
Toward Implementing Robust Support
for Portals 4 Networks in MPICH

Ken Raffenetti, Antonio J. Peña, Pavan Balaji
Argonne National Laboratory

Mathematics and Computer Science Division
Argonne, IL USA

{kraffenetti, apenya, balaji}@anl.gov

Abstract—The Portals 4 network specification is a low-level
API for high-performance networks developed by Sandia Na-
tional Laboratories, Intel Corporation, and the University of New
Mexico. Portals 4 is specifically designed to support both the MPI
and PGAS programming models efficiently by providing building
blocks upon which to implement their particular features. In this
paper we discuss our ongoing efforts to add efficient and robust
support for Portals 4 networks inside MPICH, and we describe
how the API semantics influenced our design. In particular,
we found the lack of reliability guarantees from the Portals
4 layer challenging to address. To tackle this situation, we
implemented an intermediate layer—Rportals (reliable Portals),
which modularizes the reliability functionality within our Portals
network module for MPICH. In this paper we present the
Rportals design and its performance impact.

I. INTRODUCTION

The Message Passing Interface (MPI) is the most widely
adopted parallel programming model on distributed-memory
high-performance computing (HPC) systems. Used for over 20
years, MPI has successfully adapted to each new generation
of supercomputer. MPI’s ability to adapt to new architectures
allows users to focus on application programming, without
needing to know the low-level details of the underlying
communication path, which may involve intra- and internode
communications on top of a variety of hardware, including,
for instance, coprocessor memory spaces. It is up to the MPI
library to best handle communication, and MPI implementers
to evaluate and test new research in that area.

In this paper we evaluate the Portals 4 network specifica-
tion for use in MPICH [1], a high-performance and widely
portable MPI implementation from Argonne National Labo-
ratory. MPICH is the default MPI library in 9 of the top 10
supercomputers in the current TOP500 list [10].

Portals 4 is a recently emerged application programming
interface (API) specifically designed for communication across
high-performance networks under the MPI and partitioned
global address space (PGAS) programming models. Influenced
by the matching between the Portals 4 semantics and the
MPICH network module (netmod) layer API, we have de-
signed a robust MPICH netmod for Portals 4. In this paper
we discuss the design and implementation details of our
approach. In particular, we find challenging the implementation
of reliable communication operations, which may fail inad-
vertently because of exhaustion of a variety of resources on
either endpoint of the communication. Handling these events is
explicitly left to the API user by the Portals 4 specification. In

this paper we discuss the way we are addressing this situation
and the performance implications of our solution, ultimately
derived from the Portals 4 API design.

II. PORTALS 4

Portals 4 [3] is a low-level network API for high-
performance networking developed by Sandia National Labo-
ratories, Intel Corporation, and the University of New Mexico.
Having gone through several iterations over the years, Portals 4
is designed to efficiently support an MPI implementation with
performance and scalability in mind. Our goal when adding
support for Portals 4 inside MPICH is to provide a correct,
easy-to-understand implementation following the recommen-
dations of the specification.

Portals 4 is designed to support both MPI and PGAS
programming models on HPC systems via a connection-
less, network-independent API. Communication is performed
through “portals”—constructs representing “an opening in the
address space of a process” according to the description in
the Portals 4 documentation. Unlike similar constructs such
as TCP sockets or Queue Pairs in InfiniBand verbs, a portal
is not restricted to connect a single pair of endpoints. The
Portals API provides semantics useful for both one-sided
(“put”, “get”) and two-sided (“matching put”, “matching get”)
communication models. These operations target list entries that
determine where data is placed. Completion of operations is
notified by events that can be read from one or more event
queues. Asynchronous progress of communication operations
is mandated by the Portals 4 specification. The reference
implementation accomplishes this via an explicit progress
thread on each process. Hardware implementations can provide
more efficient progress capabilities.

Matching operations in Portals are intended for use by
MPI two-sided communication. Operations over a matching
interface include a set of match bits that can be used to
encode MPI communication contexts, message tags, and any
other necessary information. Unexpected messages in MPI are
supported by an optional overflow list that can be used to
build an unexpected message queue. These features provide the
building blocks for an efficient two-sided MPI implementation.
On the other hand, one-sided MPI operations are naturally
implemented on top of the Portals 4 put/get primitives.

III. RELATED WORK

Previous work, such as OpenSHMEM [5] or GASNet [6],
has discussed support for PGAS projects on top of Portals. In



this paper, however, we focus on the other target programming
model of the Portals design: MPI.

The implementation of OpenMPI on top of the Portals
3.0 specification [7] leveraged an eager-based large-message
protocol that enforces the initiator of the communication to
wait for the remote endpoint to post the matching receive
operation, in contrast with our target read-based approach. In
addition, the lack of proper support for resource exhaustion
recovery on the Portals 3 API forced the MPI runtime to abort
the execution instead of attempting recovery.

