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Abstract—Future supercomputer systems will face serious

reliability challenges. Among failure scenarios, latent errors are

some of the most serious and concerning. Preserving multiple

versions of critical data is a promising approach to deal with

such errors. We are developing the Global View Resilience

(GVR) library, with multi-version global arrays as one of

the key features. This paper presents three array versioning

architectures: flat array, flat array with change tracking,

and log-structured array. We use a synthetic workload that

mimics the memory access patterns of radix sort, N-body

simulation, and matrix multiplication, comparing the three

array architectures in terms of runtime performance, memory

requirements, and version restoration costs. The experiments

show that the flat array with change tracking is the best

architecture in terms of runtime performance, for versioning

frequencies of 10�5
ops

�1
or higher matching the second best

architecture or beating it by up to 23 times, whereas the log-

structured array is preferable for low memory usage, since it

saves up to 98% of memory compared with a flat array.

Keywords-Global View Resilience, multi-versioning, dis-

tributed array, change tracking, log-based data structures

I. INTRODUCTION

As supercomputer systems evolve toward exascale sys-
tems, several challenges are anticipated. High failure rate
is one such challenge [1], due to several technology trends
such as increasing scale, shrinking process size, and low
power voltage [2]. Failures are already an issue even in to-
day’s large-scale systems [3]. For example, the Blue Waters
system had a mean time between failure (MTBF) of 4.2
hours [4]. To make matters worse, future exascale systems
are predicted to have MTBF of less than one hour [5].
Among various modes of failures, latent errors (or silent
data corruption, SDC), which corrupt data in a way that
cannot be detected immediately, are becoming a serious
concern [6].

To address these issues, we have been developing the
Global View Resilience (GVR) library [7]. GVR is a
lightweight library that adds flexible application-level re-
silience into large-scale scientific applications. It has two
key features: multi-version, multi-stream distributed arrays
and a unified error handling interface that supports flexible
cross-layer error checking and recovery. Multi-versioning
is a promising approach against latent errors [8], since a
high probability exists that some versions have been created
before the latent error corrupted the data. Introducing the
concept of multi-version arrays, however, immediately raises
a question of the cost of creating and keeping such multiple

versions. In previous work we proposed the log-structured
array [9] for efficient versioning and provided early ex-
ploration of some other versioning architectures [10]. Our
current work expands the exploration to cover a hardware-
assisted scheme and undo versioning, and provides a sig-
nificantly expanded evaluation including a comparison of
memory change-tracking schemes and experiments with
different access localities, read-write ratios, and block sizes,
as well as the evaluation of version restoration costs.

In this paper, we compare three array versioning architec-
tures:

• Flat array: Uses a simple contiguous array representa-
tion, with full copy taken on each version creation

• Flat array with change tracking: Uses the same flat
array for the most recent version but preserves only the
modified data blocks upon version creation

• Log-structured array: Keeps only the updated data
blocks but does not hold a flat array

We address the following research questions: Which array
architecture brings the best performance, lowest memory
consumption, and lowest version restoration cost, under
various workload characteristics? What are the trade-offs?
What are the criteria for choosing different array archi-
tectures? To illustrate the differences among these array
architectures, we conduct a set of empirical benchmark tests
using a synthetic application.

Specific contributions of this paper are as follows:
• Empirical exploration of trade-offs among three array

versioning architectures: flat, flat with change tracking,
and log-structured array

• Exploration of local memory change tracking schemes.
We found that while the use of the dirty bit in the
page tables of Intel R� Architecture Processors provides
the best performance, reducing overheads on first write
access to pages by an order of magnitude compared
with using memory protection bits, it is not practical
to use with GVR due to not working with DMA and
requiring modifications to the OS kernel

• Performance comparison of different versioning archi-
tectures across a range of versioning frequencies. We
found that the flat array with change tracking achieves
the best runtime performance in most cases, for high
frequencies (� 10�5ops�1) matching the second best ar-
chitecture or beating it by up to 23 times, and for lower



frequencies remaining within 47–97% (depending on
the level of locality) compared with a run without
versioning

• Measurement of memory overhead of versioning. The
log-structured array turned out to be the best solution
if memory savings are the primary concern because
it saves up to 98% of memory compared with flat
arrays, while providing equal or better restoration speed
of around 2.15 GiB/s that, unlike the flat with change
tracking architecture, is independent of the age of the
version to restore from

• Exploration of computational overheads of restoring
data from older versions. Flat and log-structured arrays
came out on top, besting flat with change tracking
arrays by up to 15 times and providing essentially
constant access times to every version.

