
Lessons Learned Implementing User-Level Failure
Mitigation in MPICH

Wesley Bland, Huiwei Lu, Sangmin Seo, Pavan Balaji
Argonne National Laboratory

Mathematics and Computer Science Division
Argonne, IL USA

{wbland, huiweilu, sseo, balaji}@anl.gov

Abstract—User-level failure mitigation (ULFM) is becoming
the front-running solution for process fault tolerance in MPI.
While not yet adopted into the MPI standard, it is being
used by applications and libraries and is being considered by
the MPI Forum for future inclusion into MPI itself. In this
paper, we introduce an implementation of ULFM in MPICH,
a high-performance and widely portable implementation of the
MPI standard. We demonstrate that while still a reference
implementation, the runtime cost of the new API calls introduced
is relatively low.

I. INTRODUCTION

In an effort to introduce a standardized way of handling
fail-stop process failures that have become increasingly com-
mon on large-scale hardware, the MPI Forum is investigating
the user-level failure mitigation (ULFM) [3] proposal put forth
by the Fault Tolerance Working Group. The proposal defines
the mechanisms necessary to implement fault tolerance in
applications and libraries in order to allow applications to
continue execution after failures.

In this paper, we investigate the challenges faced while
implementing ULFM in MPICH and demonstrate how such
challenges were overcome. We describe novel failure discovery
mechanisms, internal tracking, and algorithmic implementa-
tions. We also demonstrate that because of the tight coordina-
tion between layers in the MPICH architecture, we are able to
simplify internal tracking of communication object status and
to propagate failures across the entire user application quickly,
compared with existing implementations [1].

The remainder of the paper is organized as follows. Sec-
tion II discusses some of the background work with ULFM
and what the ULFM proposal covers; Section III discusses the
implementation of ULFM in MPICH [2]; Section IV demon-
strates the performance of our implementation; Section V
summarizes our conclusions and proposes some future work.

II. BACKGROUND

ULFM was designed as a way to allow both applications
and libraries to implement resilience mechanisms with MPI.
While applications can use it to develop their own application-
specific solutions, the original intention of ULFM (as with
MPI itself) was to encourage libraries to implement generic
solutions for MPI fault tolerance that could be portable to
other applications and MPI implementations. In this section,
we discuss the ULFM proposal as well as other work being
done related to ULFM.

A. ULFM Specification

At the time of writing, ULFM has yet to be adopted by the
MPI Forum as part of the MPI standard. The specification is
largely stable, however, and has been available to users since
2012. While the current version focuses on communicator-
based operations and defers one-sided and file I/O operations
to follow-on specifications, the available document [1] includes
the entire proposed specification. ULFM defines a limited set
of new operations with the intention that they would be the
low-level API for other fault-tolerant libraries. The operations
are divided into four categories: failure notification, failure
discovery, failure propagation, and failure recovery.

For failure notification, no functions are actually necessary.
Instead, failures are reported via the return codes of all MPI
communication operations. If a process failure prevents an
operation from fulfilling its defined specification, it will return
the error class MPI_ERR_PROC_FAILED. This signals to
the user that the operation did not complete successfully and
the user needs to take some action to repair the application
or continue with fewer processes. An important tenet of
ULFM is to preserve failure-free performance, something it
accomplishes by defining failure notification as local. When a
failure is reported to one process via the return code or error
handler, there is no guarantee that other processes will receive
the same notification. When such global knowledge is required,
failure discovery functions must be used.

For the application to discover which processes in
a communicator have failed, it needs to use a combi-
nation of two functions: MPI_COMM_FAILURE_ACK and
MPI_COMM_FAILURE_GET_ACKED. These together provide
the application with an MPI group containing all failed pro-
cesses in the communicator. As mentioned already, this group
is not guaranteed to be consistent across all processes. One
way to ensure global knowledge of failures is to use the
function MPI_COMM_AGREE. This function propagates failure
knowledge to all participating processes, ensuring that future
failure discovery calls will contain at least the processes that
have failed up to this point. It also performs a fault-tolerant
agreement among alive processes to determine the bitwise
“and” value of an integer provided as an argument. This allows
the application to do its own fault tolerance logic at points
where synchronization is necessary, such as the end of an
algorithm.

Failure propagation ensures that other processes that need
to know about failures receive that knowledge. While some



of this is automatic when failures prevent an operation
from completing normally, manual propagation is necessary
at times to prevent incorrect application behavior or dead-
locks. For such cases, MPI_COMM_REVOKE is provided. With
this function, a single process causes the communicator to
become invalid for communication for all other processes.
This function will cause all other processes to eventually
be unable to use the communicator for anything other than
local operations. All nonlocal operations will return the error
code MPI_ERR_REVOKED. While this function has a strong
effect on all ranks, it is sometimes necessary because of the
limited automatic propagation of errors that MPI provides.
Two operations will still complete on a communicator that has
been revoked: MPI_COMM_AGREE and MPI_COMM_SHRINK
(described next).

