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Abstract—We present a scalable method to extensively search
for and accurately select pharmaceutical drug candidates in large
spaces of drug conformations computationally generated and
stored across the nodes of a large distributed system. For each
ligand conformation in the dataset, our method first extracts
relevant geometrical properties and transforms the properties
into a single metadata point in the three-dimensional space.
Then, it performs an octree-based clustering on the metadata
to search for predominant clusters. Our method avoids the need
to move ligand conformations among nodes because it extracts
relevant data properties locally and concurrently. By doing so,
we can perform accurate and scalable distributed clustering
analysis on large distributed datasets. We scale the analysis of our
pharmaceutical datasets a factor of 400X higher in performance
and 500X larger in size than ever before. We also show that
our clustering achieves higher accuracy compared with that of
traditional clustering methods and conformational scoring based
on minimum energy.

I. PROBLEM OVERVIEW

The design of new pharmaceutical drugs relies on finding
small molecules, called ligands, that dock into proteins and
play an essential role in turning protein functions on or off.
Studying protein-ligand interactions in the wet lab is extremely
expensive and time demanding, especially for high-throughput
experimental structure determination by X-ray crystallography
and nuclear magnetic resonance spectroscopy. Computer simu-
lations are used to accelerate this process and to reduce costs.
The computational search for candidate drugs (i.e., ligands
that dock well in a protein) is a search under uncertainty in
a very large space of potential docking conformations of a
given ligand; this space is shaped by the protein, the ligand,
the computational methods, and the degrees of freedom to
be explored [?]. Cutting-edge distributed systems, such as
cloud infrastructures and high-end clusters, provide scientists
with an efficient and scalable way to perform computationally
expensive protein-ligand docking simulations at a rate never
seen before. At the same time, this capability leads to large
datasets of resulting ligand conformations that are distributed
across the nodes of the system, resulting in new challenges for
scientists who have to analyze the data and select the more
promising conformations for experiments in the wet lab.

When analyzing large ligand datasets, we can rely on
two orthogonal methods: the highly scalable but inaccurate
scoring based on the conformations’ energy and the poorly

scalable but highly accurate comparison of the conformations’
geometry. The scoring based on the conformations’ energy
reduces the number of candidates from hundreds of thousands
up to 10 to 100 conformations based on their energy [?];
however, the method leaves scientists with the tedious task of
subjectively selecting a possible near-native ligand manually
by using visualization tools such as VMD [?] or Chimera [?].
Several studies have shown the inaccuracy of such energy
scoring [?] [?]. On the other hand, traditional scoring based on
the geometry of conformations relies on directly comparing the
root-mean-square deviations (RMSDs) of the conformations’
geometries and then clustering the conformations based on
the RMSD (i.e., calculating the inner variance of a cluster
by looking at the conformations’ RMSDs), thus requiring the
communication of ligands from several nodes to one. Previous
studies have shown the accuracy but lack of scalability of these
methods when the entire distributed dataset is analyzed, and
a gain in scalability but a potential loss in accuracy when a
subset of data is sampled and analyzed [?].

Our work is motivated by the need to find a transformative
approach at the intersection of the energy-based scalability
and geometry-based accuracy. To this end, we transform the
clustering problem into a search for densities that capture
the geometry of all the ligand conformations concurrently.
The search does not require substantial communication as
do more traditional geometry-based analyses. Specifically, our
method accurately maps similar ligand conformations (each
conformation of n atoms in the 3D space) to metadata points
(each point of three coordinates, x, y, and z) in a 3D space in
close proximity concurrently. Thus subspaces of the metadata
space with higher point concentrations (or densities) can be
associated with the most frequently found ligand conforma-
tions in a docking simulation that naturally converges toward
conformations of interest for scientists. Each node performs a
local 3D clustering on its own metadata points to search for
dense clusters and to exchange densities (or aggregates) with
other compute nodes, allowing each node to obtain a global
convergence view for subsets of the original dataset. The
scalability of 400X in performance and 500X in data size is
achieved because no communication of ligand conformations
or metadata is performed; the accuracy is preserved because
geometries are accurately mapped into metadata.