The overall conclusion is that log-structured arrays are
preferable for extremely sparse modification patterns (1% fill
ratio) in terms of memory consumption and version access
cost, whereas the flat with change tracking architecture
becomes preferable for more dense modification patterns
(10% fill ratio and higher).

The organization of this paper is as follows. In Section II
we provide an overview of the GVR library and present
a motivating example for seeking efficient multi-version
array architectures. In Section III we describe several array
versioning schemes. In Section IV we present our evaluation
methodology and results from the experiments. In Section
V we discuss related work, followed by Section VI where
we summarize the work and discuss plans for future work.

II. MULTI-VERSIONING IN GLOBAL VIEW RESILIENCE

In this section we first give a general overview of the
Global View Resilience library, focusing on its multi-version
global array. We then present the motivation for implement-
ing efficient multi-version arrays.

A. Global View Resilience
The Global View Resilience library enables resilient ex-

ecution of large-scale scientific applications on unreliable
hardware, by providing application-controlled, portable, and
flexible error handling. GVR has two key features: multi-
version, multi-stream global arrays and Open Resilience,
which allows flexible cross-layer error checking and han-
dling through a unified error-handling interface.

In this paper we focus on the first feature, multi-version
arrays. GVR provides PGAS-style distributed arrays where
applications can store their critical data and restore it later
in case of errors. Accesses to arrays are explicit in most
cases; applications invoke put or get library calls when
accessing the data. While its basic interface is based on
Global Arrays [11], GVR also provides a novel capability of
preserving multiple versions of the array contents. The time
of the versioning is controlled completely by the application.

More important, the application is responsible for ensuring
that an array is in a globally consistent state with respect
to the application semantics when taking versions. Thus
creating a version also involves an explicit call; applications
call version inc function when they want to create a version.

Once a version is created, it is considered read-only. This
property makes it easier for the library to transform old
versions in various ways, for example transferring them
to a remote process or other storage such as local SSD
and shared parallel file system or applying error correction
codes, compression, or encryption. This also means that
applications work mainly on the current version rather than
on old versions; hence, the runtime performance over the
current version is an important metric. Applications can
navigate through version history and retrieve data from an
arbitrary version using the get function. Note that when
accessing an old version, the application does not have to
retrieve the entire array; it can access only a part. Accessing
an old version does not change the contents of the current
version, since the result of get is returned to a user-supplied
separate buffer region.

GVR is implemented as a user-level library built on top of
the MPI-3 [12]. GVR extensively utilizes MPI-3’s one-sided
communication (i.e., remote memory access, RMA) feature
for basic data access operations such as put and get.

B. How Multi-Versioning Helps

When are multiple versions useful? One significant use
case is recovery from latent errors [8]. Traditional check-
point/restart systems keep only the latest checkpoint, assum-
ing that errors are detected immediately once they occur and
checkpoint data is correct. Under the assumption of latent
errors, however, this no longer holds. Latent errors might
corrupt the data that is going to be dumped to a checkpoint
file, before the problem has been discovered. This could
result in a corrupted checkpoint; and even if the application
discovers the error later, the only way to recover is by
restarting the whole computation from the beginning.

Having multiple versions addresses this issue. Even if
the latest few versions may be affected by a latent error, a
high probability exists that the application can find an older
version that is correct.

C. Exploiting Partial Modification for Efficient Versioning

How can such a multi-version array be implemented?
The simplest idea is to make a full copy of an array upon
version creation. However, our studies found that some
application do not modify the whole array region. We studied
OpenMC [13], [14], a Monte Carlo simulation for nuclear
reactor simulation, and the canneal program in the PARSEC
benchmark suite [15], which computes a simulated annealing
for circuit design. The modification ratio for OpenMC and
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canneal was 24.4% and 2.34% of the array, respectively.1
For these types of applications, making a full copy each

time makes little sense, since a large fraction of the array
does not change. So if we could capture only the modified
region, it would save a lot of memory, at the same time
enabling faster version creation by reducing the amount of
memory to copy. In this paper we study three versioning
architectures under this opportunity.

