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Abstract—
OpenCL is a portable interface that can be used to program

cluster nodes with heterogeneous compute devices. The OpenCL
specification tightly binds its workflow abstraction, or “command
queue,” to a specific device for the entire program. For best
performance, the user has to find the ideal queue–device mapping
at command queue creation time, an effort that requires a
thorough understanding of the match between the characteristics
of all the underlying device architectures and the kernels in the
program. In this paper, we propose to add scheduling attributes
to the OpenCL context and command queue objects that can be
leveraged by an intelligent runtime scheduler to automatically
perform ideal queue–device mapping. Our proposed extensions
enable the average OpenCL programmer to focus on the al-
gorithm design rather than scheduling and automatically gain
performance without sacrificing programmability.

As an example, we design and implement an OpenCL runtime
for task-parallel workloads, called MultiCL, which efficiently
schedules command queues across devices. Within MultiCL, we
implement several key optimizations to reduce runtime overhead.
Our case studies include the SNU-NPB OpenCL benchmark
suite and a real-world seismology simulation. We show that, on
average, users have to apply our proposed scheduler extensions
to only four source lines of code in existing OpenCL applications
in order to automatically benefit from our runtime optimizations.
We also show that MultiCL always maps command queues to
the optimal device set with negligible runtime overhead.

Keywords-OpenCL; Runtime Systems; Scheduling

I. INTRODUCTION

Coprocessors are being increasingly adopted in today’s

high-performance computing (HPC) clusters. In particular,

production codes for many scientific applications, including

computational fluid dynamics, cosmology, and data analytics,

use accelerators for high performance and power efficiency.

Diverse types of accelerators exist, including graphics process-

ing units (GPUs) from NVIDIA and AMD and the Xeon Phi

coprocessor from Intel. Compute nodes typically include CPUs

and a few accelerator devices. In order to enable programmers

to develop portable code across coprocessors from various

vendors and architecture families, general-purpose parallel

programming models, such as the Open Computing Language

(OpenCL) [1], have been developed and adopted.

OpenCL features workflow abstractions called command
queues through which users submit read, write and execute

commands to a specific device. However, the OpenCL specifi-

cation tightly couples a command queue with a specific single

device for the entire execution with no runtime support for

cross-device scheduling. For best performance, programmers

This work was done when Ashwin was a Ph.D. student at Virginia Tech.

thus have to find the ideal mapping of a queue to a device

at command queue creation time, an effort that requires

a thorough understanding of the kernel characteristics, the

underlying device architecture, node topology, and various

data-sharing costs that can severely hinder programmabil-

ity. Researchers have explored splitting data-parallel kernels

across multiple OpenCL devices, but their approaches do not

work well for scheduling task-parallel workloads with multiple

concurrent kernels across several command queues.

To automatically gain performance in OpenCL programs

without sacrificing programmability, we decouple the com-

mand queues from the devices by proposing scheduling poli-

cies to the OpenCL specification. We define new attributes to

the cl_context and cl_command_queue objects, which

denote global and local scheduling policies, respectively.

While the context-specific global scheduling policy describes

the queue–device mapping methodology, the queue-specific

local policy indicates individual queue scheduling choices and

workload hints to the runtime. Local queue scheduling policies

may be applied for the entire lifetime of the command queues,

implicit synchronization epochs, or any explicit code regions.

We also propose a new OpenCL API to specify per-device

kernel execution configurations; this function enables the

scheduler to dynamically choose the appropriate configuration

at kernel launch time, thereby associating a kernel launch with

a high-level command queue rather than the actual physical

device. Our proposed hierarchical scheduling policies enable

the average user to focus on enabling task parallelism in

algorithms rather than device scheduling.

To demonstrate the efficacy of our proposed OpenCL exten-

sions, we design and implement MultiCL, an example runtime

system for task-parallel workloads that leverages the policies

to dynamically schedule queues to devices. We build MultiCL

on top of the SnuCL OpenCL implementation [2], which pro-

vides cross-vendor support. We design three runtime modules

in MultiCL: an offline device profiler, an online kernel profiler,

and an online device mapper. We also implement several

optimizations to reduce the online kernel profiling overhead,

including efficient device–to–device data movement for data-

intensive kernels, minikernel profiling for compute-intensive

kernels, and caching of profiled data parameters.

Our proposed API extensions are OpenCL version indepen-

dent. By providing simple modular extensions to the familiar

OpenCL API, we enable different schedulers to be composed

and built into an OpenCL runtime. We do not aim to design

the hypothetical one–size–fits–all ideal scheduling algorithm.

Instead, users may choose the right set of runtime parameters
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to control scheduling decisions depending on the program’s

requirements and the user’s programming skill level. Our

solution thus enhances programmability and delivers automatic

performance gains.

Our case studies include the SNU-NPB OpenCL benchmark

suite and a real-world seismology simulation. We show that, on

average, users have to modify only four source lines of code in

existing applications in order to benefit from our runtime op-

timizations. Our MultiCL runtime always schedules command

queues to the optimal device combination, with an average

runtime overhead of 10% for the SNU-NPB benchmarks and

negligible overhead for the seismology simulation.

The paper is organized as follows. In Section II we describe

relevant details of the OpenCL programming model, and in

Section III we discuss some related work. In Section IV,

we describe our proposed OpenCL extensions. The MultiCL

runtime design and optimizations are discussed in Section V,

and an experimental evaluation is presented in Section VI. We

present concluding thoughts in Section VII.

II. BACKGROUND

In this section, we review the OpenCL programming model

and describe the SnuCL framework and runtime system, which

we extend in this work.