II. DISTRIBUTED OCTREE-BASED CLUSTERING

The overall method first extracts the relevant geometrical
properties of each ligand conformation and represents the
properties as three-dimensional points (i.e., metadata) and
then performs an octree-based clustering to search for densest
metadata subspaces.

A. Capturing relevant geometrical properties

Docking simulations generate hundreds of thousands of
independent ligand conformations docked in the pocket of a
protein. We concurrently extract the geometrical shape (prop-
erty) of the ligand conformations in parallel across the nodes
of the distributed system. To this end, we perform a space
reduction by mapping the atom coordinates of each ligand
conformation to a single metadata point of three coordinates
in the 3D space. Our space reduction has the desired property
of projecting ligands with a similar geometry closer into the
newly defined 3D space of metadata points. Thus the cluster
with the highest density of mapped metadata points can be
associated with those ligand conformations of interest for
the pharmaceutical search that occur over and over from the
independently executed docking simulations.

We consider two variations of the mapping algorithm;
both are based on projections and linear interpolations. The
variations share the backbone reduction technique but differ in
terms of the final metadata representation. In both variations,
given a ligand with p atomic coordinates (xi, yi, zi, with i
from 1 to p ), we perform a projection of the coordinates
in the three planes (x, y), (y, z), and (z, x). Each projection
results in a set of 2D points on the associated 2D plane. For
each projection, we compute the best-fit linear regression line
over the projected points and compute the three slopes of the
three lines.

In the first variation, we use the three slopes as the coordi-
nates of the 3D point to encode the conformational geometry
of its corresponding ligand. We call this variation “3D map-
ping.” Figure 1 shows an example of metadata generated from
multiple conformations of the ligand 1hbv when docked in the
HIV protease as part of the Docking@Home project [?].

−10

−5

0

5

10

−20

−10

0

10

−10

−5

0

5

10

−10 −5 0 5 10
−10

0

10

−15 −10 −5 0 5 10

−10

0

10

−10 −5 0 5 10
−10

0

10

−10

−5

0

5

10

−20

−10

0

10

−10

−5

0

5

10

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−10 −5 0 5 10
−10

0

10

−15 −10 −5 0 5 10

−10

0

10

−10 −5 0 5 10
−10

0

10

Fig. 1. Capturing relevant geometrical properties by using projection and
linear interpolation for the 3D mapping variation.

In the second variation, we use the logarithmic values of
the three slopes to encode the 3D point representing the
conformation geometry. If the slope is negative, we use the
negative logarithm of the absolute value. Contrary to the
“3D mapping” variation, this variation better captures the
geometrical properties of conformations that are in an almost-
vertical position inside the protein pocket. In the 3D mapping
variation, when ligand conformations are in this position,
the three resulting slopes are large. When the shape rotates
or changes slightly, the resulting slopes change significantly.
This approach may result in conformations with similar shape
and in an almost-vertical position to be unmapped into a
dense metadata subspace. When using the logarithm of the
slopes as metadata, however, we decrease the changes in the
metadata coordinates and thus increase the chance for ligand
conformations with similar shape to form a dense-enough
subspace. We call this variation “3Dlog mapping.”

B. Searching for densest metadata subspaces

By dealing with property-encoding metadata (i.e., three-
dimensional points for the 3D and 3Dlog mappings) rather
than raw atom coordinates, we implicitly transform the analy-
sis problem from a clustering or classification problem into a
search of the smaller subspaces in the newly defined metadata
space (i.e., an octant for the 3D and 3Dlog mappings) with
high property aggregates. We search for these subspaces
concurrently across the nodes by building on each node an
octree (i.e., by recursively partition the 3D space of metadata
on the node into fixed-sized octants, each of which forms the
tree nodes).

