
Techniques for Enabling Highly Efficient Message Passing on
Many-Core Architectures

Min Si
University of Tokyo

Tokyo, Japan
msi@il.is.s.u-tokyo.ac.jp

Pavan Balaji (Co-advisor)
Argonne National Laboratory

Argonne, IL, USA
balaji@mcs.anl.gov

Yutaka Ishikawa (Advisor)
RIKEN Advanced Institute for Computational Science

Kobe, JAPAN
yutaka.ishikawa@riken.jp

Abstract—Many-core architecture provides a massively par-
allel environment with dozens of cores and hundreds of
hardware threads. Scientific application programmers are in-
creasingly looking at ways to utilize such large numbers of
lightweight cores for various programming models. Efficiently
executing these models on massively parallel many-core en-
vironments is not easy, however and performance may be
degraded in various ways. The first author’s doctoral research
focuses on exploiting the capabilities of many-core architectures
on widely used MPI implementations. While application pro-
grammers have studied several approaches to achieve better
parallelism and resource sharing, many of those approaches
still face communication problems that degrade performance.
In the thesis, we investigate the characteristics of MPI on
such massively threaded architectures and propose two efficient
strategies—a multithreaded MPI approach and a process-
based asynchronous model—to optimize MPI communication
for modern scientific applications.

Keywords-many-core; MPI; hybrid programming model;
one-sided; asynchronous progress

I. INTRODUCTION

Since multicore processors have become the most com-
mon processor architectures today, the only way to improve
the performance for high-end processors is to add more
threads and cores. Many-core architectures, such as Intel
Xeon Phi and Blue Gene/Q, provide such a massively
parallel environment with dozens of cores and hundreds
of hardware threads. More and more scientific application
programmers have begun investigating ways to utilize such
architecture for scaling application performance.

Although many-core architecture can provide the enor-
mous power of parallel computing, application performance
may still be restricted in various ways. Two characteristics
of such hardware have to be taken into account. First, cores
are designed to be simple and low frequency for a better
performance-to-energy ratio; thus, execution on a single core
could result in extreme performance degradation. Second,
the number of cores is increasing at a faster rate than other
on-chip resources (e.g., memory), potentially resulting in
scalability bottlenecks.

To better utilize such hardware resources, application
programmers have studied several approaches that provide
better parallelism and resource sharing for different scientific
applications. Many of those approaches, however, still face
communication problems that may result in performance
degradation. This doctoral research aims to exploit the

capabilities of many-core architectures on the widely used
message-passing model and propose techniques for solving
existing communication problems. In this thesis, we focus
on optimizing the communication of the two most popular
programming models used in modern applications: a hybrid
MPI+threads model and an MPI one-sided communication
model.

Communication optimization in hybrid MPI+threads
model. An increasing number of applications are look-
ing at hybrid programming models, frequently called
“MPI+threads,” to allow resources to be shared between
different cores on the node. A common mode of operation
in such hybrid models involves using multiple threads to
parallelize computation within the node, but using only one
thread to issue MPI communication. Although such a mode
achieves significant improvement in floating-point comput-
ing by massive parallelism, it also means that most of the
threads are idle during MPI calls, a situation that translates
to underutilized hardware cores. Furthermore, since MPI
communication performs only on a single lightweight core,
this mode may even result in performance degradation.

To resolve the problems in the MPI communication
of hybrid model, we present MT-MPI [1], an internally
multithreaded MPI that transparently coordinates with the
threading runtime system to share idle threads with the
application in order to parallelize MPI internal processing
such as derived datatype communication, shared-memory
communication, and network I/O operations.

Optimization for MPI one-sided communication. For
applications with large memory requirements, developers
start sharing memory resources across nodes through a
global shared address space implemented by employing
MPI one-sided communication [2]. The MPI-2 and MPI-
3 standards [3] introduced one-sided communication (also
known as remote memory access or RMA), which al-
lows one process to specify all communication parameters
for both sender and receiver. Thus a process can access
memory regions of other processes in the system without
the target process explicitly needing to receive or process
the message. Although such communication semantics can
asynchronously handle communication progress and hence
hide communication overheads from computation, it is not
truly asynchronous in most MPI implementations. For exam-
ple, although contiguous PUT/GET MPI RMA communica-

#pragma omp p a r a l l e l
{

/∗ user computa t ion ∗ /

}

MPI Function () ;

(a) Outside a parallel region

#pragma omp p a r a l l e l
{

/∗ user computa t ion ∗ /
#pragma omp s i n g l e
{

MPI Function () ;
}

}

(b) Inside omp single region

Figure 1. Example of different use cases in hybrid MPI+OpenMP.

tion can be implemented in hardware on RDMA-supported
networks such as InfiniBand, thus allowing the hardware
to asynchronously handle its progress semantics, complex
RMA communication such as an accumulate operation on
a 3D subarray must still be done in software within the
MPI implementation. Consequently, the operation cannot
complete at the target process without explicitly making MPI
progress and thus may cause arbitrarily long delays if the
target process is busy computing outside the MPI stack.

