Runtime Support for Irregular Computation in MPI-Based Applications

Xin Zhao,* Pavan Balaji,’ (Co-advisor) and William Gropp* (Advisor)

*University of Illinois at Urbana-Champaign, Champaign, IL, USA {xinzhao3,wgropp} @illinois.edu
TArgonne National Laboratory, Argonne, IL, USA balaji@mcs.anl.gov

Abstract—In recent years more and more applications have
been using irregular computation models in various domains
such as bioinformatics and social network analysis. Traditional
data movement approaches are not well suited for such
applications because of the irregular communication patterns,
sparse data structures, fast growth rate of data movement
as system size or problem size rises, and so forth. Active
Messages (AM) is an alternative programming paradigm that is
more suitable for irregular computations. It allows small pieces
of data to be dynamically moved to the remote process and
certain computation to be triggered, and the remote process
does not need to explicitly receive the data. In this paper, an
outline of the first author’s Ph.D. thesis, focusing on runtime
support for irregular computation, is presented. In the first
part, we combine the capability of AM with traditional MPI
data movement patterns; and we propose a generalized MPI-
interoperable AM framework (MPI-AM). In the second part,
we extend the MPI-AM framework to provide a model of
dynamic task parallelism for data-driven computation. In each
part we describe critical issues, demonstrate the current status
of the work and performance gain, and discuss remaining
challenges to be solved.

I. INTRODUCTION

Irregular computation models have become increasingly
important in recent years. These models are widely used
in applications in various domains such as bioinformatics
(SWAP [1] and Kiki [2]), computational chemistry (MAD-
NESS [3][4]), and graph algorithms in social network anal-
ysis. Irregular models differ significantly from traditional
models: (1) some of them are organized around sparse
structures, (2) the data movement pattern is often irregu-
lar and data dependent, and (3) the growth rate of data
movement as the systems size or problem size increases
is much faster than that of computation. Unfortunately, the
traditional SEND/RECV- and PUT/GET-like data movement
approaches are not well suited for such irregular computa-
tions.

The Active Messages (AM) model [5] is an alternative
parallel programming paradigm that is more suitable for
irregular computations. It allows the sender to move a small
piece of data to the receiver and to trigger computation; the
receiver does not need to explicitly receive the data. Since
the Message Passing Interface (MPI) [6] is the de facto
standard for parallel programming on large-scale systems,
a programming model that can combine the traditional MPI
model and the AM-based model is needed. This is the first
part of the first author’s Ph.D. thesis: we propose a general-
ized framework, called MPI-interoperable Active Messages
(MPI-AM), to support both irregular and regular capabilities
in MPI runtime. The framework allows an application to

be modified incrementally in order to use AM only when
necessary, avoiding rewriting the entire application.

Since one process can use AM to bring small pieces
of data to the remote process and to trigger computation
remotely via an AM handler, each handler can be treated as
a “task,” which is a combination of computation and data.
One question of interest arises: Can MPI-AM be used to
build a dynamic tasking framework to support data-driven
computation? This is the focus in the second part of the
thesis. In order to achieve this goal, extending the MPI-
AM framework by enabling MPI calls from the AM handler
is essential. Doing so involves addressing issues such as
locality: since the process of executing the computation
and the process of storing the data are not necessarily the
same, one must consider the impact of different AM data
locality choices on both correctness and performance. Other
issues that we would like to investigate include thread safety,
dependent execution of tasks, and load balance among tasks.

In summary, the thesis focuses on providing efficient and
scalable support from the MPI runtime, to support Active
Messages and the tasking model, for irregular computation.
It includes two subtopics:

o Integrated data and computation management

— Generalized MPI-interoperable AMs (MPI-AM)
— Asynchronous processing on MPI-AM
— Efficiency of MPI-AM with irregular applications

o Dynamic task parallelism for data-driven computation

— Enabling of MPI calls within the AM handler

— Dependent execution of tasks

— Impact of data locality choices and load balance
— Efficiency of tasking framework with applications

Currently the first two parts in the first subtopic have been
finished ([7][8][9]), and work on the third part has begun.
The second subtopic will be addressed next.