We count the aggregates of close property-encoding points
on each node in a distributed way. Each node has a partial
view of the entire datasets; it counts the scalar property
aggregates (SPAs) representing the locally stored metadata
densities and identifies the densest octants in its local octree
(by “densest” we mean the deepest nodes with a minimum
number of metadata items or aggregates). Only at this point
does each node shuffle the densities (or aggregates) with the
other compute nodes. After shuffling the aggregates, each
compute node sums the aggregates for a subspace of interest
assigned to the node in order to obtain the global cluster
densities for the subspace, while searching for convergence.
The search algorithm is depicted in Figure 2 for a simplified
case that maps the conformations into a 2D space. In the
example Node 0 is in charge of the two subspaces on the
left, and Node 1 is in charge of the two subspaces on the
right.

Figure 3 shows an example of a dataset of 1hbv ligand
conformations when docked in the HIV protease. Figure 3(a)
shows one ligand conformation in the docking site of the
HIV protease. Figure 3(b) is the result of the 3D mapping,
after the mapping of 10,000 1hbv ligand confirmations into
metadata points has been performed. The compute nodes build
an octree by assigning octkeys to the points. Figure 3(c) shows
an example of the generated octree for the 3D mapping points
in Figure 3(b). Figure 3(d) shows the deepest and densest



(a) 1hbv ligand in protein (b) Metadata
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Fig. 3. Example of a metadata space of 3D points generated from a dataset of ligand conformations and its octree built to identify the densest octant.
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Fig. 2. Examples of exchange scalar property aggregations in our search for
a simplified 2D space.

octant (points in red) that is identified by our tree search when
looking for the deepest tree node with at least 500 points).

C. Algorithmic implementation
Algorithmically, metadata points belongs to a specific tree

node based on its key. The point’s key is generated as follows.
We initially determine the edge size (i.e., 3D resolution) of

the 3D space containing all the projected conformations. We
divide the initial space into eight subspaces of the same
size, half the original edge size. Every subspace is given a
unique identifier ranging from 0 to 7 for the 3D space, based
on its position in the 3D space. The key of each point is
extended by attaching the subspace identifier to the point’s
key by padding the left side with the identifier. This process
is recursively repeated an arbitrary number of times on each
subspace to produce a complete key for each metadata point,
that is, key[1...Nkey], where Nkey is the number of digits
selected to represent each point. As observed in [?], [?],
Nkey can be empirically defined. A value key of 15 digits
is sufficient to capture diverse geometries in the dataset of
ligand conformations considered in this work.

Each compute node explores its 3D space (e.g., the octree
in Figure 3(c)), moving up or down along the tree branches
depending on whether a “dense enough” tree node is found.
The exploration is performed as a binary search along the
tree levels. For example, if the tree is built with each point
in the metadata space containing a key of 15 digits, then
the tree has up to 15 levels; our search starts at level 8,
and we reach a solution (i.e., the deepest tree node with a
defined minimum number of points) by exploring up to 4
levels of the tree. Specifically, we start from level 8 and
branch to either level 12 or level 4 depending on whether
any node is found at level 8 with at least a given number
of points or not. Once at the new level, the same criterion



is applied to decide whether to move up or down within
either the lower half the tree (moved down in the previous
iteration) or the upper half (moved up). During the search,
compute nodes exchange scalar property aggregates. As shown
in Figures 2, each compute node transforms its locally stored
ligand conformations into a local 3D space, as described in
the steps involving capture of the relevant properties, and
exchanges only partial knowledge on its metadata with the
other compute nodes. Since compute nodes work on disjointed
sets of ligand conformations and metadata, they can map
ligand conformations into metadata concurrently and count
aggregates locally in advance to perform a global summation.

The MapReduce paradigm naturally accommodates the cap-
turing of properties from local data and the iterative search for
densities in its Map and Reduce functions, respectively. Thus,
we integrated our method into the MapReduce-MPI framework
rather than implementing a new MPI-based framework from
scratch [?].