III. DESIGN

In this section we describe several array versioning archi-
tectures that we are going to compare.

A. Flat Array
The array is represented by using a flat, contiguous

memory buffer (Figure 1(a)). This buffer represents the
current (newest) version. Put and get are performed directly
on this region by using one-sided communication functions.
When creating a version, a full copy of the entire region is
made and kept for future reference.

B. Flat Array with Change Tracking
As we demonstrate in Section IV, the basic flat array

architecture can suffer from high memory requirements and
overheads of copying the entire buffer on version creation.
We have attempted to reduce such overheads by introducing
several change-tracking schemes implemented within the
local resilient data store (LRDS) component of GVR.

The first scheme, called “User,” involves tracking changed
memory areas by using a bitmap that is updated based on
explicit information provided separately by the caller. On
version creation, only the regions marked as modified are
copied, creating an incremental version and thus reducing

1These numbers are much smaller than the ones found in previous work
[9], because those numbers were considering fixed-size blocks, whereas
numbers here are absolute data sizes.

the overheads (Figure 1(b)). Being implemented entirely in
user space, this scheme is fairly straightforward; however,
it depends on keeping the change-tracking bitmap up to
date, a task that could be burdensome and could introduce
overheads that accumulate with every memory access. The
multi-version array abstraction of GVR eliminates at least
the burden factor, since the updates to the bitmap can be
hidden inside the put call.

An improved tracking scheme, called “Kernel,” takes ad-
vantage of OS kernel-level, page-based memory protection.
On version creation, the memory buffer representing the
current version is write-protected, resulting in subsequent
page faults on first write accesses to each page. A custom
signal handler marks the faulting page in the bitmap as
changed and unprotects it. The chief advantage of this
scheme is that it is transparent to regular memory accesses
from user code; unfortunately, it is not transparent to the
OS kernel; and passing such a write-protected buffer to, for
example, the read(2) system call will result in an error.

A scheme less reliant on signal handlers is needed to
overcome this problem, preferably one implemented in hard-
ware for reduced overhead. A suitable option is provided by
Intel R� Architecture Processors in the form of the page table
dirty bit, which is set by the CPU itself on the first write
access to a memory page. The bit is, however, already in use
internally by the kernel; also, it is not conveniently exposed
by Linux* to user space, and no interface is provided to
clear it (which we need to do on version creation). Hence,
modifications to the Linux* kernel were necessary. We took
advantage of the prior work by HP* for Intel R� IA-64
architecture, subsequently modified by NCSU for Intel R� 64
architecture [16]. We updated the patches to the current
Linux* kernel versions and added missing support for huge
pages, both regular and transparent. The tracking scheme
taking advantage of this capability is called “Hardware.”

A concern with the Kernel and Hardware schemes is that



the page protection bits these mechanisms utilize are guaran-
teed to work only when the memory is accessed by the CPU.
In HPC, the memory may instead be accessed by the DMA
engine of the network card, which may not honor the page
table bits. Indeed, experiments on our systems (see Section
IV-B) have shown that the Hardware bit tracking does not
work with DMA (data gets transferred, but dirty bits do not
get set). To our surprise, the Kernel scheme does work, but
further tests have shown that the latency has increased by an
integer factor, and not just for the first access to a page. We
found that behind the scenes the InfiniBand* stack refuses to
register a write-protected memory buffer we pass at window
creation time, falling back to a slower communication mode,
presumably utilizing an intermediate buffer. To support the
User and Hardware schemes, we implemented separate bit
tracking for networking operations. Each GVR put operation
is followed by an accumulate that sets appropriate dirty
bits in a bitmap stored on the server. This accumulation is
also implemented by using MPI one-sided communication.
This strategy increases the communication cost, however;
ideally, we would like hardware vendors to implement dirty-
bit tracking in memory controllers, making it independent
of the access method.