II. INTEGRATED DATA AND COMPUTATION
MANAGEMENT

In the first part of the thesis, we propose a generalized
framework for MPI-interoperable AMs (MPI-AM). Previous
work on supporting AM on top of MPI includes AM++ [10]
and AMMPI [11]. While portable, they lack explicit se-
mantics about ordering, concurrency of AMs, and memory
consistency; and their implementations lack asynchronous
progress.

The workflow of the MPI-AM framework is illustrated in
Figure 1. We propose a new routine, MPIX_AM, for issuing
AMs and a new prototype, MPIX_AM_USER_FUNCTION,

for specifying the AM handler. With these routines, users can
manage data content and movement among five associated
buffers: origin input buffer, target input buffer, target per-
sistent buffer, target output buffer, and origin output buffer.
Note that the target input buffer and target output buffer are
internal buffers associated with each AM handler whereas
the rest are public buffers. As shown in Figure 1, when
MPIX_AM is called, the origin input data is sent to the target
and is staged in the target input buffer. This staged data
serves as the input to the AM handler, and the handler stores
its output into the target output buffer. Once the computation
in the handler is completed, the output data is sent back to
the origin output buffer. The target persistent buffer stores
data that already exists at the target’s window and is accessed
within the AM handler. All updates on this buffer can be
seen by future operations. In the following subsections we
examine critical issues raised by MPI-AM.

origin input buffer origin output buffer
[1 1] [1]]

AM AM
input output
data data

private memory private memory
[]]] [1 I]
target input buffer target output buffer

N

AM handler

] RMA window

target persistent buffer

Figure 1: MPI-AM workflow
A. Performance Issues and Correctness Semantics

Among the major issues are those involving message
streaming and buffering and correctness semantics.

1) Data Streaming and Buffer Management: For a large
AM, we propose the concept of segments. The purpose is to
allow the MPI runtime system to choose how to split it into
smaller units in order to achieve a pipeline effect and reduce
space for staging data. Segments are used to let the user
specify the minimum granularity of splitting AMs in order
to trigger the corresponding handler. For example, in the
DNA assembly application [1][2], the handler needs at least
one DNA sequence in order to perform the computation.
Therefore the user needs to specify segment as one DNA
sequence.

Since each AM handler is associated with the target input
buffer and target output buffer, a critical question is who
is responsible for managing such temporary buffers. While
the MPI implementation might choose to internally allocate
temporary buffers, that is only a runtime optimization; and
the user cannot assume the availability of such buffers. The
user’s responsibility is to provide enough AM temporary
buffers to the MPI implementation. We propose routines

to attach/detach buffer for this purpose. We note that the
size of the user-provided buffer must be large enough to
accommodate at least one AM segment. Also, since the user
buffer is shared among AMs from all origins, the origin
process needs to perform synchronization internally with the
target in order to reserve a portion of buffer before it can
issue the AM data.

2) Correctness Semantics: Here we discuss critical issues
in correctness semantics, including ordering, concurrency,
and memory consistency. Because of space limitations,
considerations such as atomicity or thread safety are not
presented here; please refer to [7] for details.

Ordering: We define three types of ordering: (1) between
AMs with the same operation, (2) between AMs with
different operations, and (3) between segments within one
AM. By default, our framework imposes strict ordering for
all three types, for AMs from the same origin to the same
target on the same window with overlapping target buffers.
For all other cases, there is no ordering. The default strict
ordering allows applications to reason about the state of the
target window when multiple AMs access it. Furthermore,
we allow the user to release the ordering of AMs by passing
MPI information during window creation. Reduced ordering
can be beneficial for some applications, for example those
that use AMs only to read the target data but do not update
it.

