
Understanding Data Access Patterns Using
Object-Differentiated Memory Profiling

Antonio J. Peña
Argonne National Laboratory

Email: apenya@anl.gov

Pavan Balaji
Argonne National Laboratory

Email: balaji@anl.gov

Abstract—The information provided by commonly used code-
oriented profilers can be complemented by means of data-
oriented profiling techniques. Based on a data-oriented approach,
in this study we leverage techniques developed in previous papers
to analyze the data access characteristics of a range of U.S.
Department of Energy applications representative of different
application domains. By analyzing object-differentiated memory
access profiles, we identify markedly different access patterns
across application stages. We find read-only and read-write
periods, relatively large periods without accessing particular
objects, and a variety of data access rates. This information
is useful for devising software optimizations, for software and
hardware codesign, and for data distribution and partitioning in
heterogeneous memory systems.

I. INTRODUCTION

As processor performance increases faster than memory
bandwidth, memory usage optimizations are being widely
studied and deployed. Despite the multiple cache hierarchies
leveraged in today’s computers, processors are often stalled
for many cycles waiting for out-of-die data accesses. Clearly,
the way applications access memory affects their performance.

Data-oriented object-differentiated profiles may provide ap-
plication developers with useful additional information that
traditional code-oriented profilers do not offer. For example,
as illustrated in Figure 1, a single memory object may be the
culprit for an overall high cache miss rate while not being
visible when looking at the per-source-line statistics offered
by traditional approaches. Another example of use is on data
distribution and partitioning tasks for heterogeneous memory
systems. Emerging extreme-scale computers are likely to be
equipped with multiple memory subsystems based on a variety
of technologies, such as NVRAM, scratchpad memory, vector-
optimized memory, or different types of DDR. Identifying per-
object access patterns helps determine the most appropriate
memory technology to host them [1].

In this study we leverage techniques developed in previous
papers [1], [2] to analyze the data access characteristics of a
set of DOE applications from the CESAR [3] and Mantevo [4]
codesign projects. We employ a data-oriented profiling tool [2]

a[i] = b[j] * c[k];← 5%
b[l] = d[m] * 2; ← 5%
c[n] += b[o]; ← 5%

a← 0% / b← 15% / c← 0%

Fig. 1. Code-oriented (left) versus data-oriented (right) profiling.

developed on top of the Valgrind instrumentation framework.
Analyzing the information gathered with this profiling tool, we
are able to identify per-memory-object access patterns that are
markedly different across application stages, finding large pe-
riods without accesses, read-only and read-write periods, and
widely different access rates. Our analyses and methodology
are intended to help application developers better adapt their
code to the underlying memory architecture and to be useful
in the codesign of emerging hardware and software.

II. ACCESS PATTERN ANALYSIS

For our analysis we have selected three miniapplications
representative of different domains. We discuss access patterns
of single MPI processes.

A. MiniMD

MiniMD [5] is a cut-down molecular dynamics simulator.
It simulates the atoms of a cubic space, splitting it among the
different processes. We use the reference implementation of
MiniMD version 1.2.

Before the simulation starts, the application sets up the ini-
tial status of the system. Next, the simulation is run, iteratively
computing the forces, positions, and velocities of the atoms in
successive timesteps. Every n number of timesteps (defined by
the user), a reneighboring is performed, in order to recompute
each atom’s neighbors.

We ran a simulation of 10 timesteps of the Lennard-
Jones interaction of 864,000 atoms in 27 single-threaded MPI
processes (this is 32,000 atoms per process) to form a 3×3×3
periodic mesh, so that every process has different left and
right neighbors, in order to replicate production conditions
for 3D-box stencil communications. We set the reneighboring
frequency to 5 timesteps.

Table I shows the amount of data read and written for the
most-accessed memory objects in our simulation: the atoms’
positions (atom.x) and forces (atom.f), and a copy of the
atoms’ positions (atom.x_c), used alternately after each out-
of-place sorting of the atoms. The other two most-accessed
memory objects, neighbor and force, are instances of
small C++ objects of fixed size (i.e., independent of the
problem size) easily fitting in cache. Hence, these should not
represent any performance penalty regardless of the underlying
memory architecture on which they reside, so we will not
consider them in our subsequent analysis. The remaining



TABLE I
DATA ACCESS STATISTICS FOR THE DIFFERENT MINIAPPLICATIONS

Object Max. Size Loads Stores
(Var./Fix.) Abs. Rel. Absol. Rel.