Beyond the change-tracking scheme, several parameters
influence the LRDS versioning implementation. Block size
determines the tracking granularity; for Kernel and Hard-
ware, values below 4,096 (standard page size) make little
sense; but for the User scheme, a smaller value can be
used. The finer the granularity, the smaller the volume of
extraneous data that needs to be copied on version creation
(assuming a sparse access pattern), but also the larger the
metadata that needs to be maintained. Versioning direction
determines whether the data stored in incremental versions
can be used for undo or redo operations, which influences
the performance of data retrieval (see Section IV-F). In
the worst-case scenario, for the redo versioning a retrieval
operation may need to traverse all incremental versions back
to the oldest version in order to find the required data. When
accessing predominantly recent versions, we would instead
prefer the undo versioning, where we need to traverse only
the incremental versions from the one to retrieve from to the
current one. Undo versions, however, increase the memory
overhead because, in order to generate them, we need to
keep a complete copy of the buffer from the time of the
last version creation (Figure 1(b)). This copy is necessary
because incremental undo versions need to store the previous
contents of modified memory regions, and only after the
fact do we learn which regions were modified. Copying
in advance could in principle be avoided with the Kernel
scheme, where our signal handler is invoked right before
the first modification to each page and so could make a
copy then; but since code running in the signal handler
context must not dynamically allocate memory, the static
buffer would need to be allocated in advance anyway.

C. Log-Structured Array
The log-structured array architecture was proposed in

previous work [9]. Unlike the two architectures discussed
above, this one does not use a contiguous buffer to represent
the current version. Instead, a memory buffer is allocated
on-demand when the first write (put) to a particular region
takes place. These dynamically allocated data blocks form
a log, so we call the whole architecture the log-structured
array (Figure 1(c)). Each metadata block corresponds to a
particular array index range and points to the corresponding
data block. Each version has one set of metadata blocks,
allowing one array to have multiple versions.

Put and get operations are implemented by using MPI
one-sided communication. Since the data blocks are in-
directly pointed to by metadata blocks, each data access
requires at least two round trips, one for retrieving metadata
and the other for actual data access (get/put). In order to
reduce the latency, the log-structured array caches metadata
client-side. Creating a new version requires just making a
copy of metadata blocks of the latest version. Right after
the version creation, all the metadata blocks point to data
blocks that were defined in older versions.

More details on the log-structured array can be found
in our previous work [9]. Since then we modified the
implementation so that it uses MPI Fetch and op for tail
pointer manipulation, which brought further performance
improvements.

IV. EVALUATION

In this section we show empirical comparisons of the three
versioning architectures. Evaluations are done based on three
criteria: runtime performance in failure-free run, memory
consumption, and data retrieval cost from old versions.

A. Workload
We use a synthetic workload to generate various array

access patterns, in terms of versioning frequency, read/write
(get/put) ratio, access locality, and so on. Figure 2 shows the
kernel of the synthetic application we use.2 This program

2This is similar to the workload used in our previous work [9], with the
exception that reads and writes are more finely mixed.

while (true) {

for (i < n_ops_per_version) {

for (j < n_reads)

{ loc=rndloc(); get(loc, gds); }

wait(gds); /

*

Wait for outstanding

operations to complete

*

/

n_writes = 10 - n_reads;

for (j < n_writes)

{ loc=rndloc(); put(loc, gds); }

version_inc(gds);

}

}

Figure 2. Pseudo-code of the kernel of the synthetic workload



0 2 4 6 8 10

0

20

40

60

80

100

Memory access (#cycles⇥1000)

Pr
ob

ab
ili

ty
di

st
rib

ut
io

n
(%

)

10�9 10�7 10�5 10�3

0

20

40

60

80

100

Versioning frequency (#ops�1)

R
el

at
iv

e
pe

rf
or

m
an

ce
(%

)

10�310�5
0
2
4
6

10�9 10�7 10�5 10�3

0

20

40

60

80

100

Versioning frequency (#ops�1)