A. OpenCL Programming Model

OpenCL [1] is an open standard and parallel programming

model for a variety of platforms, including NVIDIA and AMD

GPUs, FPGAs, Intel Xeon Phi coprocessors, and conventional

multicore CPUs, in which the different devices are exposed

as accelerator coprocessors. OpenCL follows a kernel-offload

model, where the data-parallel, compute-intensive portions

of the application are offloaded from the CPU host to the

coprocessor device.

OpenCL developers must pick one of the available platforms

or OpenCL vendor implementations on the machine and create

contexts within which to run the device code. Data can be

shared only across devices within the same context. A device

from one vendor will not typically be part of the same platform

and context as the device from another vendor.

While OpenCL is a convenient programming model for

writing portable applications across multiple accelerators, its

performance portability remains a well-known and open is-

sue [3]. Application developers may thus maintain different

optimizations of the same kernel for different architectures

and explicitly query and schedule the kernels to be executed

on the specific devices that may be available for execution.

In OpenCL, kernel objects are created per context. However,

the kernel launch configuration or work dimensions are set

globally per kernel object at kernel launch, and per-device

kernel configuration customization is possible only through

custom conditional programming at the application level.

No convenient mechanism exists, however, to set different

kernel configurations for different kernel-device combinations

dynamically. Therefore, the OpenCL interface and device

scheduling are tightly coupled.

B. SnuCL

SnuCL [2] is an open source OpenCL implementation and

runtime system that supports cross-vendor execution and data

sharing in OpenCL kernels. This OpenCL implementation

provides users with a unified OpenCL platform on top of

the multiple separate vendor-installable client drivers. SnuCL

features an optional cluster mode providing seamless access to

remote accelerators using MPI for internode communications.

In our work we extend SnuCL’s single-node runtime mode

for cross-vendor execution. Although our optimizations can be

applied directly to the cluster mode as well, these fall out of

the scope of this paper.

III. RELATED WORK

The problem of scheduling among CPU and GPU cores has

been extensively studied and falls broadly into two categories:

interapplication scheduling and intra-application scheduling.

A. Interapplication Scheduling

Interapplication schedulers [4], [5] distribute entire kernels

from different applications across the available compute re-

sources. Their solutions are designed primarily for multite-

nancy, power efficiency, and fault tolerance in data centers.

Remote accelerator virtualization solutions such as the clus-

ter mode of SnuCL, rCUDA [6], [7], or VOCL [8] provide

seamless access to accelerators placed on remote nodes. These

address the workload distribution concern in different ways.

SnuCL’s cluster mode permits remote accelerator access in

clusters only to those nodes within the task allocation, and

users have to implement their own workload distribution

and scheduling mechanisms. rCUDA enables global pools of

GPUs within compute clusters, performing cross-application

GPU scheduling by means of extensions to the cluster job

scheduler [9]; as with SnuCL, users have to explicitly deal with

load distribution and scheduling within the application. VOCL

implements its own automatic scheduler, which can perform

device migrations according to energy, fault tolerance, on-

demand system maintenance, resource management, and load-

balancing purposes [10], [11]. This scheduling mechanism,

however, is limited to performing transparent context migra-

tions among different accelerators; it is not aimed at providing

performance-oriented workload distribution and scheduling.

While some of these solutions provide scheduling support

across applications, our solution provides scheduling capabil-

ities across command queues within an application.

B. Intra-application Scheduling

Intra-application scheduling strategies are programming

model dependent. These distribute either loop iterations in

directive-based applications or work groups in explicit kernel

offload-based models; in other words, work can mean either

loop iterations or work groups. These are essentially device
aggregation solutions, where the scheduler tries to bring

homogeneity to the heterogeneous cores by giving them work

proportional to their compute power.
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The possibility of presenting multiple devices as a single

device to the OpenCL layer and performing workload dis-

tribution internally has been previously explored. Both [12]

and [13] use static load-partitioning approaches for intrakernel

workload distribution, and the authors of [12] leverage their

own API. FluidiCL [14] performs work stealing to dynam-

ically distribute work groups among CPU and GPU cores

with low overhead. Maestro [15] is another unifying solu-

tion addressing device heterogeneity, featuring automatic data

pipelining and workload balancing based on a performance

model obtained from install-time benchmarking. Maestro’s ap-

proach requires autotunable kernels that obtain the size of their

workloads at runtime as parameters. Qilin [16] does adaptive

mapping of computation to CPU and GPU processors by using

curve fitting against an evolving kernel performance database.

These approaches provide fine-grained scheduling at the kernel

or loop level and exploit data parallelism in applications.

In contrast, our work performs coarser-grained scheduling at

the command queue level to enable task parallelism between

kernels and command queues in applications.

SOCL [17] also extends OpenCL to enable automatic task

dependency resolution and scheduling, and performs automatic

device selection functionality by performance modeling. It ap-

plies the performance modeling at kernel granularity, and this

option is not flexible. In contrast, we perform workload profil-

ing at synchronization epoch granularity. Our approach enables

a more coarse-grained and flexible scheduling that allows

making device choices for kernel groups rather than individual

kernels. Also, our approach reduces the profile lookup time

for aggregate kernel invocations, decreasing runtime overhead.

In SOCL, dynamically scheduled queues are automatically

distributed among devices, being bound for the entire duration

of the program. In our work, conversely, we enable users to

dynamically control the duration of queue–device binding for

specific code regions for further optimization purposes. In

addition, we enable scheduling policies at both the context

level (global) and the command queue level (local). The latter

may be set and reset during different phases of the program.