After the release of the Portals 4.0 specification, flow
control capabilities were incorporated into this OpenMPI-
based implementation [4]. In addition to a credit-based ap-
proach, a receive-managed scheme conceptually similar to the
one we leverage for MPICH was presented. Flow control
recovery overhead, however, was not discussed on the paper,
claiming that well-designed applications should not trigger
this type of event. The current MPICH Nemesis design [8]
oriented to two-sided network interfaces leads us to adopt a
Portals 4 implementation based on a pool of receive buffers.
Since this design is prone to trigger flow control events, we
include an evaluation of flow control recovery overhead in our
experimental results.

Software-based flow control schemes for different network-
ing APIs have also been explored in the past, such as in
the MVAPICH MPICH derivative for InfiniBand interconnects,
analyzing different credit-based approaches [9]. Influenced by
the connected point-to-point–oriented communication of its
target communication API—a common factor on many low-
level HPC communication APIs and other related work on this
field—this work did not address multiendpoint connectionless
environments.

In this paper we present the key design and implementation
details of a Portals 4 network module specifically designed for
MPICH.

IV. DESIGN AND IMPLEMENTATION

In this section we first introduce the initialization details
of our new netmod. Next, we discuss our approach to support
two-sided communications, followed by our approach for the
one-sided primitives. We conclude this section by presenting
our reliability layer to handle flow control events.

A. Initialization

Portals requires initialization, such as interface selection,
before it can be used for communication in an application. We
combine this with MPI initialization in our implementation.

A memory descriptor covering the process’s whole address
space is bound to the interface. Since memory registration is
time-consuming, this blanket method is more desirable than a
more frequent, on-demand paging scheme. This method may
also allow for optimization at the Portals implementation level.

As introduced in Section II, one or more “portals” must
be allocated in order to communicate with other processes.
In our design, we allocate three portals. The first is for
basic data movement (send/receive) functionality, the second
is for MPICH control messages and one-sided operations,

(a) (b)

Fig. 1. Traditional (Left) and Get-based (Right) Rendezvous

and the third is for remote memory read (“get”) operations
to be used in large data transfers (see Section IV-B). These
portals generate events that MPICH uses to interpret the
state of communication. For MPICH to receive these events,
we allocate and bind a separate event queue (EQ) to each
portal. We allocate an additional EQ for events resulting from
“origin”-side operations (“put,” “get”). We discuss this design
in Section IV-D.

Each process then retrieves its unique address information
(node and process identifier) from Portals and publishes it via
the Process Management Interface (PMI) [2] in MPICH for
lookup by other connected processes.

B. Two-Sided Communication

Like most MPI implementations, MPICH utilizes two inter-
nal protocols for two-sided messages—eager and rendezvous.
In the following we revise how we implement those MPI-layer
protocols at the netmod layer.

The eager protocol is directly mapped to Portals 4 calls,
taking advantage of the MPI-oriented semantics of the Por-
tals 4 API: a single PtlPut operation is used to send data
to the receiver regardless of whether the receiver is expecting
the message. The target process uses a Portals matching list
entry to receive the data, either from the priority list or from
the unexpected list, depending on whether the message arrived
before or after the receive operation was posted.

The rendezvous protocol, on the other hand, is imple-
mented following a read/get-based approach [11], as illustrated
in Figure 1 along with the traditional implementation. This
contrasts with the eager-based approach of previous work on
the OpenMPI implementation [7].

C. One-Sided Communication

Our one-sided primitives make use of a separate portal
that is shared with MPICH control messages. Our approach
leverages a set of relatively small preposted receive buffers.
These are large enough to hold eager-sized messages. When
larger messages are to be exchanged, the sender places the
appropriate information in a target buffer to enable the receiver
side to initiate a “get” operation, as depicted in Figure 1b.
These receive buffers are reposted for after all associated
operations are finished and the acknowledging events pro-
cessed. In case an incoming message is attempted while all
buffers are in use, a flow control event is triggered, and



the Rportals layer is in charge of transparently and reliably
restoring communication (see Section IV-D). By default our
implementation deploys fifty 64 KB receive buffers.

This design is influenced by the two-sided orientation of
the current MPICH RMA implementation. After the ongoing
redesign effort toward purely one-sided approaches at all levels
of the MPICH stack is finished, our Portals 4 implementation
will be adapted accordingly.

D. Flow Control

The Portals specification defines reliable communication
between processes, although with some limitations. If certain
communication resources are exhausted, the affected portal
enters into a “flow control” state in which messages may be
dropped. Flow-control recovery must be done at the user level.
Portals does not directly provide any recovery mechanism.

