
Exploring the Suitability of Remote GPGPU Virtualization for the OpenACC
Programming Model Using rCUDA

Adrián Castelló, Rafael Mayo, Enrique S. Quintana-Ortı́
Universitat Jaume I de Castelló

Castelló de la Plana, Spain
{adcastel,mayo,quintana}@uji.es

Antonio J. Peña, Pavan Balaji
Argonne National Laboratory

Argonne, IL 60439
{apenya,balaji}@anl.gov

Abstract—OpenACC is an application programming inter-
face (API) that aims to unleash the power of heterogeneous
systems composed of CPUs and accelerators such as graphic
processing units (GPUs) or Intel Xeon Phi coprocessors. This
directive-based programming model is intended to enable
developers to accelerate their application’s execution with much
less effort. Coprocessors offer significant computing power
but in many cases these devices remain largely underused
because not all parts of applications match the accelerator
architecture. Remote accelerator virtualization frameworks
introduce a means to address this problem. In particular,
the remote CUDA virtualization middleware rCUDA provides
transparent remote access to any GPU installed in a cluster.
Combining these two technologies, OpenACC and rCUDA,
in a single scenario is naturally appealing. In this work we
explore how the different OpenACC directives behave on top
of a remote GPGPU virtualization technology in two different
hardware configurations. Our experimental evaluation reveals
favorable performance results when the two technologies are
combined, showing low overhead and similar scaling factors
when executing OpenACC-enabled directives.

Keywords-GPUs; OpenACC; remote virtualization; rCUDA

I. INTRODUCTION

The use of coprocessor accelerators has grown continu-
ously in the past several years. The generalized adoption of
coprocessors to accelerate general-purpose pieces of code
started with the emergence of the CUDA ecosystem for
NVIDIA GPUs [1]. Following CUDA, OpenCL [2] emerged
as an attempt to offer a cross-vendor solution. The third-
generation programming model for accelerators, based on
compiler directives, started with OpenACC [3]. This stan-
dard defines a collection of directives to facilitate platform-
independent accelerator usage.

The traditional approach for accelerator-enabled clusters
has been to furnish every compute node with one or
more of these devices. In many scenarios, however, these
configurations yield a low utilization of the computational
resources available in the hardware accelerators, because
of mismatches between the application’s type of paral-
lelism and the coprocessor architecture. Remote virtualiza-
tion was proposed as a technique to address this problem.
Among the virtualization frameworks, the most prominent
is rCUDA [4], [5], which enables cluster configurations

with fewer GPUs than nodes. Compared with other CUDA
and OpenCL virtualization frameworks (e.g. DS-CUDA [6],
vCUDA [7], and VOCL [8]), rCUDA is a mature production-
ready framework that offers support for the latest CUDA
revisions and provides wide coverage of current GPGPU
APIs.

The combination of both technologies—namely, execution
of OpenACC-enabled applications on remote accelerators—
is obviously appealing. In this paper we explore the open
question of whether remote virtualization is suitable for
applications accelerated via OpenACC directives.

In summary, the contributions of this paper are as follows:
(1) we explore the challenges of integrating the directive-
based OpenACC programming model for accelerators and
the rCUDA remote GPU virtualization framework, (2) we
analyze the performance of representative OpenACC direc-
tives when operating over a remote accelerator, and (3)
we evaluate different OpenACC compiler options to find
optimized configurations for remote accelerations.

The rest of the paper is structured as follows. Section II
provides background information on the technologies ex-
plored in this paper. Section III discusses the integration
of the OpenACC and rCUDA technologies. Section IV
introduces our testbed in terms of hardware and test code.
Section V reviews our experimental evaluation, and Sec-
tion VI closes the paper with a brief summary.

II. BACKGROUND

In this section we review the two technologies targeted in
this paper: OpenACC and rCUDA.

A. The OpenACC Programming Standard

OpenACC [3] is an open programming standard devel-
oped by PGI, Cray, and NVIDIA that enables programmers
to easily leverage heterogeneous CPU plus coprocessor
systems from their C, C++, or Fortran codes.