Furthermore, our solution enables the launch configuration

to be decoupled from the launch function, providing kernel–

device configuration customization capabilities.

IV. PROPOSED OPENCL EXTENSIONS

In this section we describe our proposed OpenCL API

extensions (Table I) to express global and local scheduling

policies and decouple kernel launches from the actual device.

A. Contextwide Global Scheduling

To express global queue scheduling mechanisms,

we propose a new context property called

CL_CONTEXT_SCHEDULER. This context property can

be assigned to a parameter denoting the global scheduling

policy. Currently, we support two global scheduler policies:

round robin and autofit. The round-robin policy schedules

the command queue to the next available device when the

TABLE I: Proposed OpenCL Extensions

CL Function CL Extensions Parameter Names Options 

clCreateContext New parameters 
and options CL_CONTEXT_SCHEDULER 

ROUND_ROBIN 
AUTO_FIT 

clCreateCommandQueue New parameters 

SCHED_OFF 
SCHED_AUTO_STATIC 
SCHED_AUTO_DYNAMIC 
SCHED_KERNEL_EPOCH 

SCHED_EXPLICIT_REGION 
SCHED_ITERATIVE 

SCHED_COMPUTE_BOUND 
SCHED_IO_BOUND 

SCHED_MEMORY_BOUND 

N/A 

clSetCommandQueueSche
dProperty New CL API 

clSetKenelWorkGroupInfo New CL API N/A N/A 

scheduler is triggered. This approach is expected to cause the

least overhead but not always produce the optimal queue–

device map. On the other hand, the autofit policy decides the

most optimal queue–device mapping when the scheduler is

triggered. The global policies, in conjunction with the local

command queue specific options, will determine the final

queue–device mapping.

B. Local Scheduling Options

While command queues that are created within the same

context share data and kernel objects, they also share the

context’s global scheduling policy. We extend the OpenCL

command queue to specify a local scheduling option that is

queue-specific. The combination of global and local scheduler

policies can be leveraged by the runtime to result in a more

optimal device mapping. The command queue properties are

implemented as bitfields, and so the user can specify a

combination of local policies.

Setting the command queue scheduling property to either

SCHED_AUTO_* or SCHED_OFF determines whether the

particular queue is opting in or out of the automatic schedul-

ing, respectively. For example, an intermediate or advanced

user may want to manually optimize the scheduling of just a

subset of the available queues by applying the SCHED_OFF
flag to them, while the remaining queues may use the

SCHED_AUTO_DYNAMIC flag to participate in automatic

scheduling. Static vs. dynamic automatic scheduling provides

a tradeoff between speed and optimality, which is explained in

Section V. Command queue properties can also specify sched-

uler triggers to control the scheduling frequency and schedul-

ing code regions. For example, the SCHED_KERNEL_EPOCH
flag denotes that scheduling should be triggered after a

batch of kernels (kernel epoch) is synchronized and not

after individual kernels. The SCHED_EXPLICIT_REGION
flag denotes that scheduling for the given queue is triggered

between explicit start and end regions in the program, and

the new clSetCommandQueueSchedProperty OpenCL

command is used to mark the scheduler region and

set more scheduler flags if needed. Queue properties

may also be used to provide optimization hints to the

scheduler. Depending on the expected type of computa-

tion in the given queue, the following properties may

be used: SCHED_COMPUTE_BOUND, SCHED_MEM_BOUND,

SCHED_IO_BOUND, or SCHED_ITERATIVE. For example,

if the SCHED_COMPUTE_BOUND flag is used, the runtime
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chooses to perform minikernel profiling to reduce overhead

(see Section V).

The proposed command queue properties are meant to be

used as fine-tuning parameters for scheduling; their use by all

programmers is not mandatory. Advanced users may choose

to ignore all the properties completely and instead manually

schedule all the queues, whereas intermediate users may have

some knowledge of the program and may select a subset of

properties as runtime hints (e.g., SCHED_COMPUTE_BOUND
or SCHED_IO_BOUND) depending on the workload type.

Nonexperienced users may just use SCHED_AUTO_DYNAMIC
and ignore the rest of the properties, so that the runtime

decides everything for them, at the expense of a potentially

higher runtime overhead and lower performance.

C. Device-Specific Kernel Configuration

The parameters to the OpenCL kernel launch functions

include a command queue, a kernel object, and the kernel’s

launch configuration. The launch configuration is often de-

termined by the target device type, and it depends on the

device architecture. Currently, per-device kernel configuration

customization is possible only through custom conditional

programming at the application level. The device-specific

launch function forces the programmer to manually schedule

kernels on a device, which leads to poor programmability.

We propose a new OpenCL API function called

clSetKernelWorkGroupInfo to independently set

unique kernel configurations to different devices. The purpose

of this function is to enable the programmer to separately

express the different combinations of kernel configuration

and devices beforehand so that when the runtime scheduler

maps the command queues to the devices, it can also profile

the kernels using the device-specific configuration that was

set before. The clSetKernelWorkGroupInfo function

may be invoked at any time before the actual kernel launch.

If the launch configuration is already set before the launch

for each device, the runtime simply uses the device-specific

launch configuration to run the kernel on the dynamically

chosen device. We do not change the parameters to the

clEnqueueNDRangeKernel nor any other launch API,

but the kernel configuration parameters are ignored if they

are already set by using clSetKernelWorkGroupInfo.