To resolve the problem of asynchronous progress, we
propose Casper [4], a process-based asynchronous progress
model for MPI one-sided communication on multicore and
many-core architectures, that keeps aside a small user-
specified number of cores as background “ghost processes”
to help asynchronous progress. The philosophy of Casper is
centered on the notion that since the number of available
cores in modern many-core systems is increasing rapidly,
some of the cores might not always be busy with compu-
tation and can be dedicated to helping with asynchronous
progress.

In summary, this Ph.D. thesis aims to enable highly
efficient message passing on many-core architectures for
various kinds of scientific applications. Two techniques are
proposed to address different communication issues existing
in modern applications. In Sections II and III, we separately
present their current state and sketch the next steps.

II. MULTITHREADED MPI

In this section, we present our first technique that im-
proves communication for the hybrid MPI+threads program-
ming models.

In the common mode of hybrid MPI+OpenMP appli-
cations, multiple threads are used to parallelize the com-
putation, while one of the threads handles MPI commu-
nication (i.e., MPI FUNNELED or SERIALIZED thread-
safety mode). This is achieved, for example, by placing MPI
calls in OpenMP single sections (Figure 1(b)) or outside
the OpenMP parallel regions (Figure 1(a)). However, such
a model often means that the OpenMP threads are active
only in the computation phase and idle during MPI calls,
resulting in wasted computational resources. Moreover, since
only a single lightweight core issues MPI communication,
performance may even be degraded.

In [1], we focused on optimizing the FUNNELED/SE-
RIALIZED modes. We presented MT-MPI, an internally
multithreaded MPI implementation that transparently coordi-

nates with the threading runtime system to share idle threads
with the application. We designed MT-MPI in the context
of OpenMP, which serves as a common threading runtime
system for the application and MPI. MT-MPI employs
application idle threads to parallelize MPI communication
and increases resource utilization.

Specifically, we modified the MPI implementation to
parallelize its internal processing using a potentially nested
OpenMP parallel instantiation (i.e., one nested OpenMP
parallel block inside the MPI call in Figure 1(b), which
is inside another parallel block). We expected that such
a model would allow both the application and the MPI
implementation to expose their parallelism requirements to
the OpenMP runtime, which in turn can schedule them on
the available computational resources. In practice, however,
this model has multiple challenges. One challenge is that
the “parallelism-friendly” algorithms utilized in MPI internal
processing tasks are in some cases not as efficient for
sequential processing, even resulting in performance degra-
dation with insufficient available threads. Moreover, many
implementations of the OpenMP runtime do not schedule
work units from nested OpenMP parallel regions efficiently.
Instead, they simply create new pthreads for each nested
parallel block and rely on the operating system to schedule
them on the available cores, resulting in core oversubscrip-
tion and performance degradation.

A. OpenMP Runtime Extension

To address these challenges, we modified the OpenMP
runtime to expose information about the idle threads to the
MPI implementation. We first track the number of threads
that are being used by the application and the number of idle
threads (e.g., the threads are waiting in an OpenMP barrier or
outside an OpenMP parallel region) in the OpenMP runtime
system. Then, we define a new OpenMP runtime function in
order to expose such information. The expectation with this
model is that MPI could query for the number of idle threads
and use this information to (1) choose different algorithms
that trade off between parallelism and sequential execution
in order to achieve the best performance in all cases and
(2) use only as many threads in the nested OpenMP region
as there are idle cores, by explicitly guiding the number
of threads in OpenMP (using the num_threads clause in
OpenMP).

B. MPI Internal Parallelism

Using the information of idle threads exposed by our
extended OpenMP runtime, the MPI implementation can
schedule its internal parallelism efficiently to obtain perfor-
mance improvements. We demonstrate the benefit of such
internal parallelism for three aspects of the MPI processing.

1) Derived Datatype Processing: Applications define de-
rived datatypes to describe noncontiguous regions of mem-
ory in packing/unpacking processing or directly involved in

0

1

2

3

4

5

6

1 2 4 8 16 32 64 128 240

Sp
ee

du
p

Number of Threads

Communication Time Speedup

Execution Time Speedup

Figure 2. Hybrid NAS MG class E using 64 MPI processes.

communication that internally processes packing/unpacking.
Such packing and unpacking processing stages are imple-
mented as a set of local memory copies with no depen-
dencies. We modified the MPI implementation to parallelize
them using OpenMP.

