of requests. Instead, we will
investigate another source of communication overhead since
significant time is spent in communication with both methods.

C. Efficient Global Synchronization

As mentioned in Section III, the original design incurs an
overhead due to empty messages that scales as O(M2N2). Al-
though the hybrid method reduces this overhead by a factor M ,
it is still not scalable because the overhead grows quadratically

1 CHECKINCOMMSGS:
2 if (TESTRECV()) then . Test Recv requests
3 for ((v, u) ∈ RecvBuff ) do UPDATE(u,v); ;
4 IRECV(AnySource) ;

5 WAITPENDSEND(p):
6 while (Pending Send to p) do
7 CHECKINCOMMSGS; . Make progress on Recv
8 if (TESTSEND(p)) then . Test Send request
9 FREEBUFF(p);

Fig. 9: Lazy polling implementation

with the number of nodes. In Fig.11, we depict the distribution
of the messages in a BFS run according to their type—full,
incomplete, and empty—in a weak-scaling experiment. Ideally
only full messages would be exchanged. We observe, however,
that the ratio of full messages decreases at scale. We also
confirm experimentally that the multithreaded implementation
inherits the same issue but incurs fewer empty messages
than does the MPI-only method. These results encourage
implementing a better global synchronization algorithm.

The difficulty here is to ensure a global barrier-like syn-
chronization while processing incoming messages to avoid
deadlocks. We propose the new Synchronize routine imple-
mentation in Fig.12. Our solution assumes the availability of an
implementation of the recently released MPI-3 standard, which
supports nonblocking barriers. Most supercomputers, including
Blue Gene/Q, Cray, and InfiniBand platforms, support MPI-3
at this point. In addition, since handling incoming messages
involves computation (Update operation) and internal MPI
processing, the hybrid method uses multiple threads during
this step. Here, a single thread is responsible for calling the
nonblocking barrier. When one of the threads detects the barrier
completion, it sets the done flag that signals the end of the
synchronization step for the other threads. Assuming that a
barrier implementation incurs O(PLogP ) message exchanges,
where P equals the number of processes, we estimated the
cost of the global synchronization as NLogN instead of the
original MN2 for the hybrid implementation. We measured
performance and profiling data after using the optimized global
synchronization (with the suffix +IB short for Ibarrier) as
shown in Fig.13. We observe in Fig.13a that the scalability of
both methods has improved.

We note that the basic principle behind the LP and IB
optimizations is to avoid algorithmic features that scale with
the number of processes. This is an important rule that is
applicable to BFS but also to other algorithms and applications.
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Fig. 11: Distribution of messages according to their content
in a weak-scaling experiment with problem sizes from 24 to
30 and with 256 edges per message. Empty messages stem
from Synchronize, and incomplete messages result from
flushing the last vertices inside the buffers at the end of each
level.
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Fig. 10: Weak-scaling results and profiling after using the lazy polling method
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Fig. 13: Weak-scaling performance and profiling results after using a nonblocking barrier to implement the global synchronization
step

1 SYNCHRONIZE:
2 done← False;
3 OMPBARRIER(); . Threads must complete sending
4 IBARRIER(); . Executed by a single thread
5 while (done = False) do
6 CHECKINCOMMSGS(); . Make progress on Recv
7 done← TESTIBARRIER(); . Single-threaded
8 . barrier completion test

Fig. 12: New global synchronization implementation with the
necessary threading extensions for the hybrid approach.

D. Reducing MPI Runtime Contention

Although the hybrid implementation is more scalable, it
performs worse than the MPI-only method at a smaller scale.
Despite the reduction in execution time, however, the execution
breakdown in Fig.13b and Fig.13c shows that significant time is
still spent in communication. In particular, the communication
costs for both methods are comparable, a result that contradicts
our analysis, in which we concluded that the communication
costs should be higher for the MPI-only method.

We therefore hypothesized that either the multitheaded
communication is serialized at the network level or the

threads suffer contention at the software stack. To test the
first hypothesis, we measured the concurrent bandwidth when
varying the number of cores (one process per core). The
results are shown in Fig.14a. We observe that by driving
the communication using multiple cores, throughput can be
improved by more than an order of magnitude as compared
with a single core. This result disproves the first hypothesis. To
test the second hypothesis, we measured the average latency
of an MPI_Test call during a BFS run and plotted the
graph in Fig.14b. We notice that the latency of MPI_Test is
proportional to the number of threads and suggests contention in
the software stack. We remind the reader that MPICH was built
by using a global critical section (CS) internally to optimize
the fast path. However, the proof of contention encourages the
use of fine-grained critical sections. In our previous work, we
had experimented with this concept in MPICH and obtained
significant improvement in both multithreaded communication
throughput and latency [10], [11], [12]. Because of the cost
of implementing fine-grained critical sections, however, most
MPI implementations rely on coarse-grained locking; to the
best of our knowledge, only MPICH on Blue Gene systems
supports fine-grained locking in production environments. To
enable a more efficient multithreaded runtime on a wider
range of architectures including commodity HPC clusters,
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Fig. 14: (a) Point-to-point bandwidth on a Blue Gene/Q system
with respect to the number of cores involved in the communi-
cation ( data obtained by using the osu_mbw_rm benchmark
from the OSU microbenchmarks suite, http://mvapich.cse.ohio-
state.edu/benchmarks/). (b) MPI_Test performance with the
BFS hybrid method when scaling the number of TPN with
512 cores

we investigated a different approach that reduces contention
regardless of the CS granularity [13]. We showed that by
using locks with CS arbitration policies different from that
of Pthread mutex, contention can be reduced. Indeed, up
to 5x performance improvement was observed with several
benchmarks and applications.