Several scenarios may trigger flow control in Portals. An
application may run out of space in the event queue for new
entries or exhaust the number of allowed message headers
in the overflow list, for example. This situation causes the
portal to which the exhausted resource is bound to disable
and negatively acknowledge (NACK) all incoming messages.
In order to ensure all communication eventually completes, all
potential senders must be notified of the disabled portal so
they can resend any dropped messages. This requirement also
forces senders to save a copy of the sent data until they receive
the corresponding acknowledgment from the receiver side if
reliable communication is required. The Portals specification
recommends the use of an alternative portal to exchange
recovery messages and globally quiesce the network in order
to avoid interfering with the rest of the communications and
potentially disabled portals. We adopt this recommendation in
our design.

Our approach is to introduce an additional reliability layer,
Rportals, that implements wrappers for operations that are
affected by flow control. Rportals presents a clean, reliable API
to the netmod, hiding the details of flow control recovery inter-
nally. To accomplish this, we add wrappers for communication
operations (PtlPut, PtlGet) to add tracking overhead. We
also wrap PtlEQGet—the event retrieval function—to allow
Rportals to trap events specific to flow control and perform
recovery as follows (see Figure 2): (1) send pause messages
to any process that may target the disabled portal; (2) wait
for all processes to acknowledge the disabled portal, ensuring
that all dropped operations have been requeued; (3) process
sufficient events to relieve pressure on the exhausted resource;
and (4) send unpause messages.

Another preventative measure we adopt is to keep a sepa-
rate EQ for locally issued events. At Portals initialization time,
we query the maximum number of events a queue can hold
before going into flow control state. While we cannot ensure
that remote processes do not overflow an event queue, we can
use a credit-based scheme for origin-side events to ensure that
a process does not cause a flow control situation on itself.
Before any origin operation is posted, we first check whether
there are available credits, in which case the operation is issued
and the credit counter decremented. If there are not sufficient
credits, we process events in the queue, thus incrementing the
counter and allowing new operations to proceed.

Fig. 2. Flow Control Recovery

TABLE I. 1-BYTE LATENCY (µS)

TCP Portals 4 Rportals MXM
Pingpong 18.28 4.90 6.87 1.79
Put 36.10 8.79 13.05 6.64

V. EVALUATION

In this section we analyze our evaluation results for the
new MPICH Portals 4 netmod. For the evaluation we use
two nodes in the Breadboard cluster at Argonne National
Laboratory. Nodes consist of two Intel Xeon E5620 (four
core, 2.4 GHz) processors, and 24 GB of RAM. They are
connected by Mellanox MT26428 ConnectX HCAs. On the
software side, we use the most recent version available at the
development repositories of both MPICH and the Portals 4
reference implementation, dating from January 27, 2015, and
January 28, 2015, respectively. Our latency and bandwidth
evaluations are performed with the Intel MPI Benchmarks
(version 4.0) package. We include results for the TCP netmod,
our new Portals 4 netmod, and the MXM1 netmod.

a) Initialization: We have measured the initialization
time (i.e., that of the MPI_Init function call) in up to four
nodes in our testbed, leveraging one process per core (eight
processes per node). The initialization time incurred by our
Portals netmod is close to that of the MXM netmod: 15%
higher when the processes are within the same node, and 2–
3% for the rest of the cases.

b) Latency: Our latency tests for 1-byte data payloads
are summarized in Table I for both two-sided roundtrip (“Ping-
pong”) and one-sided “put” operations. We include results
for the Portals 4 netmod with and without Rportals enabled
(“Portals 4” and “Rportals,” respectively). Our results show
large gains with respect to the TCP netmod. A comparison with
the MXM netmod, however, reveals room for improvement. In
addition, the Rportals layer poses a nonnegligible overhead.
We are currently addressing these overheads.

1MXM is a proprietary low-level communication API from Mellanox
Technologies designed to easily interact with their networking hardware (if
compared with the traditional InfiniBand Verbs API) while providing an
efficient use of their networking infrastructure.



0.0

1.0

2.0

3.0

4.0
B

an
d

w
id

th
 (

G
B

/s
) 

Message Size (Bytes) 

TCP Portals 4 MXM

(a) Two-Sided Bandwidth

0.0

1.0

2.0

3.0

4.0

B
an

d
w

id
th

 (
G

B
/s

) 

Message Size (Bytes) 