D. Discussion on Compatibility

The function clCreateSubDevices from OpenCL 1.2

creates a group of cl_device_id subobjects from a

parent device object. Our solution works seamlessly with

cl_device_id objects that are returned either by the

OpenCL platform or by the cl_device_id objects that are

created by clCreateSubDevices. Our example scheduler

handles all cl_device_id objects and makes queue–device

mapping decisions uniformly.

Since our solution involves the most basic OpenCL objects

(e.g., contexts, command queues, and kernels), our work is

compatible with all OpenCL versions (1.0, 1.1, 1.2, and 2.0).

Our work does not rely on characteristics of particular OpenCL

versions, thus making it a generic and forward-compatible

solution. New OpenCL 2.0 features, such as on-device queues,

are worthy of separate studies and left for future work.

V. THE MULTICL RUNTIME SYSTEM

In this section, we explain the design of the MultiCL

runtime system and discuss key optimization tradeoffs.

A. Design

The SnuCL runtime creates a scheduler thread per user

process, but the default scheduler thread statically maps the in-

coming commands to the explicitly chosen target device—that

is, manual scheduling. MultiCL is our extension of the SnuCL

runtime, with the added functionality of automatic command

queue scheduling support to OpenCL programs. MultiCL’s

design is depicted in the left portion of Figure 1. The user’s

command queues that are created with the SCHED_OFF flag

will be statically mapped to the chosen device, whereas those

that have the SCHED_AUTO flag are automatically scheduled

by MultiCL. Further, the user-specified context property (e.g.,

AUTO_FIT) determines the scheduling algorithm for the pool

of dynamically mapped command queues. Once a user queue

is mapped to the device, its commands are issued to the

respective device-specific queue for final execution.

The MultiCL runtime consists of three modules: (1) device

profiler, where the execution capabilities (memory, compute,

and I/O) of the participating devices are collected or inferred;

(2) kernel profiler, where kernels are transformed and their

execution times on different devices are measured or projected;

and (3) device mapper, where the participating command

queues are scheduled to devices so that queue completion

times are minimal. The OpenCL functions that trigger the

respective modules are shown in the right portion of Figure 1.

Device Profiler: The device profiler, which is invoked

once during the clGetPlatformIds call, retrieves the

static device profile from the profile cache. If the profile cache

does not exist, then the runtime runs data bandwidth and

instruction throughput benchmarks and caches the measured

metrics as static per-device profiles in the user’s file system.

The profile cache location can be controlled by environment

variables. The benchmarks are derived from the SHOC bench-

mark suite [18] and NVIDIA SDK and are run for data sizes

ranging from being latency bound to bandwidth bound. Bench-

marks measuring host-to-device (H2D) bandwidths are run for

all the CPU socket–device combinations, whereas the device-

to-device (D2D) bandwidth benchmarks are run for all device–

device combinations. These benchmarks are included as part

of the MultiCL runtime. Bandwidth numbers for unknown data

sizes are computed by using simple interpolation techniques.

The instruction throughput of a device (or peak flop rate) can

also be obtained from hardware specifications and manually

included in the device profile cache. The benchmarks are run

again only if the system configuration changes, for example,

if devices are added or removed from the system or the

device profile cache location changes. In practice, however, the
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Fig. 1: Left: MultiCL runtime design and extensions to SnuCL. Right:
Invoking MultiCL runtime modules in OpenCL programs.

runtime just reads the device profiles from the profile cache

once at the beginning of the program.

Kernel Profiler: Kernel execution times can be esti-

mated by performance modeling or performance projection

techniques, but these approaches either are done offline or

are impractical because of their large runtime overheads. We

follow a more practical approach in that we run the kernels

once per device and store the corresponding execution times

as part of the kernel profile. Arguably, this approach may

cause potential runtime overhead to the current programs;

in this section we therefore discuss several ways to mit-

igate the overhead. Our experiments (Section VI) indicate

that, upon applying the runtime optimizations, the runtime

overhead is minimal or sometimes negligible while the op-

timal device combinations are chosen for the given kernels.

Static kernel transformations, such as minikernel creation, are

performed during clCreateProgramWithSource and

clBuildProgram, whereas dynamic kernel profiling is

done at synchronization points or at user-defined code regions.

Device Mapper: Each clEnqueue- command is in-

tercepted by the device mapper, and the associated queue

is added to a ready queue pool for scheduling. We use

the per-queue aggregate kernel profiles and apply a simple

dynamic programming approach to determine the ideal queue-

device mapping that minimizes the concurrent execution time.

The dynamic programming approach guarantees ideal queue–

device mapping and, at the same time, incurs negligible

overhead because the number of devices in present-day nodes

is not high. Once the scheduler is invoked and maps the queue

to a device, the queue is removed from the queue pool, and

its commands are issued to the new target device. On the one

hand, the scheduler can actively be invoked for every kernel

invocation, but that approach can cause significant runtime

overhead due to potential cross-device data migration. On the

other hand, the runtime can simply aggregate the profiled

execution costs for every enqueue command, and the scheduler

can be invoked at synchronization epoch boundaries or at any

other user-specified location in the program. The scheduler

options discussed in the previous section can be used to control

the frequency and location of invoking the scheduler, which

can further control the overhead vs. optimality tradeoff.

B. Static Command Queue Scheduling

Users can control which command queues participate

in static queue scheduling (SCHED_AUTO_STATIC)

and which of them are scheduled dynamically

(SCHED_AUTO_DYNAMIC). In the static command queue

scheduling approach, we use the device profiler and device

mapper modules of our runtime and do not perform dynamic

kernel profiling; in other words, we statically decide the

command queue schedules based only on the device profiles.