Recovery can happen in various ways. If collective commu-
nication is not required, recovery may not be necessary at all:
discovering the location of the failure and excluding that pro-
cess from further operations could be sufficient. For most ap-
plications, however, communication must be repaired in some
way. In such a case, a new MPI communicator must be created
on which further communication will take place. To this end,
ULFM proposes the new function MPI_COMM_SHRINK. This
function internally determines the group of failed processes
and creates a new communicator based on another communica-
tor that excludes those processes. This function is not complete
for all forms of recovery, however. For instance, applications
may require that failed processes be replaced in order to
maintain computational capacity, or that processes retain their
original ranks within the MPI communicator. Existing MPI
calls can be used to accomplish these supplementary needs
(MPI_COMM_SPAWN and MPI_COMM_SPLIT, respectively).

B. Related Work

Currently only one other publicly available implementation
of the ULFM specification exists. This version is based on a
branch of Open MPI from 2012 and is being developed by a
team at the University of Tennessee’s Innovative Computing
Laboratory [1]. While we do not intend to invalidate the
work done on that implementation, we are making ULFM
available more publicly in an official release of MPICH.
Because MPICH is used as the basis for many derivative imple-
mentations (MVAPICH, Intel MPI, IBM’s MPI products, Cray
MPI, etc.), implementing ULFM in MPICH will also expedite
adoption more widely by large-scale MPI implementations.

Previous attempts have been made to implement fault
tolerance in MPI. The most well known is FT-MPI [4],
which began from similar ideas but explored more automated
recovery rather than allowing the user to have more control.
More recently, other projects have investigated MPI fault toler-
ance, including FA-MPI [6], which implements MPI resilience
through transactions, and Red MPI [5], which achieves soft
error resilience by executing MPI jobs redundantly.

III. IMPLEMENTATION

The implementation of ULFM provided in MPICH is
designed to be a reference implementation, not optimized for
any particular platform. MPICH derivatives generally optimize
individual operations for their targeted platform, something

that can easily be done for all of the new features provided by
ULFM. This section gives details about the implementation
of the new ULFM API and accompanying runtime changes
required by the specification.

A. Failure Notification

Before any API can be implemented for ULFM, the
underlying runtime layer must be able to accurately detect
failures and report them to the user. In MPICH, one of the
ways this is handled is by the process manager, Hydra. Hydra
handles launching, monitoring, and shutting down MPI jobs
by running as a set of daemons on each node, independent
of the application execution. They are started just before the
application is launched and cleaned up as the application shuts
down. For faults that do not cause an entire node to fail,
the local Hydra daemon will detect the failure with tradi-
tional Unix process management tools such as the abnormal
termination of its child process. If the fault does cause a
full-node failure, it is detected via the connections between
daemons. These connections are persistent, and their abnormal
termination signals the system that a failure has occurred.
Currently, Hydra supports only a flat topology for its launcher,
which has each daemon connect back to the main mpiexec
process. Thus, the process manager’s communication topology
does not need to be repaired after a failure. Ongoing work on
a next-generation process manager may change this situation
in the future, however.

Failures are also discovered by the MPICH runtime itself.
MPICH uses modules called netmods as the low-level data
transportation code. These netmods provide their own error
checking and notification, which is propagated back up through
the network stack via internal request objects that track each
communication operation. When a failure is detected, the re-
quest object is marked, and the internal communication objects
are updated appropriately to track whether certain operations
are allowed. For instance, after a failure, all communicators
that contain the failed process can no longer be used for
operations that use MPI_ANY_SOURCE. Because MPICH uses
integers as internal identifiers for its communication objects,
finding all affected MPI communicators is trivial, something
that is more complex in those implementations that do not
maintain ways to easily track internal communication objects.

Another complexity of failure notification comes from
nonblocking operations when calling one of the MPI comple-
tion functions that accepts a list of MPI_Request objects
(i.e., MPI_TESTALL, MPI_TESTSOME, MPI_TESTANY,
MPI_WAITALL, MPI_WAITSOME, MPI_WAITANY). In such
a scenario, some requests might have failed directly,
such as an MPI_IRECV from rank 1 when rank 1
has failed. In this case, all other request objects in the
same operation must also return with a new error code,
MPI_ERR_PROC_FAILED_PENDING. This error code is in-
tended to notify the user of a failure, but not complete the
request, meaning that the user should be able to continue
such a request in the future. Such a situation requires careful
management of the request queue within MPICH. We handle
this situation by signaling the progress engine that request
operations have completed and then checking for the situation
at the MPI level. If no failure exists, the MPI level re-enters
the progress engine to complete the call later. Otherwise, the



MPI call marks the requests with the appropriate error code
and returns to the user. We use a similar technique to handle
nonblocking operations that specify MPI_ANY_SOURCE as
their source.