R
el

at
iv

e
pe

rf
or

m
an

ce
(%

)

flat flat-hardware flat-kernel flat-user flat-user-64B flat-kernel flat-hardware

(a) Memory access time on first write to each
page, array size=8 MiB

(b) Performance with redo versions relative to
no versioning, array size=128 MiB

(c) Performance with undo versions relative to
redo ones, array size=128 MiB

Figure 3. Performance of different change-tracking schemes with a local buffer, #procs=1, block size=4096 B (except flat-user-64B)

continuously writes to/reads from an array (gds), with an
access width of 64 bytes. The target location is randomly
determined by the following formula, based on APEX-
Map [17]:

rndloc =Ci + s
L
2

p1/k

where Ci stands for the center coordinate of the array index
range owned by process i, s is a random sign variable that
becomes either 1 or �1, L is the total size of the array, p
(0  p  1) is a random variable with uniform distribution,
and k (0 < k  1) is a parameter to control spatial locality of
the access sequence. If k = 1, the memory access becomes
uniformly random. If k is smaller, the memory access is
concentrated into a small region. In short, each process
makes a large number of array accesses, clustered around
the memory region owned by the process. We can tune k to
mimic the memory access behavior of several applications.
Three values for k—0.0025, 0.025, and 0.25—are used, cor-
responding to memory access patterns of radix sort, N-body
simulation, and matrix multiplication, respectively [17].

B. Setup
We used two platforms, Midway and Breadboard. For

most of the experiments we used the Midway cluster in-
stalled at the University of Chicago Research Computing
Center. Each node has two Intel R� Xeon R� processors E5-
2670 (2.6 GHz, 8-core), 32 GiB RAM, and InfiniBand*
FDR-10 as an interconnect. MVAPICH2 2.1rc1 was used
as an MPI library. When multiple processes are used, we
assigned four processes per node. Because the experiments
in Section IV-C1 required a custom kernel, they were
instead run on the Breadboard cluster at Argonne National
Laboratory, on nodes with two Intel R� Xeon R� processors
E5620 (2.4 GHz, 4-core) and 24 GiB RAM, running Linux*
kernel 3.18.4.

The array configurations were as follows:
• flat: flat array

• flat-{user,kernel,hardware}-{redo,undo}: flat with
change tracking array. Change-tracking scheme (user,
kernel, hardware) and versioning direction (redo, undo)
follow as needed.

• log: log-structured array
To simplify the experiments, we stored all versions in
memory.

C. Performance Comparison
1) Fine-Grained Comparison of Memory Change-

Tracking Schemes: Because GVR relies on MPI to access
the multi-version global array, underlying performance
differences between the different change-tracking schemes
(see Section III-B) could be masked by communication
layer overheads. Hence, we first present the results of
experiments when accessing the multi-version array locally
(using regular CPU load/store instructions).

For these experiments, we used the RandomAccess kernel
from the HPC Challenge suite [18], performing a random
walk over a preinitialized memory buffer. In the first exper-
iment (Figure 3(a)) we measured the latency of Kernel and
Hardware change-tracking schemes on first write accesses to
memory pages. We observe a significant slowdown with the
Kernel scheme (close to 8,500 CPU cycles); the Hardware
scheme performs much better, at around 550 cycles on
average, although that is still far from the performance
without tracking (flat), measured at around 80 cycles.

Figure 3(b) demonstrates how these overheads affect the
performance with versioning enabled, for different frequen-
cies of the latter. The results are relative to the performance
without tracking or versioning. For the highest versioning
frequencies (10�4–10�3), the overheads of versioning are
significant, reducing the performance by two orders of
magnitude or more. In this range, the User scheme with
4 KiB block size (flat-user) performs best because it has the
lowest computational overheads. Kernel and Hardware do
worse because they suffer from the overheads of system calls
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and TLB flushes that need to follow the modifications of the
page table protection bits. These are per-version overheads,
however, so they become less significant with decreasing
versioning frequencies. At the frequency of 10�6, Hardware
becomes the fastest, followed closely by Kernel; at 10�8

each of them achieves over 90% of the performance of a run
without change tracking. At such versioning frequencies, the
large differences in performance between Kernel and Hard-
ware we observed earlier become less significant because the
overheads are experienced only on the first access to each
memory page after creating a new version. User schemes,
on the other hand, saturate at just over 20%, irrespective of
whether we use the block size of 64 bytes (flat-user-64B)
or 4 KiB. This result is due to the additional overhead of
having to mark each buffer modification in the bitmap—a
constant overhead independent of versioning frequency.