Users can select this mode as an approximation to reduce

scheduling overhead, but the optimal device may not be

selected certain times. The MultiCL runtime uses the

command queue properties (compute intensive, memory

intensive, or I/O intensive) as the selection criterion and

chooses the best available device for the given command

queue.

C. Dynamic Command Queue Scheduling

In the dynamic command queue scheduling approach, we

use the kernel profiling and device mapping modules of our

runtime and selectively use the device profiling data. That is,

we dynamically decide the command queue schedules based

only on the kernel and device profiles. Users can choose

runtime options to mitigate the runtime overhead associated

with dynamic kernel profiling.

1) Kernel Profile Caching for Iterative Kernels: We cache

the kernel profiles in memory as key–value pairs, where the

key is the kernel name and the value is its performance vector

on the devices. The cached kernel profiles are used to schedule

future kernel invocations. We define a kernel epoch as a

collection of kernels that have been asynchronously enqueued

to a command queue. Synchronizing after a kernel epoch on

the command queue will block until all the kernels in the epoch

have completed execution. We also cache the performance

profiles of kernel epochs for further overhead reduction. The

key for a kernel epoch is just the set of the participating kernel

names, and the value is the aggregate performance vector of

the epoch on all the devices. The user can provide runtime

options to batch schedule either kernel epochs or individual

kernels. Our approach significantly reduces kernel profiling

overhead.

Iterative kernels benefit the most because of kernel reuse.

Arguably, some kernels may perform differently across itera-

tions, however, or their performances may change periodically

depending on the specific phase in the program. To address

this situation, the user can set a program environment flag

to denote the iterative scheduler frequency, which tells our

scheduler when to recompute the kernel profiles and rebuild

the profile cache. In practice, we have found iterative kernels to

have the least overhead, because the overhead that is incurred

during the first iteration or a subset of iterations is amortized

over the remaining iterations.

2) Minikernel Profiling for Compute-Intensive Kernels:
While kernel profile caching helps iterative applications, non-

iterative applications still incur profiling overhead, a situation

that is especially true for compute-intensive kernels. To select
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1 __kernel void foo(...) {
2 /* MultiCL inserts the below transformation code
3 to run only the first workgroup (minikernel) */
4 if(get_group_id(0)+get_group_id(1)+get_group_id(2)!=0)
5 return;
6 /* ... actual kernel code ... */
7 }

Fig. 2: Minikernel transformation example.

the best device, we need to know only the kernel’s relative
performances and not necessarily the absolute kernel perfor-

mances. Therefore, we create a technique called minikernel
profiling, which is conceptually similar to our miniemulation

technique [19], where we run just a single workgroup of the

kernel on each participating device and collect the relative

performances in the kernel profiles. Our approach dramatically

reduces runtime overhead, as discussed in Section VI. The

minikernel profiling approach is best suited for those kernels

whose workgroups often exhibit similar behavior and share

similar runtime statistics, a situation typical of data-parallel

workloads. Minikernel profiling is enabled by using the

SCHED_COMPUTE_BOUND flag. However, users who want

more profiling accuracy for the given workload can simply

ignore the flag to enable full kernel profiling, but with some

runtime overhead.

To implement minikernel profiling, we cannot simply launch

a kernel with a single workgroup, because the kernel’s work

distribution logic may not guarantee a reduction in the profil-

ing overhead. Instead, we modify the source kernel to create

a minikernel, and we insert a conditional that allows just

the first workgroup to execute the kernel and force all the

other workgroups to return immediately (e.g., Figure 2). We

profile the minikernel with the same launch configuration as

the original kernel, so the kernel’s work distribution does not

change the amount of work done by the first workgroup. Our

approach thus guarantees reduction in the profiling overhead.

We intercept the clCreateProgramWithSource call

and create a minikernel object for every kernel. We build the

program with the new minikernels into a separate binary by

intercepting the clBuildProgram call. While this method

doubles the OpenCL build time, we consider this to be an

initial setup cost that does not change the actual runtime of the

program. We note also that the minikernel profiling approach

requires access to the kernel source in order to perform the

optimization.

3) Data Caching for I/O-Intensive Kernels: One of the

steps in kernel profiling is to transfer the input data sets

from the source device to each participating device before

profiling them. Clearly, the data transfer cost adds to the

runtime overhead. With n devices, the brute-force approach

involves making D2D data transfers n − 1 times from the

source device to every other device, followed by an intradevice

data transfer at the source. However, the current vendor drivers

do not support direct D2D transfer capabilities across vendors

and device types. Thus, each D2D transfer is performed as a

D2H-H2D double operation via the host memory, which means

that there will be n − 1 D2H and n − 1 H2D operations.1

Recognizing, however, that the host memory is shared among

all the devices within a node, we optimize the data transfer

step by doing just a single D2H copy from the source device

to the host, followed by n−1 H2D data transfers. In addition,

we cache the incoming data sets in each destination device

so that if our device mapper decides to migrate the kernel to

a different target device, the required data is already present

in the device. With this optimization, however, we trade off

increased memory footprint in each device for less data-

transfer overhead.

VI. EVALUATION

We describe the experimental setup and demonstrate the

efficacy of our runtime optimizations using a benchmark suite

and a real-world seismology simulation application.