OpenACC comprises a collection of compiler directives
that the programmer employs to identify the pieces of
code to be accelerated by a coprocessor. Although the
performance attained by current compilers still shows some
gap with respect to that obtained when directly leveraging



GPGPU APIs, the development productivity is clearly much
higher [9], [10]. We have selected the widely used and
mature PGI OpenACC compiler (version 14.9) for our study.

B. The rCUDA Framework

The rCUDAframework [4], [5] is middleware that enables
seamless access to any CUDA-compatible device present in
a cluster from all compute nodes. It is structured following
a client–server distributed architecture. The GPUs can be
shared between nodes, and a single node can use all these
graphic accelerators as if they were local. These properties
aim to attain higher accelerator utilization rates in the overall
system while simultaneously reducing resource, space, and
energy requirements [11], [12]. The rCUDA client exposes
the same interface as the regular NVIDIA CUDA 6.5 re-
lease [1] does, including the runtime and driver APIs. Hence,
applications are unaware that they are executing on top of a
virtualization layer. We base our study on the current rCUDA
public release (version 5.0).

III. INTEGRATING OPENACC AND RCUDA

In this section we discuss the OpenACC and rCUDA
integration challenges.

A. Compilation Requirements

The integration of these two technologies is possible
because current OpenACC compilers generate calls to public
GPGPU APIs. Since we target a distributed environment
where the GPGPU clients do not necessarily feature actual
GPUs, among the different options the PGI compiler offers
to generate separate GPU modules, we choose to generate
PTX files (--keepptx) —that is, low-level source code
GPU files—that are compiled just in time on the GPGPU
server and optimized for the specific target GPU architecture.

The PGI compiler uses the following module management
functions from the low-level CUDA driver API, which the
current rCUDA release does not support.
cuModuleLoadData: This call loads an appropriate

module for the target GPU architecture, comprising a set of
GPU kernel functions, and makes it available for subsequent
kernel executions.
cuModuleGetFunction: This function searches

within the module loaded by the previous call for the code
implementing a given kernel name and makes it available
for subsequent use.

We have implemented both functions in rCUDA and
carefully tuned them for the distributed environment. Our
cuModuleLoadData implementation allows the client to
send all the GPU modules from the module repository of
the executed application to the GPGPU server upon the
first intercepted call to this function, and this mechanism is
executed only once. These images are stored in contiguous
memory addresses in the server in order to attain efficient
cuModuleGetFunction call responses.

B. PGI and rCUDA Data Transfers

The PGI compiler performs data transfers between the
host and the device exploiting a double buffer mechanism.
A similar mechanism is implemented by rCUDA when
requested to perform transfers from pageable memory, but it
performs a direct transfer from the pinned buffers otherwise,
avoiding the augmented latency and memory stress of an
additional pipeline stage [5]. We set the internal rCUDA
buffers to their optimal sizes (FDR: 1 MB; QDR: 2 MB).

IV. EXPERIMENTAL SETUP

In this section we introduce our testbed. First we present
the systems and describe our test cases.

A. Hardware Systems

We have selected two systems with different GPU and
network transfer rates, as well as different computational
power, in order to avoid biasing our study for a particular
hardware configuration.

System A is composed of two compute nodes, each
equipped with two Intel Xeon E5520 quadcore processors
running at 2.27 GHz and 24 GB of DDR3-1866 RAM.
One of the nodes is connected to an NVIDIA C2050
GPU. Internode communications are accomplished via an
InfiniBand QDR fabric.

System B consists of two compute nodes, each equipped
with two Intel E5-2687W v2 8-core processors running at
3.40 GHz and 64 GB of DDR3-1866 RAM. The GPGPU
server is endowed with an NVIDIA Tesla K40m GPU. Both
nodes are connected via an InfiniBand FDR interconnect.