Concurrency: When one or more origins issue multiple
AMs to the same target, the target can process them either
simultaneously or in serial. While concurrent execution has
an obvious potential benefit for performance, it requires
careful use with respect to its data accesses and must avoid
conflicts with other AMs by using atomic operations or
locks. To handle this issue, by default, we require the MPI
implementation to behave “as if” the AMs are executed
in some sequential order. An MPI implementation is free
to apply AM operations concurrently for situations where
concurrency is inconsequential.

Memory Consistency: MPI RMA defines two memory
models: UNIFIED (one single copy of window) and SEP-
ARATE (one public window copy and one private window
copy) [6]. Because of limited space, here we will not explain
window memory semantics in detail. We recommend that
the reader consult related books and papers ([6][12][13])
to better understand the semantics. One main difference
between AM and RMA operations is that RMA operations
access the public window whereas AM handlers access the
private window. The reason is that operations involved in
the AM handler are essentially local loads/stores invoked
by the target process and are not like puts/gets/accumu-
lates invoked by the origin process. This difference raises
several subtle interoperability issues. For example, in the
SEPARATE model, if an AM and a regular RMA operation
concurrently update nonoverlapping memory regions in the
same window, the state of the data in that window is
undefined. The reason is that during an AM, if the target

process fetches a block of data to cache and an RMA
operation updates another nonoverlapping variable on the
same cache line, such an update would be overwritten when
the cache line is written back to memory. The same issue
also exists for two concurrent AMs. Further, in both memory
models, each AM handler must ensure that it sees updates
by previous operations and leaves the window in a consistent
state for future operations. To alleviate this situation, in
the SEPARATE model, the MPI implementation needs to
flush the cache back to memory before returning the AM
completion notification to the origin. In both the SEPARATE
and UNIFIED models, the MPI implementation needs to
perform a full memory barrier before invoking the AM
handler and after finishing the AM handler, in order to
ensure the ordering between operations before the handler
and within the handler, and the ordering between operations
within the handler and after the handler.

B. Asynchronous Processing on AMs

Having a single progress engine to handle all incom-
ing messages has the disadvantage that the runtime has
to delay processing AM/RMA messages until the process
explicitly makes an MPI call. Having an asynchronous
progress engine for AM/RMA can significantly improve
the performance by processing messages immediately upon
arrival and concurrently with other MPI messages. In our
previous work [9], we presented an implementation that
can provide asynchronous processing on AMs internally
from the MPI runtime. To avoid active polling, we use
origin computation to asynchronously handle AMs from
shared memory. The runtime first allocates a shared-memory
region among processes on the same node during window
creation; when one process issues an AM targeting at another
process on the same node, it directly fetches the data from
the target process’s shared-memory region, performs the
computation locally, and writes results directly back into
the target process’s memory. For internode communication,
a separate internal thread is generated in the network module
waiting for AMs coming from the network. The thread can
minimize impact on performance by blocking during waiting
time, because it does not need to handle intranode messages.

C. Performance Evaluation

Figures 2(a) and 2(b) respectively show latency and
throughput achieved for different numbers of segments per
AM packet. All microbenchmark tests are conducted on a
310-node system in which each node has 16 cores. The
nodes are connected with QLogic QDR InfiniBand. The
AM latency reaches its lowest at a pipeline unit size of 40
segments, where it achieves a perfect balance of computation
and data movement.

We use the Graph500 benchmark [14] for kernel bench-
mark testing. All tests are run on a 320-node (8 cores per
node) system connected with Mellanox QDR InfiniBand.