A. Experimental Setup

Our experimental compute node has a dual-socket oct-

core AMD Opteron 6134 (Magny-Cours family) processor

and two NVIDIA Tesla C2050 GPUs, thus forming three

OpenCL devices (1 CPU and 2 GPU devices). Each CPU

node has 32 GB of main memory, and each GPU has 3 GB of

device memory. We use the CUDA driver v313.30 to manage

the NVIDIA GPUs and the AMD APP SDK v2.8 to drive

the AMD CPU OpenCL device. The network interface is

close to CPU socket 0, and the two NVIDIA GPUs have

affinity to socket 1, which creates nonuniform host–device and

device–device distances (and therefore data transfer latencies)

depending on the core affinity of the host thread. The MultiCL

runtime scheduler incorporates the heterogeneity in compute

capabilities as well as device distances when making device

mapping decisions.

B. Applications and Results

We first present our evaluation of the NAS Parallel Bench-

marks. We then discuss the results we obtained for the

seismology application.

1) NPB: The NAS Parallel Benchmarks (NPB) [20] are

designed to help evaluate current and future parallel super-

computers. The SnuCL team recently developed the SNU-NPB

suite [21], which consists of the NPB benchmarks ported to

OpenCL. The SNU-NPB suite also has a multidevice version

of the OpenCL code (SNU-NPB-MD) to evaluate OpenCL’s

scalability. SNU-NPB-MD consists of six applications: BT,

CG, EP, FT, MG, and SP. The OpenCL code is derived from

the MPI Fortran code that is available in the “NPB3.3-MPI”

suite and is not heavily optimized for the GPU architecture.

For example, Figure 3 shows that for the single-device version,

most of the benchmarks run better on the CPU but the degree

of speedup varies, whereas EP runs faster on the GPU. These

results mean that the device with the highest theoretical peak

performance and bandwidth—that is, the GPU—is not always

the best choice for a given kernel.

1GPUDirect for NVIDIA GPUs has markedly limited OpenCL support.
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Each SNU-NPB-MD benchmark has specific restrictions on

the number of command queues that can be used depending

on its data and task decomposition strategies, as documented

in Table II. Also, the amount of work assigned per command

queue differs per benchmark. That is, some create constant

work per application, and the work per command queue

decreases for more queues; others create constant work per

command queue, and the work per application increases for

more queues. To use more command queues than the available

devices in the program, one could write a simple round-

robin queue–device scheduler, but an in-depth understanding

of the device architecture and node topology is needed for

ideal scheduling. Also, some kernels have different device-

specific launch configuration requirements depending on the

resource limits of the target devices; and, by default, these

configurations are specified only at kernel launch time. More-

over, such kernels are conditionally launched with different

configurations depending on the device type (CPU or GPU). In

order to dynamically choose the ideal kernel–device mapping,

a scheduler will need the launch configuration information for

all the target devices before the actual launch itself.

We enable MultiCL’s dynamic command queue scheduling

by making the following simple code extensions to each

benchmark: (1) we set the desired scheduling policy to the

context during context creation, and (2) we set individual

command queue properties as runtime hints at command queue

creation or around explicit code regions. In some kernels, we

also use the clSetKernelWorkGroupInfo function to

separately express the device-specific kernel launch config-

urations to the runtime, so that the scheduler can have the

flexibility to model the kernel for a particular device along

with the correct corresponding kernel launch configuration.

These simple code changes, together with the MultiCL runtime

optimizations, enable the benchmarks to be executed with ideal

queue–device mapping. The application developer has to think

only about the data-task decompositions among the chosen

number of command queues and need not worry about the

underlying node architecture.

Table II also shows our chosen MultiCL scheduler op-

tions for the different benchmarks. The iterative bench-

marks typically have a “warmup” phase during the loop

iterations, and we consider them to be ideal candidates

for explicit kernel profiling because they form the most

representative set of commands that will be consistently

submitted to the target command queues. For such iter-

ative benchmarks, we set the command queues with the

SCHED_EXPLICIT_REGION property at creation time and

trigger the scheduler explicitly around the warmup code

region. We call clSetCommandQueueSchedProperty
with the SCHED_AUTO and SCHED_OFF flags to start

and stop scheduling, respectively. Other code regions were

not considered for explicit profiling and scheduling because

they did not form the most representative command set

of the benchmark. We also did not choose the implicit
SCHED_KERNEL_EPOCH option for iterative benchmarks

because the warmup region spanned across multiple kernel

TABLE II: SNU-NPB-MD benchmarks, their requirements, and our
custom scheduler options.

Bench. Classes Cmd. Queues OpenCL Scheduler Option(s)

BT
S,W,A, Square: 1,4 SCHED_EXPLICIT_REGION,
B clSetKernelWorkGroupInfo

CG
S,W,A, Power of 2:

SCHED_EXPLICIT_REGION
B,C 1,2,4

EP
S,W,A, Any: 1,2,4 SCHED_KERNEL_EPOCH,
B,C,D SCHED_COMPUTE_BOUND

FT S,W,A
Power of 2: SCHED_EXPLICIT_REGION,
1,2,4 clSetKernelWorkGroupInfo

MG
S,W,A, Power of 2:

SCHED_EXPLICIT_REGION
B 1,2,4

SP
S,W,A, Square: 1,4

SCHED_EXPLICIT_REGION
B,C
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Fig. 3: Relative execution times of the SNU-NPB benchmarks on
CPU vs. GPU.

epochs and the aggregate profile of the region helped generate

the ideal queue–device mapping. On the other hand, the

EP benchmark (random number generator) is known to be

very compute intensive and not iterative. At command queue

creation time, we simply set the SCHED_KERNEL_EPOCH
and SCHED_COMPUTE_INTENSIVE properties as run-

time hints, which are valid for the queue’s lifetime. In

the BT and FT benchmarks, we additionally use our

proposed clSetKernelWorkGroupInfo OpenCL API

(see Section IV) to set CPU- and GPU-specific kernel

launch parameters. The parameters that are later passed to

clEnqueueNDRangeKernel are ignored by the runtime.