III. ACCURACY STUDY

Any scalability method for the analysis of pharmaceutical
data that is not accurate is a waste of resources and time.
Therefore, before addressing the scalability study, we compare
the accuracy of the three methods: (1) our clustering method
based on the mapping of conformations into metadata and
the octree-based search; (2) previous work based on the
direct comparison of ligand conformations in terms of their
root-mean-square-deviation (RMSD) and their probabilistic
hierarchical clustering [?]; and (3) the naı̈ve selection approach
based on only the lowest conformation energy [?].

Datasets: We consider 23 protein-ligand complexes for
HIV protease (an aspartic acid protease protein), 21 protein-
ligand complexes for trypsin (a serine protease protein), and
12 protein-ligand complexes for P38alpha kinase (a ser-
ine/threonine kinase protein) sampled with Docking@Home
project over five years [?]. HIV protease (HIV PR) is a
protein in the HIV virus that is essential for its replication
in human cells. Several protease inhibitors (e.g., saquinavir,
ritonavir, indinavir, and nelfinavir) are available for treating
HIV infection [?]. Trypsin is a protease that breaks down other
proteins in the digestive system. Recent studies suggest that
inhibitors of trypsin can have potential application in breast
cancer treatment. Here we simulate the docking of several
drugs that, when docking in the protease, can act as inhibitors
by deactivating the trypsin-like protease and are, therefore,
potential agents capable of stopping the spread of breast can-
cer [?]. P38alpha is the most flexible protein among the three
proteins considered. It is involved in the regulation of cellular
stress responses as well as the control of proliferation and
survival of many cell types. Several promising compounds that
inhibit P38alpha are being investigated as potential therapies
for arthritic and inflammatory diseases [?] and are part of our
study. Figure 4 shows the three proteins. For each protein-
ligand complex, we use the ligand conformations sampled with
Docking@Home and randomly distributed them across the
nodes of our distributed systems. On average, each complex
dataset contains around 210,000 ligand conformations.

Fig. 4. Three proteins whose results from the Docking@Home datasets are
analyzed for this accuracy study.

Accuracy analysis: For each protein, its accuracy is the
number of complexes with captured near-native conformations
observed in nature over the total number of complexes for that
protein. Note that a near-native conformation has an RMSD
from the experimentally observed conformation that is smaller
than or equal to two angstroms.

For our clustering, we apply the two mapping methods
described in Section II (i.e., 3D and 3Dlog mappings) to
the data and reduce the ligand geometries into metadata
points. The minimum number of metadata points in the tree
nodes selected by the octree-based search is set to 0.5% of
the number of ligands conformations in each protein-ligand
complex dataset. For example, when the dataset contains
100,000 ligand conformations, the density threshold for this
dataset is 500 points. When the dataset contains 500,000 ligand
conformations, the density threshold for this dataset is 2,500
points. We capture a near-native conformation if the arithmetic
median of the conformations associated with the metadata
point in the selected tree node is below or equal to 2 Å. The
use of the median is preferred as the accuracy metric over the
mean because it is less affected by extreme values, although
the majority of our overall results are not very sensitive to
whether the median or mean is used for selection.

For the probabilistic hierarchical clustering, the distance
metric used to cluster each ligand is the RMSD of its atom
coordinates versus all the other ligands already in the cluster. If
a simulation converges, the largest cluster with lower internal
variance is likely the cluster that contains more near-native
conformations. We capture a near-native conformation if the
centroid of the selected cluster is a near-native conforma-
tion [?].

For the energy-based approach, we consider 100 D@H
conformations selected based on their lowest energy versus
the same crystal structure, which we denote as the naı̈ve
approach. Here, we identify the near-native conformation if
the arithmetic median of the lowest energy conformations is
below or equal to 2 Å.

For the three methods, we perform the clustering and
selection of the near-native candidates without using any infor-
mation about the crystal structures available for the complexes.
The crystal structures play an important role only in the
validation phase when, for each complex, we calculate the
RMSD of the clustering candidate with respect to its crystal
structure. Table I summarizes the accuracy for our method
(octree-based clustering) with density threshold equal to 0.5%



of the dataset, for the probabilistic hierarchical clustering, and
for the energy-based approach.