B. Agreement

MPI_COMM_AGREE accomplishes multiple tasks simul-
taneously. First, all processes must determine a consis-
tent view of which processes in the communicator have
failed. If that set is not the same, they must all return
MPI_ERR_PROC_FAILED. We accomplished this by per-
forming a simple reduction to a single rank to determine the
group of failed processes, then broadcasting the resulting group
back out to the other processes. Once the reduction has taken
place, the group that the single rank contains is the one that
will be used for the remainder of the algorithm. If any new
failures are detected before the entire function is completed,
they will be reported to the user with an error.

After the group of failed processes is determined and all
ranks agree on a consistent group, another allreduce is done to
perform a bitwise AND on the value of the flag passed into the
agreement call. This operation is simple in MPICH because all
allreduce functions are based on an operation that takes a group
as an argument. The final piece of the operation is to ensure
that all ranks return a consistent return code. This is done with
a final allreduce in which all processes contribute the error
code from the previous reduction. If any process contributes an
error code other than success, all processes will see the result
and collectively return a non-success error code. Otherwise,
all processes will return MPI_SUCCESS and exit.

C. Revocation

Implementing revoke was one of the trickiest parts of
ULFM. The challenge is to issue a command that will even-
tually reach all processes in a communicator but will not
revoke other communicators. The most difficult piece of the
implementation is to ensure that revoke messages will not
impact future communicators. If the revoke messages are still
being received at some point in the future because of message
delay, they must not cause that communicator to also be
revoked, including one that reuses the same context ID (the
internal identifier of a communicator) as the communicator
being revoked.

The basic implementation of our revocation involves per-
forming a message flood between all alive processes in a
communicator. When a process calls MPI_COMM_REVOKE,
it send a message to all other processes in the communicator
announcing the revoke call. Whenever another process receives
the revoke message, it will also send a message to all other
processes to indicate that it has received the revoke command
and has also revoked its own communicator. By implementing
the revocation as a message flood, we solve the problem
of protecting future use of the same context ID from also
being revoked. No process will release its use of a context
ID until it has received a message from all other processes
in a communicator indicating that they too have revoked their
own communicators. Once a process has received the correct
number of notifications, it releases its use of the internal
context ID, and it becomes available for future allocation. By

treating a failure notification as a revoke in this algorithm, we
also prevent failed processes from causing a deadlock by not
participating in the revoke algorithm. When a process receives
a failure notification, it decrements the counter keeping track
of the expected number of revoke messages.

In addition to correctly propagating the revoke messages,
our implementation must also correctly clean up ongoing oper-
ations. MPICH has a small number of internal message queues
that the revoke operation traverses to cancel any operations on
the specified communicator. This process is implemented with
a simple search of the posted and unexpected message queues.

D. Communicator Shrinking

Shrinking the communicator is a multiphase process sim-
ilar to agreement. In the first phase, all processes must
determine the same group of failed processes. In the sec-
ond phase, all processes that have not failed construct a
communicator using the standard communicator construction
functions. The first phase is implemented in almost the
same way as in MPI_COMM_AGREE. The primary difference
in the implementation between MPI_COMM_SHRINK and
MPI_COMM_AGREE is that during shrinking, an undetected
failed process does not cause the operation to abort. Instead
the failure discovery phase is rerun until all processes form a
consistent group.

Once the group of failed processes is consistently cre-
ated, the alive processes construct the new communica-
tor via existing mechanisms in MPICH. This portion of
the code is actually the same as what is used to imple-
ment MPI_COMM_CREATE_GROUP, a communicator creation
function that takes an MPI group as an argument to determine
the participants in the new communicator. If this function fails
during its execution because of a new process failure, the entire
algorithm is restarted from the failure discovery.

IV. EVALUATION

Since this is a reference implementation, performance is
not the primary motivator of this work. Nevertheless, we
show initial performance results here in order to demon-
strate its viability as an unoptimized implementation of the
ULFM specification. We demonstrate MPI_COMM_AGREE and
MPI_COMM_SHRINK. Our tests were run using the Fusion
cluster at Argonne National Laboratory. Fusion is a 320-
node cluster with two 8-core Intel Nehalem processors and
36 GB of RAM per node per node and InfiniBand QDR
interconnect, although we use the MPICH TCP netmod for
these experiments. We repeated each test 30 times, removing
statistical outliers that can become prevalent during heavy
usage of the cluster.