The results presented above were from the runs that used
redo versioning; we ran the same experiments generating
undo versions instead and saw largely the same trends.
Figure 3(c) compares these two run sets. We see that undo
versioning is generally slower, by up to 22%, although
that decreases to under 10% for versioning frequencies that
could be considered viable (overall overhead under 50%, i.e.,
frequencies of 10�7 and lower). The slowdown is caused
by the overhead of additional memory copies at version
increment time (see Section III-B).

Overall, these experiments demonstrate that the Kernel
and Hardware change-tracking schemes are to be preferred
and that the overheads they induce can be overcome but
that large amounts of computations between versions are
required.

2) Performance of the Entire Software Stack: Then we
compared the performance of the synthetic workload (Sec-
tion IV-A), measured as a total throughput; the results are
in Figure 4. This benchmark suffers from two sources of
overhead: data access cost (cost for get/put) and version
creation cost (cost for version inc). As we go to the left-
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Figure 5. Performance over various read/write ratios, #procs=32, k=0.025
block size=4096 B, array size=256 MiB/proc, versioning frequency=10�5

ops�1

hand side of the graph, where versioning frequency is low,
the data access cost dominates. As we go to the right-
hand side, where versioning frequency increases, the version
creation cost dominates. For reference, we ran the same
workload against a flat array but without versioning; this is
denoted with the no versioning label. For the flat with change
tracking configurations we did not conduct the benchmark
for the Hardware tracking scheme for several reasons. First,
as described in Section III-B, current DMA hardware and
software stack do not support change tracking on DMA
accesses. Second, as shown in Figure 3(b), even for local
accesses the difference between kernel and hardware is
minor, and we expect that it becomes much smaller when
the overhead of network communications is included. Also
we present the results only for redo versioning, because we
did not observe significant difference between undo and redo
versioning. Data points at versioning frequency lower than
10�5 are missing for the log-structured array because its
overhead was too high at these points and it did not complete
in a reasonable time.

Flat array suffers most from high versioning frequency
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across all access localities (k), because for each version
creation it has to copy the entire region of the array. As
the versioning frequency decreases, the versioning overhead
is amortized, and the performance approaches that of the no-
versioning one. Flat with change tracking performs the best
in most ranges, since its version creation overhead is lower
than flat because of the smaller amount of data being copied.
It is consistently the highest performer for high frequencies
(� 10�5ops�1), beating the second best by up to 23 times
(k = 0.25, 10�3ops�1). It does not quite reach the peak
performance for lower frequencies, achieving between 47–
97% of runs with no versioning, presumably because of the
additional communication overheads (see Section III-B). The
log-structured array shows moderate performance for the
high versioning frequency, but its performance drops heavily
when the versioning frequency gets lower. The reason is
that although it has an extremely low version creation cost,
the log-structured array has a high data access (get/put)
overhead. For all array architectures higher access locality
leads to better performance, because it leads to high cache
hit rate, and it also reduces overhead for change tracking (for
flat with change tracking) as well as data block allocation
and metadata management (for log-structured array).

Figure 5 shows how the read/write ratio affects the per-
formance. The read-mostly workload is preferable for flat
with change tracking, since writes (puts) require additional
dirty-bit accumulation operations. Flat is not affected by the
read/write ratio. For the log-structured array we observed
the opposite trend, but the performance is almost constant
when compared with the other two architectures.

D. Memory Usage
We compared the memory consumption of each ver-

sioning architecture using our synthetic benchmark as a
workload. We ran the benchmark to create 8 versions and
plotted the total memory consumption at the time of each
version creation. We counted the following items toward
memory consumption: (1) main array buffer (for flat and
flat with change tracking), (2) array contents that belongs
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to older versions, (3) metadata (index) structures to trace
data blocks (for flat with change tracking and log-structured
array), and (4) additional full copy of the main array buffer
(for flat with change tracking when using undo versioning).