TABLE I
COMPARISON OF THE NUMBER OF HITS FOR DIFFERENT SCORING

APPROACHES: OUR OCTREE-BASED CLUSTERING; A PROBABILISTIC
HIERARCHICAL CLUSTERING; AND AN ENERGY-BASED SCORING METHOD.

Protein Octree-based clustering Hierarchical Min. Energy
3D 3Dlog

HIV 23/23(100%) 20/23(87.0%) 20/23(87.0%) 8/23(34.8%)
Trypsin 15/21(71.4%) 17/21(81.0%) 16/21(76.2%) 5/21(23.8%)

P38alpha 10/12(83.3%) 8/12(66.7%) 6/12(50.0%) 1/12(0.8%)
All 48/56(85.7%) 45/56(80.4%) 42/56(75.0%) 14/56(25.0%)

When comparing our method with the other two methods,
we observe that for all three proteins (i.e., HIV protease,
trypsin, and P38alpha), we always get better accuracy. In par-
ticular, when mapping the ligand conformation into metadata
using the two different mapping techniques, we observe that
the 3D mapping has higher accuracy than 3Dlog mapping
when considering the HIV and P38alpha proteins. In particular,
for the HIV protease, the 3D mapping method captures 23 of
the 23 near-native conformations (100%). For the P38alpha
protease, the 3D mapping method captures 10 of the 12 near-
native conformations (83.3%). In contrast, for the trypsin pro-
tein, the 3Dlog mapping has higher accuracy than 3D mapping
does. In particular, the 3Dlog mapping method captures 17
of the 21 near-native conformations (81.0%). The reason is
that the ligands docked in the HIV and p38alpha proteins’
pockets are long and with a high degree of freedom, whereas
the ligands docked in trypsin’s pockets are relatively small
and rigid (with very low degrees of freedom). In this case, the
3Dlog mapping method achieves better accuracy than the 3D
method achieves. The reduced flexibility of the conformations
explains why the 3Dlog mapping works well for the associated
clustering with trypsin but not for the other two proteins.
Specifically, when a small and rigid ligand conformation is
in a near-vertical position in a pocket, its slope is very large.
If the conformation position slightly changes, the slope also
changes significantly, because of the projections. In the case
of trypsin, some conformations may have similar shapes and
be in near-vertical positions; and their slopes may differ to
the extent such that the mapping may not result in a dense-
enough subspace containing the metadata. By taking the log
of the slopes, we reduce the slope differences when dealing
with vertical ligand conformations.

IV. SCALABILITY STUDY

For our scalability study, since the energy-based scoring
is highly inaccurate, we exclude it from our set of analysis
methods considered. We compare the performance (speedup)
and data scalability of our clustering method based on the
mapping of conformations into metadata and the octree-
based search with the traditional clustering method based on
direct comparisons of ligand conformations and probabilistic
hierarchical clustering of their RMSD [?].

Platforms: The hierarchical clustering is executed on a ded-
icated cluster at the University of Delaware that is composed

of 8 dual quad-core compute nodes (64 cores), each with two
Intel Xeon 2.50 GHz quad-core processors and 48 GB RAM.
The nodes are connected by high-speed DDR InfiniBand. Our
distributed octree-based clustering is executed on up to 256
compute nodes of Fusion, a 320-node computing cluster at the
Laboratory Computing Resource Center at Argonne National
Laboratory (ANL). Each of Fusion’s compute nodes contains
two Nehalem 2.6 GHz dual-socket, quad-core Pentium Xeon
processors and 36 GB of RAM. The nodes are connected by
InfiniBand QDR at 4 GB/s per link.

Datasets: We use ligand conformations sampled with Dock-
ing@Home for the 1dif ligand-HIV protease complex. The
size of the datasets ranges from 512 MB to 2 TB (i.e., 200K
conformations and 800 million conformations, respectively).
The conformations are distributed across the nodes of the two
platforms in a load-balancing way.