A. Agreement Performance

To demonstrate the performance of MPI_COMM_AGREE,
we compare in Figure 1 three instances of the algorithm:
with no failures, with unacknowledged failures, and with ac-
knowledged failures. We see that the unacknowledged failures
version causes the worst performance. At first glance, one
might expect this version of the algorithm to be the fastest
because it allows the algorithm to leave early. However, we
must still complete the entire agreement even if a failure is



9

0

22.5

45

67.5

90

16 32 64 128 256 512

M
ill

is
ec

on
ds

 (m
s)

Processes

No Failures
Unack Failure
Acked Failure

Fig. 1: Runtime of Agreement

10

0

17.5

35

52.5

70

16 32 64 128 256 512

M
ill

is
ec

on
ds

 (m
s)

Processes

Dup
No Failure
One Failure

Fig. 2: Runtime of Shrink

detected in order to avoid a deadlock, so this version actually
has a higher runtime because it attempts to communicate with
the failed process repeatedly and triggers parts of the failure
notification code each time the failure is rediscovered.

This is same reason that the performance of the failure-
free execution and that of the acknowledged failure execution
is similar. Both codes still perform the failure discovery to
determine whether all processes have a consistent view of
the system, and both do not need to communicate with failed
processes. The version with a failure does have slightly fewer
processes with which to communicate, which removes a round
of communication for the recursive doubling algorithm used
by MPICH’s allreduce algorithm [7].

B. Shrink Performance

In Figure 2 we compare the performance of
MPI_COMM_SHRINK with that of the simplest communicator
creation function in MPI, MPI_COMM_DUP. First, we run
the shrink algorithm with no failures, demonstrating the
added overhead of a single round of failure discovery before
beginning the communicator creation algorithm. This shows
approximately 20% overhead at larger scales.

Second, we inject a failure at the point in the shrinking al-

gorithm that would cause the largest performance degradation,
immediately after the failure discovery. This will cause all the
processes to do the failure discovery portion at least twice: at
least once where some subset of the processes do not discover
the failure and once where all of the processes do discover
the failure. We see that the performance for this version of
the algorithm adds approximately 30% additional overhead
at larger scales for the processes to repeat the algorithm the
necessary number of times to converge on a set of alive
processes.

V. CONCLUSION

As the fault tolerance community converges on a proposal
for MPI to handle process failures, a wider variety of imple-
mentations must become available to ensure that ULFM can
be used on many systems. In this work, we have demonstrated
a new implementation in MPICH that provides all the func-
tionality with reasonable, though unoptimized, performance.

We plan to implement a more scalable algorithm for
the failure propagation used by both MPI_COMM_SHRINK
and MPI_COMM_AGREE. We also are working on various
application studies and libraries to improve the usability of
ULFM for application developers.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy Office of Science, Office of Advanced
Scientific Computing Research, under contract number DE-
AC02-06CH11357.

We gratefully acknowledge the computing resources pro-
vided on Fusion, a high-performance computing cluster oper-
ated by the Laboratory Computing Resource Center at Argonne
National Laboratory.

REFERENCES

[1] [Online]. Available: http://www.fault-tolerance.org
[2] P. Balaji, W. Bland, W. Gropp, R. Latham, H. Lu, A. J. Pena, K. Raf-

fenetti, R. Thakur, and J. Zhang, “MPICH Users Guide,” 2014.
[3] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J.

Dongarra, “An evaluation of user-level failure mitigation support in MPI,”
in Recent Advances in the Message Passing Interface. Springer, 2012,
pp. 193–203.

[4] G. E. Fagg and J. J. Dongarra, “FT-MPI: Fault tolerant MPI, supporting
dynamic applications in a dynamic world,” pp. 346–353, 2000.

[5] D. Fiala, F. Mueller, C. Engelmann, K. Ferreira, R. Brightwell, and
R. Riesen, “Detection and correction of silent data corruption for
large-scale high-performance computing,” in Proceedings of the 25th

IEEE/ACM International Conference on High Performance Computing,
Networking, Storage and Analysis (SC) 2012. Salt Lake City, UT, USA:
ACM Press, New York, NY, USA, Nov. 2012, pp. 78:1–78:12.

[6] A. Hassani, A. Skjellum, and R. Brightwell, “Design and evaluation
of fa-mpi, a transactional resilience scheme for non-blocking mpi,” in
Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP
International Conference on, June 2014, pp. 750–755.

[7] R. Thakur and W. D. Gropp, “Improving the performance of collective
operations in mpich,” in Recent Advances in Parallel Virtual Machine
and Message Passing Interface. Springer, 2003, pp. 257–267.