2) Shared-Memory Communication: Most MPI imple-
mentations use a pipelined double-copy strategy [5] to
transfer data between processes existing on the same node.
We parallelized such copy processing by reserving multiple
contiguous available chunks and concurrently coping data
by utilizing multiple threads.

3) Optimizations for the InfiniBand Network: InfiniBand-
supported MPI implementations always manage separate
queue pairs (QPs) for communication between each pair
of processes. We parallelized the MPI internal sending
processing of messages issued through different QPs.

C. Evaluation

Our experimental evaluation, performed on the Stampede
supercomputer at the Texas Advanced Computing Center
(https://www.tacc.utexas.edu/stampede/), demonstrates the
performance benefits of MT-MPI on various aspects of
MPI processing. All our experiments are executed on the
Xeon Phi coprocessor, with every MPI process running on
a separate coprocessor. Because of space limitation, we
present only one kernel benchmark in this paper.

We employed a hybrid MPI+OpenMP version of the
NAS Multigrid (MG) benchmark [6]. The V-cycle multigrid
algorithm performs multiple 3D halo exchanges with various
dimension sizes. This approach is expected to significantly
benefit from parallelized derived datatype processing be-
cause packing and unpacking are always the heaviest parts
of each halo exchange communication. Figure 2 presents the
speedup achieved by MT-MPI compared with the original
MPICH in class E when employing 64 processes. MT-MPI
helps improve the communication of MG by 4.7-fold, and
the overall execution time by 2.2-fold.

D. Next Steps

To understand the behavior of MT-MPI in real-world
applications, we plan to study several scientific applica-
tions that are expected to benefit from MT-MPI, such as

CCSM [7], which relies on derived datatypes for commu-
nication, and PCCM2 [8], which performs large shared-
memory communication.

III. PROCESS-BASED ASYNCHRONOUS PROGRESS
MODEL

The second technique proposed in this thesis focuses
on optimizing the MPI one-sided communication, which is
often used to implement the PGAS model for many large-
scale data-intensive applications.

Although one-sided communication semantics can asyn-
chronously handle communication progress, the MPI stan-
dard does not guarantee it to be truly asynchronous. In
most network interfaces, complex one-sided communication
operations such as noncontiguous accumulate are not na-
tively supported. MPI implementations still require the target
process to make MPI calls in order to ensure completion of
such operations (Figure 3(a)).

Traditional implementations to ensure asynchronous com-
pletion of operations have relied on thread-based [9] or
interrupt-based [10][11, Chapter 7] models. Each of these
models has several drawbacks, however, such as the ineffi-
cient core deployment in the thread model and the expensive
overheads caused by multithreading safety in the thread
model and by frequent per-message interrupts in the interrupt
model.

To address these drawbacks, we present Casper [4], a
process-based asynchronous progress model for MPI RMA
communication on multicore and many-core architectures.
The central idea of Casper is to keep aside a small, user-
specified number of cores on a multicore or many-core en-
vironment as “ghost processes,” which are dedicated to help
asynchronous progress for user processes through appro-
priate memory mapping from those user processes. Unlike
traditional approaches, the use of processes allows Casper
to avoid expensive overheads associated with multithreaded
safety or system interrupts, as well as to control the number
of cores being utilized for asynchronous progress.

A. Design Overview

Casper relies on the ability of processes to expose their
window memory regions by using the MPI-3 shared-memory
windows interface. When the application process tries to
allocate a remotely accessible memory window, Casper
intercepts the call and maps such memory into the ghost
processes’ address space. Casper then intercepts all RMA
synchronization calls and communication operations issued
to the user processes on this window and redirects them
to the ghost processes instead, as shown in Figure 3(b).
Since Casper does not migrate or copy the user memory
regions but just maps them into the ghost processes’ address
space, RMA operations that are handled in hardware see no
difference in the way they behave. Operations that require
remote software progress can be executed asynchronously in

P0	 P1	

comp.	 acc	 (+=)	

MPI	 call

delay
reply	 result	

(a) Original Accumulate.

P0	 P1	

comp.	 acc	 (+=)	

reply	 result	

Ghost	
Process	

(b) Accumulate with Casper.

Figure 3. RMA asynchronous progress.

the ghost processes’ MPI stack on the additional cores kept
aside by Casper, without requiring any intervention from the
application processes.

Although the core concept of this work is straightforward,
the design and implementation of such a framework must
take several aspects into consideration in order to ensure
that correctness is maintained as required by the MPI-3
semantics. The wide variety of RMA communication and
synchronization models provided by MPI could substantially
complicate this work. The Casper architecture hides all this
complexity from the user and manages it internally within
its runtime system.