2340

T 2240 |
=}
<2140 |

g X

5 2040 e
= 1940 |
& 1840 [
5 1740 || latency (us)

S 1640 || function call time (us)
£ 1540 ‘ ‘

] 10 30 50 70 90

segments per pipeline unit

(a) Absolute value, latency test
7.0E+02 100%
6.0E+02
2 5.0e+02

wv
S 4.0E+02

*
o 3.0E+02 S
2 2.0E+02 user buffer usage
e 1.0E+02 ilinternal buffer usage 1 20%

“4-throughput (ops/s)
0.0E+00

80%

60%

0%
10 60
segments per pipeline unit

(b) Absolute value, throughput test
Figure 2: Communication latency and operation throughput
with different numbers of segments per AM packet
160 - Default-g500 ===
140 | DDT-g500 1
120 | AM-g500 == |
100 |
80 | 1
60 | 1
w0l H 4
2 b 4
2 F m |
128 256 512
Number of processes
Figure 3: Graph500 comparative performance results
Figure 3 compares the performance of the AM implemen-
tation (AM-g500), derived datatype implementation (DDT-
g500), and default implementation (Default-g500). Both
AM-g500 and DDT-g500 coalesce messages. The AM-
g500 performs better than DDT-500 because of the reduced
amount of work when implemented with AMs.

TEPS (x1000)

III. DYNAMIC TASK PARALLELISM

The second part of the Ph.D. work focuses on supporting
dynamic task parallelism from MPI runtime: a form of
parallelization that can invoke simultaneous execution across
different cores working on different functionalities of an ap-
plication. The concept of “task” represents an asynchronous
operation that specifies certain “computation + data.” This is
similar to what AM is doing. By issuing AMs, one process
can assign multiple tasks on other processes. Furthermore,
each task is free to spawn other tasks by issuing AMs from
the AM handler.

A. Making MPI Calls from the AM Handler

To support spawning tasks from one task, MPI-AM must
be extended to support invoking MPI calls from the AM han-

dler. An important challenge is how to guarantee the thread
safety between the main thread and asynchronous threads for
AMs, while minimizing the overhead. This challenge arises
because an MPI implementation may choose to spawn one
or more dedicated threads for processing incoming AMs;
hence, the runtime may need to always raise the thread safety
to the highest level, thereby incurring significant overhead.
One can allow the user to disable asynchronous processing
so that the runtime needs to raise the thread safety only
to the lowest level, but that will sacrifice concurrency. A
better solution is to allow the user to pass hints to the
runtime saying how the MPI calls will be made, for example
only in the main program or in both the main program and
AM handlers, or whether the MPI calls will be invoked
concurrently, so that runtime can raise the thread safety
to the proper level without always pushing to the safest
but most expensive level. Enabling MPI calls from the AM
handlers can also help the upper-layer runtime, such as fully
supporting AMs in Coarray Fortran on top of MPI [15].

B. Dependent Execution of Tasks

To specify dependent execution of tasks, we need to
leverage the request-based operations in MPI. This approach
allows the user to associate a request object to an MPI call,
so that the execution of another MPI call can depend on
the completion of the request-based routine by checking
the corresponding request. Furthermore, one task can wait
on several specific tasks. By doing so, data movement
can be triggered after certain computation is finished, and
computation on different processes can be ordered. This
approach relieves the user from explicitly specifying such
orderings by themselves in the program, and the user can
handle much more flexible relations among computations
and data movement patterns.

C. Data Locality and Load Balancing

Given such an MPI-AM framework with enabling MPI
calls from an AM handler and dependent execution of tasks,
one interesting question is, Can we manipulate the location
of executing tasks in order to improve the load balance
and concurrency? If so, what is the performance impact for

O data process © execution process
© data and execution process

ool 1

node 0 node 1 node 0 node 1

different choices of locality?

node 0 node 1

Figure 4: Different choices of MPI-AM data locality

As shown in Figure 4, for one task, some processes can
be seen as data processes, which carry data related to that
task, and some processes can be seen as execution processes,
which execute the computation in that task. Data processes

and execution processes need not be in the same set.
Some tasks, such as those involving MPI_COMM_RANK,
must be executed on data processes. Some tasks can be
executed on other processes but within the same node, for
example on a helper process that can directly access a data
process’s shared-memory region. Furthermore, some tasks
can be executed on processes on a different node, by making
the execution process fetch data locally. We would like to
investigate the impact for different choices of data locality.