Scalability analysis: Figure 5 shows the execution times of
both the octree and the hierarchical clustering methods. The
time reported for the hierarchical clustering is the execution
time on 8 nodes of the dedicated cluster at the University of
Delaware and includes both communication time, in which the
distributed dataset is sent to a centralized node through Infini-
Band, and analysis times, in which the hierarchical clustering
performs comparisons of the conformations’ geometries. Data
ranges from 0.5 GB (200K ligand conformations) to 4 GB
(1.6 million ligand conformations). The time reported for the
octree-based clustering is the total time for the MapReduce-
MPI key steps, including the map, shuffle, and reduce phases
on the shared cluster at ANL. The number of nodes ranges
from 8 to 256, and the data ranges from 4 GB (1.6 million
ligand conformations) to 2 TB (800 million ligand conforma-
tions).

The hierarchical clustering is not able to scale to more than a
dataset of 4 GB (1.6 million ligand conformations) and 8 nodes
because it needs to move the whole distributed dataset onto one
node and perform all-to-all comparisons among the conforma-
tion records on that node. The type of comparison (i.e., the
computation of the root-mean-square-deviations among all the
conformations) quickly fills the node’s memory. A comparison
of the times for the hierarchical clustering for the 4 GB dataset
versus the octree-based clustering for the same dataset reveals
a performance speedup of 400X for our analysis method.
Specifically, the same type of analysis on the identical dataset
is performed in 1999 seconds by the hierarchical clustering
and in 5 seconds by our octree-based clustering.

The study of the weak scalability on the ANL Fusion cluster
when the number of conformations increases from 25 million
ligands (64GB) to 800 million ligands (2TB) and the number
of nodes increases from 8 nodes (64 cores) to 256 nodes
(2,048 cores) reveals that our analysis of the pharmaceutical
dataset of interest scales up to 500X in data size. Specifically,
the hierarchical clustering can deal with up to 4 GB of data
without encountering substantial slowdown due to memory
swap, whereas the octree-based clustering can deal with up
to 2 TB of data without encountering a major slowdown due
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Fig. 5. Performance comparison of our distributed clustering vs. the hierarchical clustering when the size of data increases.

to the iterative exchange of densities in the MapReduce-MPI
shuffling.

We note that we achieve the outstanding scalability in
size and time while preserving and increasing the accuracy
of our analysis over the entire dataset of generated con-
formations. In other words, our analysis considers all the
generated conformations and performs a single pass on all
the simulation results across all the node of the distributed
system. In contrast, sample-based methods perform clustering
analysis of the ligand conformations only on a subset of
the conformations and thus too often trade off accuracy for
scalability [?], [?]. Since these sample-based methods deal
with reduced-size datasets and lower levels of accuracy, they
are not considered in our comparison.

V. CONCLUSION AND FUTURE WORK

This paper presents a scalable and accurate octree-based
clustering method for selecting drug candidates in large dis-
tributed protein-ligand docking datasets. The scalability is
achieved by applying metadata mapping locally on each com-
pute node and by avoiding substantial data communication of
ligand conformations or metadata. The accuracy is achieved by
accurately capturing the geometries of ligand conformations
using metadata. We measure both the scalability and accuracy
of a real dataset ranging from 512 MB to 2 TB. Our method
based on metadata mapping and octree-based clustering is
approximately 400X faster and can analyze approximately
500X larger datasets compared with a traditional hierarchical
clustering based on direct comparisons of ligand conforma-
tions. Accuracy results on 56 ligands docking in 3 proteins
(i.e., HIV, trypsin, and P38alpha) show that our method can
achieve 100%, 81.0%, and 83.3% clustering accuracy, re-
spectively, whereas the hierarchical-based clustering achieves
87.0%, 76.2%, and 50.0% clustering accuracy and the energy-
based scoring achieve only 34.8%, 23.8%, and 0.8% accuracy.
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