B. Evaluation

We demonstrate the benefits of Casper on
the NERSC Edison Cray XC30 supercom-
puter (https://www.nersc.gov/users/computational-
systems/edison/configuration/) with a variety of
microbenchmarks and the NWChem quantum chemistry
application [12]. NWChem uses the Global Arrays [13]
toolkit for data movement, which has been implemented on
a portable implementation over MPI RMA [2]. We present
one experiment of the NWChem evaluation in this paper.

Our experiment measured the most important CCSD(T)
method. The (T) portion of CCSD(T) performs a get-
computation-reduce pattern, significantly benefiting from
asynchronous progress. We evaluated Casper by comparing
it with the original MPI and two thread-based asynchronous
progress approaches. We used the same total number of
cores in all approaches, some of which are dedicated to
asynchronous ghost processes/threads. Figure 4 measured
the C20 molecule, obtained from the NWChem QA test
suite (QA/tests/tce_c20_triplet), with increasing
number of cores. Casper is almost twice as fast. However,
the thread-based approaches are far less effective because of
the extreme performance degradation in computation from
either core oversubscription or appropriation of half of the
computing cores.

C. Next Steps

We plan to expand the evaluation of NWChem by analyz-
ing more scientific models and molecule types. Specifically,
we plan to focus on the self-consistent field module (SCF)
which is another essential functionality of NWChem, and
the polyacenes molecule.

0

20

40

60

80

1440 1920 2400 2800

(T
) P

or
tio

n
Ti

m
e

(m
in

)

Number of Cores

Original MPI
Casper
Thread-async with oversubscribed cores
Thread-async with dedicated cores

Figure 4. (T) portion of CCSD(T) for C20 with pVTZ.

ACKNOWLEDGMENTS

The experimental resources for this research were pro-
vided by the Texas Advanced Computing Center (TACC)
on the Stampede supercomputer and by the National Energy
Research Scientific Computing Center (NERSC) on the
Edison Cray XC30 supercomputer. This material was based
upon work supported by the U.S. Dept. of Energy, Office of
Science, Advanced Scientific Computing Research (SC-21),
under contract DE-AC02-06CH11357.

REFERENCES

[1] M. Si, A. J. Peña, P. Balaji, M. Takagi, and Y. Ishikawa, “MT-MPI:
Multithreaded MPI for Many-Core Environments,” in Proceedings of
the 28th ACM international conference on Supercomputing. ACM,
2014, pp. 125–134.

[2] J. S. Dinan, P. Balaji, J. R. Hammond, S. Krishnamoorthy, and
V. Tipparaju, “Supporting the global arrays PGAS model using MPI
one-sided communication,” in IPDPS, May 2012.

[3] “MPI: A Message-Passing Interface Standard,” http:
//www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf, Sep. 2012.

[4] M. Si, A. J. Peña, J. Hammond, P. Balaji, M. Takagi, and Y. Ishikawa,
“Casper: An Asynchronous Progress Model for MPI RMA on Many-
Core Architectures,” in Parallel and Distributed Processing, 2015.
IPDPS 2015.

[5] D. Buntinas and G. Mercier, “Implementation and Shared-Memory
Evaluation of MPICH2 over the Nemesis Communication Subsys-
tem,” in Euro PVM/MPI, 2006.

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga, “The NAS Parallel Bench-
marks,” The International Journal of Supercomputer Applications,
1991.

[7] R. Jacob, J. Larson, and E. Ong, “M× n communication and parallel
interpolation in community climate system model version 3 using the
model coupling toolkit,” International Journal of High Performance
Computing Applications, vol. 19, no. 3, pp. 293–307, 2005.

[8] J. Drake, I. Foster, J. Michalakes, B. Toonen, and P. Worley, “Design
and performance of a scalable parallel community climate model,”
Parallel Computing, vol. 21, no. 10, pp. 1571–1591, 1995.

[9] W. Jiang, J. Liu, H.-W. Jin, D. Panda, D. Buntinas, R. Thakur,
and W. Gropp, “Efficient Implementation of MPI-2 Passive One-
Sided Communication on InfiniBand Clusters,” in Euro PVM/MPI,
ser. Lecture Notes in Computer Science, 2004, vol. 3241, pp. 68–76.

[10] Cray Inc., “Cray Message Passing Toolkit,” http://docs.cray.com/
books/S-3689-24, Cray Inc., Tech. Rep., 2004.

[11] M. Gilge, IBM System Blue Gene Solution: Blue Gene/P Application
Development. IBM, Jun. 2013.

[12] E. J. Bylaska et. al., “NWChem, A Computational Chemistry Package
for Parallel Computers, Version 6.3,” 2013.

[13] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global Arrays:
A Portable “Shared-Memory” Programming Model for Distributed
Memory Computers,” in ACM/IEEE conference on Supercomputing,
1994.