Hence, since our platform is a Blue Gene/Q system, we
rebuilt MPICH to support fine-grained (FG), or per-object,
critical sections. We profiled the performance of MPI_Test
with our hybrid method and show comparative results in Fig.15a.
We notice that the performance improves considerably, with the
cost of polling with MPI_Test being almost constant. The
overall performance is improved, and the approach outperforms
the MPI-only approach (Fig.15b), providing a total performance
improvement of 35-fold on 16K cores over the original MPI-
only approach. The final profiling data in Fig.15c shows that
the communication cost is reduced considerably, while the time
spent outside the MPI runtime dominates the overall execution
time. We note, however, that for fewer than 4K cores the hybrid
approach is slightly worse than MPI-only, indicating that the
hybrid method may still suffer from contention and incurs
overheads, such as thread load-imbalance, shown in Fig.15c.

V. RELATED WORK

Considerable studies have been conducted on the pros and
cons of using MPI-only and shared-memory methods and
their hybrid derivatives. Experiments with the NAS parallel
benchmarks showed some conditions that favor the hybrid
model, such as the amount of intranode parallelism and the
speed of the network [14], [15], [16], [17], [18]. Chorley et
al. analyzed the DL POLY molecular dynamic application and
showed that the superiority of the hybrid model at large scale
is due primarily to reduced communication [19]. The main
conclusion we draw from this history is that the number of
cases in favor of the hybrid model are increasing over time and

are proportional to the scale of the testbed and the abundance
of intranode parallelism.

However, studies where threads participate in communication
are scarce, although this ability is gaining importance given
the benefit of driving the network through multiple endpoints.
For instance, Cappello et al. showed how threads can help
with the internal MPI computation [14]. Others have proposed
a solution to the idleness of threads during communication
in a hybrid MPI-OpenMP model by exposing and exploiting
computation-idle threads in order to improve communication
performance [20]. In contrast to previous works, we have pro-
vided insight into multithreaded communication performance
issues in the hybrid model. In addition, we stressed the core-to-
core communication model of the MPI-only model and showed
its overhead analytically and experimentally.

We considered MPI-only as using a single-copy model on
shared memory. The recent MPI-3, however, supports better
shared-memory through zero-copy extensions [21]. MPI shared-
memory extensions offer some advantages similar to those of
multithreading. A comparison between these models, however,
requires thorough investigation and is out of the scope of this
paper.

Many parallel BFS implementations have emerged during
the past few decades, most of which use a hybrid MPI-threads
model [6], [22], [23]. The goal of those works is to improve the
performance of BFS, whereas we seek to characterize the trade-
offs of different models. Moreover, those works require the
FUNNELED mode, which from a programmability perspective
adds a layer of complexity because of the heterogeneity created
by classes of communication and computation threads and the
producers-consumer relationship between them. We also point
out that there are some performance drawbacks associated to
this mode, such as losing some threads for computation and
possibly underutilizing the network resources, since not all
cores are driving the communication.

VI. CONCLUDING REMARKS

In this work, we studied the MPI-only and hybrid
MPI+threads models using the BFS algorithm at very large
scale. In our hybrid BFS implementation, threads are the
main entities that handle both computation and communication
concurrently. The motivation behind this design is to offer a
better trade-off between memory usage, intranode parallelism,
and communication performance than what the MPI-only model
offers. As a result, we exposed many important parameters that
users need to take into account when choosing the best model
that fits the application and target platform. Such parameters are
the scale of the target machine, where large-scale experiments
favor the hybrid model because of the superior node-to-node
communication model, and the drawbacks of runtime contention
when communication is driven by multiple threads.

However, the hybrid model is not a silver bullet that fixes all
scalability issues. Although it reduces some of the overheads
associated with interprocess communication, thus delaying
some of the scalability bottlenecks, it does not completely
avoid them. We therefore proposed various enhancements and,
through a detailed experimentation and analysis, demonstrated
that our techniques can reduce the overheads at very large
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Fig. 15: (a) MPI_Test performance when scaling the number of TPN with 512 cores. (b) Weak-scaling performance comparison
after using fine-grained critical sections (FG). (c) Execution breakdown after using fine-grained critical sections

scale and improve the performance of BFS by 35-fold cores
on 16K cores while scaling to 512K cores of a Blue Gene/Q
system.

As future directions, we consider enlarging the study to other
platforms, such as commodity HPC systems; investigating
other shared-memory models (e.g., MPI-3 shared-memory
extensions); and using other benchmarks and applications as
case studies.
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