The results are shown in Figure 6. Among all the version-
ing architectures, the log-structured array consumes the least
memory, because it does not have a full array buffer even
for the current version. It requires 1.9% to 47% of memory
compared with flat array, depending on access locality (k).
Flat with change tracking architectures keep one (for redo
versioning) or two (for undo versioning) full array buffers;
thus they consume the same or twice as much memory at
version 1 compared with the flat array. Since they need
to record only modified data blocks, however, the memory
consumption increases moderately compared with that of the
flat array, at a pace roughly equivalent to that of the log-
structured array.

E. Impact of Block Size
Figure 7 shows how block size affects the performance

and memory consumption. Here we compare only flat with
change tracking and log-structured arrays, since flat arrays
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Figure 8. Cost for restoring entire version, #procs=1, block size=4096 B, array size=256 MiB/proc

do not have the block size parameter. The figure generally
shows that as block size increases, both performance and
memory consumption increase. The reason is that larger
block size reduces the overheads of putting data in a data
block (e.g., dirty-bit tracking, page fault, etc), while the
size overhead also increases. One exception is the memory
consumption of the log-structured array at the block size of
64 bytes, where memory consumption is higher than with
256-byte blocks. In this case the relatively small decrease in
the data size at that point gets overshadowed by a factor of
4 increase in the number of metadata blocks.

F. Version Retrieval Cost

We measured the version retrieval cost for two scenarios.
The first measured the cost of retrieving the whole array
at a particular version. This scenario corresponds to a
full rollback, for example. The second scenario involved
retrieving a small amount of data from an old version, which
corresponds to a case where an application performs error
checking or a more fine-grained data restoration after a
localized memory error.

Before measuring the version retrieval cost, we initialized
the array in the following way. We randomly chose a subset
of data blocks (say, 10% of the entire array) and put data
in them, then created a version and repeated the procedure
256 times, resulting in 256 versions. For versioning schemes
other than flat, this initial workload populates a fixed number
of data blocks in each version. For this experiment we
used a node with 256 GiB of memory so that we could
keep all versions in memory. Note that for this experiment,
the exact change-tracking scheme for the flat with change
tracking array does not matter but the versioning direction
(undo/redo) does.

Figure 8 shows the full version retrieval cost. Smaller
numbers on the x axis mean more recent versions. The flat
and log-structured arrays offer almost constant access time
regardless of how old the target version is; around 116 ms, or
2.15 GiB/s. This is not the case, however, with the flat with
change tracking arrays. For 1% fill ratio, this architecture
can take more than 15 times longer to retrieve than the

flat or log-structured arrays do, and still almost 3 times
longer for 10% fill ratio (note a different scale on the y
axis). Overall, for the flat with change tracking arrays, the
average access cost increases as the fill ratio decreases (array
becomes more sparse). The reason is that with the flat with
change tracking architecture, we conduct a linear search of
the version history for a live data block, starting with the
version to be retrieved and moving toward the older versions
with the redo versioning and toward the newer ones with
the undo versioning. Version retrieval cost is proportional to
the number of versions traversed. This can be rather high
with sparse arrays, but it quickly levels off for the fill ratio
of 10%. The reason is that with more dense arrays, there
is a high probability of encountering a live block before
reaching either end of the version history (for the 10% fill
ratio, the vast majority of array blocks require the traversal
of fewer than 50 versions). Log-structured arrays, however,
do not have this property because they keep the full metadata
(index) for each version, so data retrieval cost is independent
of the version age. We also conducted the same experiment
for the fill ratio of 25% but we did not observe significant
difference from 10%, so we do not show it to save space.

Figure 9 shows the cost of small data retrieval. Among
256 versions in total, we chose three versions: the most
recent one (1 version old), the oldest one (256 versions old),
and the one in the middle (128 versions old). We then picked
10,000 random locations across the entire array, measured
the latency of 64-byte data retrieval at each location, and
plotted a cumulative distribution function of data retrieval
time. The overall trend is similar to what we saw with
the full version retrieval. The flat and log-structured arrays
offer nearly constant access times, whereas the flat with
change tracking arrays show both a higher average and
variation with the 1% fill ratio. We again see clearly that
the undo versioning works better when retrieving from a
recent version and that the redo versioning works better
when retrieving from an old version. For the fill ratio of
10% and 25%, differences between the flat with tracking
and other architectures become less significant, thus we did
not show these results due to space limitation.
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G. Discussion
Our experiments enable us to make several observations.
1) Performance: The flat array with change tracking