ACKNOWLEDGMENTS

This material was based upon work supported by the
U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, under Con-
tracts DE-AC02-06CH11357, DE-FG02-08ER25835, and

DE-SC0004131.
REFERENCES

[1] J. Meng, J. Yuan, J. Cheng, Y. Wei, and S. Feng, “Small
World Asynchronous Parallel Model for Genome Assembly,”
Springer Lecture Notes in Computer Science, vol. 7513, pp.
145-155, 2012.

[2] F. Xia and R. Stevens, “Kiki: Massively Parallel Genome
Assembly,” https://kbase.us/, 2012.

[3] R. Harrison, G. Fann, T. Yanai, and G. Beylkin, “Multireso-
lution Quantum Chemistry in Multiwavelet Bases,” Springer
Lecture Notes in Computer Science, pp. 103-110, 2003.

[4] R. J. Harrison, “MADNESS: Multiresolution ADaptive Nu-
mErical Scientific Simulation,” https://code.google.com/p/m-
a-d-n-e-s-s/, 2003.

[5] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser, “Active Messages: A Mechanism for Integrated
Communication and Computation,” in Proceedings of ISCA,
New York, NY, USA, 1992.

[6] Message Passing Interface Forum, “MPI: A Message-Passing
Interface Standard Version 3.0,” Sept. 2012, http://www.
mpi-forum.org/docs/docs.html.

[7]1 X. Zhao, P. Balaji, W. Gropp, and R. Thakur, “MPI-
Interoperable Generalized Active Messages,” in Proceedings
of ICPADS, 2013.

[8] X. Zhao, P. Balaji, W. Gropp, and R. Thakur, “Optimization
Strategies for MPI-Interoperable Active Messages,” in Pro-
ceedings of ScalCom, 2013.

[9] X. Zhao, D. Buntinas, J. Zounmevo, J. Dinan, D. Goodell,
P. Balaji, R. Thakur, A. Afsahi, and W. Gropp, “Towards
Asynchronous and MPI-Interoperable Active Messages,” in
Proceedings of CCGRID, 2013.

[10] J.J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine,
“AM++: A Generalized Active Message Framework,” in
Proceedings of PACT, 2010.

[11] D. Bonachea, “AMMPI: Active Messages over MPI — Quick
Overview,” http://www.cs.berkeley.edu/~bonachea/ammpi/.

[12] T. Hoefler, J. Dinan, R. Thakur, B. Barrett, P. Balaji,
W. Gropp, and K. Underwood, “Remote Memory Access
Programming in MPI-3,” Argonne National Laboratory, Tech.
Rep., 2013.

[13] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced
Features of the Message-Passing Interface. MIT Press, 1999.

[14] D. A. Bader, J. Berry, S. Kahan, R. Murphy, E. J. Riedy, and
J. Willcock, “Graph500,” http://www.graph500.org/.

[15] C. Yang, W. Bland, J. Mellor-Crummey, and P. Balaji,
“Portable, MPI-Interoperable Coarray Fortran,” in Proceed-
ings of PPoPP’14. New York, NY, USA: ACM, 2014, pp.
81-92.

http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
http://www.cs.berkeley.edu/~bonachea/ammpi/
http://www.graph500.org/

	Introduction
	Integrated Data and Computation Management
	Performance Issues and Correctness Semantics
	Data Streaming and Buffer Management
	Correctness Semantics

	Asynchronous Processing on AMs
	Performance Evaluation

	Dynamic Task Parallelism
	Making MPI Calls from the AM Handler
	Dependent Execution of Tasks
	Data Locality and Load Balancing

	References