B. Test Cases

We have developed a set of microbenchmarks to measure
the execution time of the most frequently used OpenACC
directives. Each directive is executed 10 times, and the
dataset size ranges from 1 MB to 64 MB in data transfer
directives and to 128 MB in execution directives.

The common pattern in an accelerated application in-
volves at least one data movement from host memory
to device memory, before the code is executed in the
coprocessor, and one data transfer from device memory
to host memory, after the execution in the accelerator is
completed. In OpenACC, the data movement is controlled by
different copy directives. We have implemented two simple
copy microbenchmarks to evaluate the performance of these
transfers. The “copyin” test shows the bandwidth from host
memory to device memory, and the “copyout” test evaluates
it from device memory to host memory.

In OpenACC, the programmer can use the directives
kernels or parallel to instruct the OpenACC compiler
that the next structured code block has to be executed in
the coprocessor. To study these directives, we have devel-
oped microbenchmarks that encode a simple scaling vector
kernel using both options. The “nested” test measures the



(a) Using CUDA with a local K40m.

(b) Using rCUDA with a remote K40m.

Figure 1: Performance of copyin directive on system B.

performance when more than one for loop is present by
implementing a matrix-matrix product.

V. EXPERIMENTAL EVALUATION

1) Data Transfer Directives: The size of each PGI in-
termediate buffer is 16 MB but it can be configured by
setting the PGI_ACC_BUFFERSIZE environment variable.
Figures 1 and 2 report the performance attained by the copy
directives in system B, for a range of buffer sizes.

Figure 1a illustrates the performance attained by the
copyin directive with locally executed clauses. The
throughput with respect to bare CUDA calls is as much as
1 GB/s lower for small data payloads using the default buffer
size. This gap is reduced as the payload size increases and
also if the buffer size is reduced. Using 1 MB buffers,we
obtain the highest performance.The combination of pinned
memory and asynchronous transfers enables this OpenACC
directive to perform better than its homologous CUDA
counterpart. For rCUDA (Figure 1b), we note a higher
performance with bare CUDA calls than with native CUDA
because the rCUDA implementation leverages a mechanism
similar to that of the PGI compiler based on internal pinned
buffers. The performance drop of the OpenACC directives
with respect to those executed on a local accelerator is
around 1 GB/s. In this case, the optimal buffer size starting
at 8 MB transfers is 4 MB.

Figure 2 shows the performance obtained by the
copyout directive. With local CUDA (Figure 2a), as in

(a) Using CUDA with a local K40m.

(b) Using rCUDA with a remote K40m.

Figure 2: Performance of the copyout directive for each
buffer size on system B.

the copyin case, the best choice for the buffer size is
1 MB. When rCUDA is used (Figure 2b), a more irregular
behavior appears, caused by the polling mechanism used
to determine the finalization of device-to-host transfers [4],
[5]. In this case, larger buffers benefit sufficiently large data
transfers (starting at 8 MB). The performance difference with
respect to locally executed directives is in this case more
than 1.5 GB/s.

The main conclusion from this evaluation is that the
throughput difference for copy directives is considerable
when they are executed on top of virtualized remote accel-
erators instead of their local counterparts. Tuning the PGI
buffer size for the particular system and underlying GPGPU
implementation (CUDA vs. rCUDA) yields non-negligible
benefits in terms of data transfer performance.

2) Computational Directives: The performance attained
by the kernels (Figure 3a) and parallel (Figure 3b)
directives is similar. The differences are caused by different
implementations of the GPU kernels generated by the PGI
compiler. On the other hand, Figure 3c reports the execution
time when loops are nested in order to implement a matrix-
matrix product. In both scenarios, the use of a remote GPU
does not lead to a significant performance difference with
respect to local acceleration.

VI. CONCLUSIONS

We analyzed the suitability of remote accelerator virtual-
ization technologies for the OpenACC programming model.



(a) Kernel

(b) Parallel

(c) Nested

Figure 3: Performance of loop directives.