This approach decouples the kernel launch from a particular

device, thus enabling the runtime to dynamically launch ker-

nels on the ideal device with the right device-specific kernel

launch configuration.

We evaluate each benchmark with problem sizes from the

smallest (S) to the largest problem size that fits on each

available device, as specified in Table II. Figure 4 shows a

performance comparison of automatic scheduling performed

by MultiCL with manual round-robin techniques as the base-
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Fig. 4: Performance overview of SNU-NPB-MD for manual and
our automatic scheduling. Number of command queues: 4; available
devices: 1 CPU and 2 GPUs.
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4; available devices: 1 CPU and 2 GPUs.

line. The benchmark class in the figure denotes the largest

problem size for that application that could fit on the device

memories, and each benchmark uses four command queues.

One can schedule four queues among three devices (2 GPUs

and 1 CPU) in 34 ways, but for our demonstration purpose we

showcase a few explicit schedules that we consider are more

likely to be explored by users: (1) CPU-only assigns all four

command queues to the CPU; (2) GPU-only assigns all four

command queues to one of the GPUs; (3) round-robin (GPUs)

assigns two queues each to the two GPUs; (4) round-robin #1

assigns two queues to one GPU, one queue to the other GPU,

and one queue to the CPU; and (5) round-robin #2 assigns two

queues to the CPU and one queue to each GPU. Since five

benchmarks perform better on the CPU and EP works best

on the GPU, we consider some of the above five schedules to

form the best and worst queue–device mappings and expect

the MultiCL scheduler to automatically find the best queue–

device mapping.

We define the profiling overhead of our scheduler as the

difference between the performance obtained from the ideal

queue–device mapping and that obtained from the scheduler

driven queue–device mapping, expressed as a percentage of

the ideal performance, that is,
Tscheduler map−Tideal map

Tideal map
∗100.

Figure 4 shows that automatic scheduling using the MultiCL

runtime achieves near-optimal performances, which indirectly

means ideal queue–device mapping. The geometric mean of

the overall performance overhead is 10.1%. The overhead of

FT is more than that of the other benchmarks, and we analyze

this overhead in the next paragraph. Figure 5 shows how the

performance model in MultiCL’s scheduler has distributed the

kernels among the available devices. A close comparison with

the benchmarks’ CPU vs. GPU performance from Figure 3

indicates that our scheduler maps queues to devices in a near-

ideal manner. For example, Figure 3 indicates that the BT and

MG benchmarks perform much better on the CPU than on the

GPU, and Figure 5 indicates that our scheduler has assigned

most of the kernels from all iterations to the CPU and almost

none to the GPU. Similarly, EP performs best on the GPU

(Figure 3), and we see that our scheduler has assigned all the

kernels to the GPU. The other benchmarks are still better on

the CPU but to a lower degree; and thus we see that the CPU
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Fig. 7: Effect of data caching in reducing profiling overhead for the
FT (Class A) benchmark.

still gets a majority of the kernels but that the GPUs also

get their share of work. We see similar trends for the other

problem classes and other command queue numbers as well,

but for brevity we have not included them in the paper.

Effect of Data Transfer Overhead in Scheduling: The

FT benchmark distributes the input data among the available

command queues; that is, the data per queue decreases as

the number of queues increases. The MultiCL runtime per-

forms kernel profiling only once per device for performance

estimation; hence, the cost is amortized for more command

queues, and our profiling overhead reduces. While Figure 4

indicates that the profiling overhead in FT is about 45% when

compared with the ideal queue–device mapping and when four

command queues are used, Figure 6 indicates that the profiling

overhead decreases with increasing command queues. Further,

Figure 7 indicates that our data-caching optimization caches

the profiled data on the host and reduces the D2D transfer

overhead consistently by about 50% during kernel profiling.

Although the other benchmarks work on similar data footprints

in memory, they do not transfer as much data as FT does, and

thus they exhibit apparently negligible data transfer overhead

while scheduling.

Effect of Minikernel Profiling in Scheduling: The EP

benchmark does random number generation on each device
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Fig. 8: Impact of minikernel profiling for the EP benchmark.
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and is highly compute intensive, and the CPU (nonideal de-

vice) can be up to 20× slower than the GPU (ideal device) for

certain problem sizes. Since the full kernel profiling approach

runs the entire kernel on each device before device selection,

the runtime overhead compared with that of the ideal device

combination can also be about 20×, as shown in Figure 8.

Moreover, running the full kernel means that the profiling

overhead increases for larger problem sizes. On the other

hand, our minikernel profiling approach just runs a single

workgroup on each device, and we can see that it incurs a

constant profiling overhead for any problem size. Minikernel

profiling thus dramatically reduces the profiling overhead to

only about 3% for large problem sizes, while making optimal

device mapping. We perform minikernel profiling for all the

other benchmarks as well; but since they are not as compute

intensive as EP, the apparent benefits are negligible.

Summary: We make parametric changes to at most four

OpenCL functions in existing benchmarks and trigger the

MultiCL runtime to automatically schedule the command

queues and map them to the ideal combination of devices.