achieves the best performance in most cases, especially when
versioning frequency is higher than or equal to 10�5ops�1. If
the versioning frequency is low, the flat array wins because
its high overhead of version creation is amortized. The
log-structured array, on the other hand, achieves poorer
performance than the other two, but its memory overhead
is extremely low (1.9% to 47% compared with that of flat).
We also observe that the flat array with change tracking
suffers from poor version retrieval performance with ex-
tremely sparse array modification patterns (1% fill ratio),
whereas the flat and log-structured architectures do not.
Therefore we conclude that the flat with change tracking
architectures is preferable for workloads with moderate or
low versioning frequency (also implies moderate array fill
ratio), whereas the log-structured array can be the best option
when versioning frequency is high or when memory saving
is the primary concern.

2) Controlling Redundancy for Resilience: Our exper-
iments show that the flat with change tracking and log-
structured arrays save significant amounts of memory, be-
cause they do not preserve the data that was not updated.
However, this also means that these architectures reduce
redundancy, which may have a negative impact on resilience.
We argue that we can add redundancy back as needed. For
the simplest example, we can create and keep a copy of each
data and metadata block; the total memory consumption
would still be less than or comparable to that of the flat array.
Moreover, we can easily optimize the degree of redundancy,
for example, by creating a redundant copy only once in
several versions or by applying error-correcting code for
space efficiency. However, detailed design and analysis are
beyond the scope of this paper and are left as future work.

V. RELATED WORK

The log-structured array is based on the idea of the log-
structured file system (LFS) [19]. PLFS [20] is an indirection

layer that exploits log-structured idea for optimizing check-
point writes to HPC parallel file systems. These LFSs are
primarily designed to improve write performance. However
the log-structured array is designed to capture writes to an
array, and has incorporated several optimizations for RMA
access and multi-versioning, such as fixed-size data block
and overwriting an existing block within a single version.

Recent studies of distributed key-value data stores
have also been exploring log-structured data, such as
RAMCloud [21], [22], SILT [23], and Tango [24]. Signifi-
cant differences between these distributed key-value stores
and the multi-version array in GVR are twofold: (1) the
GVR array is addressed by multi-dimensional indices, and
(2) it has a property that once a data block is assigned in a
version, subsequent writes to the same block do not require
additional allocations until the next version.

Change tracking uses many of the techniques extensively
studied for various checkpoint and recovery schemes [25],
such as in libckpt [26], BLCR [27], SCR [28], and FTI [29],
with incremental checkpointing [30], [31], [32] being of par-
ticular importance. Our Hardware change-tracking scheme
directly benefits from the work of Vasavada et al. [16].
Undo versioning benefits from earlier work on reverse
computation, with optimistic parallel discrete-event simu-
lation being one of the early applications [33]. More re-
cently, reverse [34] and replay [35] debugging has renewed
the interest in the field. Doudalis and Prvulovic proposed
Euripus [36], a unified hardware acceleration for both bidi-
rectional debugging and checkpoint/restart applications—
something we could definitely benefit from to reduce the
overheads of our change-tracking schemes. Unfortunately,
contemporary mainstream hardware fails to implement such
acceleration techniques.

VI. SUMMARY

In this paper we showed three architectures for array
versioning in the Global View Resilience library: flat array,
flat array with change tracking, and log-structured array.
We compared these architectures using synthetic workloads,



in terms of runtime performance, memory overhead, and
version retrieval cost. Through a set of benchmark tests
we concluded that the flat with change tracking array is
preferable in terms of overall runtime performance, whereas
the log-structured array would be the best if the modifica-
tion pattern is quite sparse and memory saving or version
restoration cost is the primary concern.

Future work includes assessing the data redundancy
or vulnerability of each array versioning architecture and
adding redundancy back to the array, as discussed in Section
IV-G2. Current hardware and software stacks have several
limitations that prevents us from fully utilizing the pro-
posed change-tracking schemes, especially the Hardware-
based change tracking. Thus, design, implementation, and
evaluation of network hardware devices that support change
tracking will be a necessary study.
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