Our evaluation of the performance of the major OpenACC
directives indicates that remote accelerations may add a sig-
nificant overhead with respect to their local counterpart only
if copy directives dominate the overall execution time, since
the rest of the directives do not exhibit a large performance
penalty. Our main conclusion from this study is that in spite
of the OpenACC programming model being designed to
leverage fine-grained parallelism, remote accelerator virtual-
ization technologies may still provide considerable benefits
for production scenarios.

ACKNOWLEDGMENTS

Researchers at UJI were supported by MINECO, by
FEDER funds under Grant TIN2011-23283, and by Univer-
sitat Jaume I (Grant P11B2013-21). This work was partially
supported by the U.S. Dept. of Energy, Office of Science,
Office of Advanced Scientific Computing Research (SC-
21), under contract DE-AC02-06CH11357. We gratefully
acknowledge the computing resources provided and operated
by the Joint Laboratory for System Evaluation (JLSE) at
Argonne National Laboratory. We are also grateful for
the generous support provided by Mellanox Technologies.
The initial version of rCUDA was jointly developed by

Universitat Politècnica de València (UPV) and Universitat
Jaume I de Castellón (UJI) until year 2010. This initial
development was later split into two branches. Part of the
UPV version was used in this paper. The development of the
UPV branch was supported by Generalitat Valenciana under
Grants PROMETEO 2008/060 and Prometeo II 2013/009.

REFERENCES

[1] NVIDIA, CUDA API Reference, Version 6.5, 2014.

[2] A. Munshi, Ed., The OpenCL Specification Version 2.0.
Khronos OpenCL Working Group, Mar. 2014.

[3] “OpenACC directives for accelerators,” http://www.openacc-
standard.org, 2015.

[4] A. J. Peña, “Virtualization of accelerators in high performance
clusters,” Ph.D. dissertation, Universitat Jaume I, Castellón,
Spain, Jan. 2013.

[5] A. J. Peña, C. Reaño, F. Silla, R. Mayo, E. S. Quintana-
Ortı́, and J. Duato, “A complete and efficient CUDA-sharing
solution for HPC clusters,” Parallel Computing, vol. 40,
no. 10, pp. 574–588, 2014.

[6] A. Kawai, K. Yasuoka, K. Yoshikawa, and T. Narumi,
“Distributed-shared CUDA: Virtualization of large-scale GPU
systems for programmability and reliability,” in The Fourth
International Conference on Future Computational Technolo-
gies and Applications, 2012, pp. 7–12.

[7] L. Shi, H. Chen, J. Sun, and K. Li, “vCUDA: GPU-
accelerated high-performance computing in virtual machines,”
IEEE Transactions on Computers, vol. 61, no. 6, 2012.

[8] S. Xiao, P. Balaji, Q. Zhu, R. Thakur, S. Coghlan, H. Lin,
G. Wen, J. Hong, and W. Feng, “VOCL: An optimized envi-
ronment for transparent virtualization of graphics processing
units,” in Innovative Parallel Computing. IEEE, 2012.

[9] T. Hoshino, N. Maruyama, S. Matsuoka, and R. Takaki,
“CUDA vs OpenACC: Performance case studies with kernel
benchmarks and a memory-bound CFD application,” in 13th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), May 2013, pp. 136–143.

[10] S. Lee and J. S. Vetter, “Early evaluation of directive-based
GPU programming models for productive exascale com-
puting,” in International Conference on High Performance
Computing, Networking, Storage and Analysis (SC), 2012.

[11] A. Castelló, J. Duato, R. Mayo, A. J. Peña, E. S. Quintana-
Ortı́, V. Roca, and F. Silla, “On the use of remote GPUs
and low-power processors for the acceleration of scientific
applications,” in The Fourth International Conference on
Smart Grids, Green Communications and IT Energy-aware
Technologies (ENERGY), April 2014, pp. 57–62.

[12] S. Iserte, A. Castelló, R. Mayo, E. S. Quintana-Ortı́, C. Reaño,
J. Prades, F. Silla, and J. Duato, “SLURM support for remote
GPU virtualization: Implementation and performance study,”
in International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), Oct. 2014.