We choose the autofit global scheduler for the context, while

the command queues choose either the explicit region or

kernel epoch local scheduler options. The MultiCL scheduler

performs static device profiling to collect the device distance

metrics, performs dynamic kernel profiling to estimate the

kernel running costs, and then computes the aggregate cost

metric from the data transfer and kernel execution costs. We

derive the data transfer costs based on the device profiles, and

the kernel profiles provide the kernel execution costs. We use

the aggregate cost metric to compute the ideal queue–device

mapping.

2) Seismology Modeling Simulation: FDM-Seismology is

an application that models the propagation of seismological

waves based on the finite-difference method by taking the

Earth’s velocity structures and seismic source models as in-

put [22]. The application implements a parallel velocity-stress,

staggered-grid finite-difference approach for propagation of

waves in a layered medium. In this method, the domain is

divided into a three-dimensional grid, and a one-point integra-

tion scheme is used for each grid cell. Since the computational

domain is truncated in order to keep the computation tractable,

absorbing boundary conditions are placed around the region of

interest to keep the reflections minimal when boundaries are

impinged by the outgoing waves. This strategy helps simulate

unbounded domains. The simulation iteratively computes the

velocity and stress wavefields within a given subdomain.

Moreover, the wavefields are divided into two independent

regions, and each region can be computed in parallel. The

reference code of this simulation is written in Fortran [23].

For our experiments, we extend an existing OpenCL im-

plementation [24] of the FDM-Seismology simulation as the

baseline. The OpenCL implementation divides the kernels into

velocity and stress kernels, where each of these sets computes

the respective wavefields at its two regions. The velocity

wavefields are computed by using 7 OpenCL kernels, 3 of

which are used to compute on region-1 and the other 4 kernels
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Fig. 9: FDM-Seismology performance overview.

to compute on region-2. Similarly, the stress wavefields are

computed by using 25 OpenCL kernels, 11 of which compute

on region-1 and 14 kernels compute on region-2. We have

two OpenCL implementations of the simulation: (1) column-
major data, which directly follows Fortran’s column major

array structures, and (2) row-major data, which uses row major

array structures and is more amenable for GPU execution.

Moreover, since the two wavefield regions can be computed

independently, their corresponding kernels are enqueued to

separate command queues. In our experimental system, the

two command queues can be scheduled on the three OpenCL

devices in 32 different ways. Figure 9 demonstrates the per-

formance of both versions of the kernels on different device

combinations. We see that the column-major version performs

best when all the kernels are run on a single CPU and

performs worst when all of them are run on a single GPU;

the performance difference between the two queue–device

mappings is 2.7×. On the other hand, the row-major version

is best when the command queues are distributed across two

GPUs and is 2.3× better than the performance from the worst-

case mapping of all kernels on a single CPU.

We compare the performance of two global contextwide

schedulers, round robin and autofit, by simply setting the con-

text property to either the ROUND_ROBIN or AUTO_FIT val-

ues, respectively. FDM-Seismology has regular computation

per iteration, and each iteration consists of a single synchro-

nization epoch of kernels. Thus, as our local scheduler, we can

either choose the implicit SCHED_KERNEL_EPOCH at queue

creation time or choose the SCHED_EXPLICIT_REGION
and turn on automatic scheduling explicitly just for the first it-

eration by using clSetCommandQueueSchedProperty.

We use the SCHED_KERNEL_EPOCH option in our experi-

ments, but the final mapping and profiling overhead is expected

to be the same for the other option as well. Figure 9 shows

that the autofit scheduler maps the devices optimally for both

code versions. The performance of the autofit case is similar

to the CPU-only case for the column-major code and is similar

to the dual-GPU case for the row-major version of the code,

with a negligible profiling overhead of less than 0.5%. On

the other hand, the round-robin scheduler always chooses to

split the kernels among the two GPUs and hence does not

provide the best combination for the column-order version

of the code. Figure 10 shows that for the autofit scheduler,

although the first iteration incurs runtime overhead, the added

cost gets amortized over the remaining iterations.
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C. Programmability Benefits

For all our experiments, we modified about four lines

of code in the entire program, on average.2 The user is

required to add new context properties to set the global

scheduling policy and set the command queue proper-

ties for local policies and runtime scheduler hints. The

remaining runtime features are optional, such as using

clSetCommandQueueProperty to explicitly control the

local policy and clSetKernelWorkGroupInfo to specify

device-specific kernel launch configurations. We have shown

that with minimal code changes to a given OpenCL program,

our scheduler can automatically map the command queues to

the optimal set of devices, thereby significantly enhancing the

programmability for a wide range of benchmarks and real-

world applications. Our scheduler is shown to incur negligible

overhead for our seismology simulation test cases.

VII. CONCLUSION

We have proposed extensions to the OpenCL specification

to control the scheduling both globally at the context level

and locally at the command queue level. We have designed

and implemented MultiCL, a runtime system that leverages

our OpenCL scheduling extensions and performs automatic

command queue scheduling capabilities for task-parallel work-

loads. Our runtime scheduler includes static device profiling,

dynamic kernel profiling, and dynamic device mapping. We

have designed novel overhead reduction strategies including

minikernel profiling, reduced data transfers, and profile data

caching. Our experiments on the NPB benchmarks and a real-

world seismology simulation (FDM-Seismology) demonstrate

that the MultiCL runtime scheduler always maps command

queues to the optimal device combination, posing an av-

erage runtime overhead of 10% for the NPB benchmarks

and negligible overhead for FDM-Seismology application.

New OpenCL 2.0 features, such as on-device queues, are

worthy of separate in-depth studies and left as future work.

Our proposed OpenCL extensions and the associated runtime

optimizations enable users to focus on application-level data

and task decomposition rather than device-level architectural

details and device scheduling.
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