TCP Portals 4 MXM

(b) One-Sided Bandwidth

Fig. 3. Experimental Evaluation Results

c) Bandwidth: Figure 3a reports the bandwidth attained
in two-sided communications, whereas Figure 3b shows that
of one-sided “put” operations. The Portals 4 implementation
consistently outperforms the TCP netmod by up to 3.5x in
the 2-sided experiments and up to 3.2x in the one-sided
experiments. Compared with the MXM netmod, however, our
new netmod yields up to 24% lower bandwidth for large data
transfers starting at 16 KB, being within 2% for 64–128 KB.
The bandwidth loss, however, is larger for 8 KB and less.
In the case of one-sided (“put”) operations, our bandwidth
loss is consistently above 50% for large data transfers starting
at 16 KB, and higher for small data payloads. We attribute
these bandwidth differences to two main factors: (1) the
MXM netmod is a highly tuned network module contributed
by Mellanox Technologies that employs an API specifically
designed for the underlying networking hardware, whereas
the reference implementation of Portals 4 is a generic library
implemented on top of InfiniBand verbs; and (2) the Rportals
layer introduces nonnegligible overhead. We are currently
investigating ways to address these limiting factors.

d) Flow Control: Figure 4 shows the impact of flow
control recovery on runtime using the One_put_all RMA
benchmark over two nodes and 16 total processes. The number
of times flow control was triggered varied from run to run in
our experiments, from zero to 100+. Recovery overhead can
be observed in the increase in runtime: 30% on the low end,
and over 300% on the high end. Avoiding recovery will be
important to application performance, and methods to do so
will be part of our ongoing work.

VI. CONCLUSIONS

We have discussed the key design and implementation
details of a Portals 4 network module for the widely used
MPICH MPI implementation. These include initialization,
two-sided and one-sided communication, and flow control. We
discuss a set of evaluation results covering the major pieces of
our netmod. Our target get-based rendezvous implementation

0	  
50	  
100	  
150	  
200	  
250	  
300	  

0	   38	   57	   70	   170	  

Ti
m
e	  
(μ
s)
	  

Number	  of	  Recovery	  Events	  

Fig. 4. Flow Control Recovery Overhead

yields high bandwidth for large-data payloads on two-sided
operations. Nevertheless, room for improvement exists. For
example, work is needed—and under investigation—on the la-
tency for small messages. Moreover, we are working to reduce
the nonnegligible overhead that the current implementation of
our reliability layer introduces.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy Office of Science, Office of Advanced
Scientific Computing Research, under contract number DE-
AC02-06CH11357.

REFERENCES

[1] Argonne National Laboratory, “MPICH — high-performance portable
MPI,” http://www.mpich.org, 2015.

[2] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, J. Krishna, E. Lusk, and
R. Thakur, “PMI: A scalable parallel process-management interface for
extreme-scale systems,” in Recent Advances in the Message Passing
Interface. Springer, 2010, pp. 31–41.

[3] B. W. Barrett, R. Brightwell, R. E. Grant, S. Hemmert, K. Pedretti,
K. Wheeler, K. Underwood, R. Riesen, A. B. Maccabe, and T. Hudson,
“The portals 4.0.2 network programming interface,” Sandia National
Laboratories, Tech. Rep., Oct. 2014.

[4] B. W. Barrett, R. Brightwell, and K. D. Underwood, “A low impact
flow control implementation for offload communication interfaces,” in
Proceedings of the 19th European conference on Recent Advances in
the Message Passing Interface. Springer-Verlag, 2012, pp. 27–36.

[5] B. Barrett, R. Brigthwell, K. Hemmert, K. Pedretti, K. Wheeler, and
K. Underwood, “Enhanced support for OpenSHMEM communication
in Portals,” in IEEE 19th Annual Symposium on High Performance
Interconnects (HOTI), Aug. 2011, pp. 61–69.

[6] D. Bonachea, P. Hargrove, M. Welcome, and K. Yelick, “Porting
GASNet to Portals: Partitioned global address space (PGAS) language
support for the Cray XT,” in Cray User Group Conference, May 2009.

[7] R. Brightwell, R. Riesen, and A. B. Maccabe, “Design, implementation,
and performance of MPI on Portals 3.0,” International Journal of High
Performance Computing Applications, vol. 17, no. 1, pp. 7–19, 2003.

[8] D. Buntinas, G. Mercier, and W. Gropp, “Design and evaluation
of nemesis, a scalable, low-latency, message-passing communication
subsystem,” in International Symposium on Cluster Computing and the
Grid, 2006.

[9] J. Liu and D. K. Panda, “Implementing efficient and scalable flow
control schemes in MPI over InfiniBand,” in Proceedings of the 18th
International Parallel and Distributed Processing Symposium, 2004.

[10] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer, “TOP500
supercomputing sites,” http://www.top500.org/lists/2014/11, Nov. 2014.

[11] S. Sur, H.-W. Jin, L. Chai, and D. K. Panda, “RDMA read based
rendezvous protocol for MPI over InfiniBand: design alternatives and
benefits,” in Proceedings of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, 2006, pp. 32–39.