MiniMD
atom.x 1.4 MB (V) 624 MB 24.1% 9 MB 2.5%
atom.f 1.4 MB (V) 272 MB 10.5% 266 MB 74.9%
neighbor 232 B (F) 464 MB 17.9% 20 KB 0.0%
atom.x_c 1.4 MB (V) 359 MB 13.8% 7 MB 2.0%
force 120 B (F) 292 MB 11.3% 576 B 0.0%

MCCK
ptrs 64 B (F) 5.8 GB 25.9% 4.1 GB 34.4%
particle 69 MB (V) 2.5 GB 11.1% 0.7 GB 5.6%
p_match 8 B (F) 0.8 GB 3.6% 0.7 GB 6.0%
mc* 8 B (F) 0.9 GB 4.1% 8 B 0.0%
mc 176 B (F) 0.5 GB 2.1% 1 KB 0.0%

XSBench
xs_vector 80 B (F) 177 MB 19.2% 163 MB 49.5%
NGP 319 KB (V) 244 MB 26.4% 1 MB 0.3%

Fig. 2. MiniMD’s cumulative data accessed for our three objects of interest.

accesses are spread over different objects, being negligible for
the overall execution.

Figure 2 shows the access patterns of our objects of interest,
covering almost 50% of all the read accesses of the execution
and almost 80% of the overall writes. We can observe that
atom.x and atom.x_c are mostly read variables, whereas
atom.f is both read and written, although it does not present
periods of being mostly read or mostly written. All objects
experience large periods of not being accessed, comprising
over 200 million instructions. In addition, we observe only
two data-intensive stages, reneighboring and compute forces,
which we describe next.

Reneighboring: As we can see in Table II, reneighboring
is a relatively long operation reading over 200 MB from the
atoms’ positions. This corresponds to the process of building
the atoms’ neighbors list following Newton’s third law. After
separating the atoms in bins by position—a task requiring
only a pass through all the atoms of the process reading their
positions—the per-atom neighbor list is built. This process
involves checking for every atom the position of the atoms

TABLE II
ACCESSES PER TASK FOR MINIMD

Object Reneighboring Compute Forces
atom.x L 202 MB 0.8 B/ins 29 MB 0.6 B/ins
(_c) S 0 B 0.0 B/ins 0 B 0.0 B/ins

atom.f
L 0 B 0.0 B/ins 20 MB 0.4 B/ins
S 0 B 0.0 B/ins 22 MB 0.4 B/ins

Instructions 250 · 106 53 · 106

within its bin and those in its nearest bins according to
the user-specified cutoff distance, which involves a relatively
large number of iterations. In our setup we experience up
to 14 atoms per bin and 41 neighbor bins, which is up to
574 iterations per atom reading atoms’ double-precision 3D
positions, while only a few of these atoms are found to be
neighbors (39 on average in our test case). Hence, only a
few 4-byte writes to the neighbors list are performed, giving
a ratio of around 50 bytes read per each written. Although
larger cutoff distances or higher densities may increase the
number of neighbors per atom, the total number of atoms is
expected to be several orders of magnitude larger than the
number of neighbors per atom in production runs, and hence
the neighbors list is likely to remain featuring a small number
of accesses.

Computing of Forces: Computing of forces requires two
passes through the atoms. In the first pass the forces are
cleared. In the second pass these are iteratively computed.
This process leads to a ratio of around 1.4 bytes loaded from
atom.x per load and store of atom.f in our runs, as detailed
in Table II. The slightly higher writes reflected on atom.f
correspond to the initial zero-out process.

B. MCCK

MCCK [6] is focused on evaluating the memory implica-
tions on communications of the particle-tracking algorithm
leveraged by many nuclear reactor physics analysis codes.

MCCK runs stages repeatedly until all particles have been
absorbed by a physical domain. The leakage rate is user-
specified, and at each stage the nonabsorbed particles move
to a new processor’s domain.

In our experiments we use MCCK version 1.0, leveraging
the original communications approach. We ran 8 MPI pro-
cesses with 1 million particles per processor and a global
leakage of 0.8, leading to 66 stages before all the atoms were
absorbed.

Table I depicts the data accesses for the most-accessed
memory objects in our run: the particles’ data (particle);
four particle pointers used in two comparison functions
(ptrs), two integer variables also used in the comparison
functions (p_match), the pointer to a structure containing the
configuration parameters (mc*), and the structure itself (mc).
Of these, only the size of the particle object depends on
the problem size; the remaining are accessed mostly by a high
number of calls to particle comparison functions during sorting
tasks. The next most-accessed memory object represents only
0.4% of the overall accesses. We focus the remainder of our



Fig. 3. MCCK access pattern for the main data memory object.

analysis on particle, which represents 9.3% of the overall
data accesses of our simulation.

Figure 3 shows the access pattern for the particle object
along the execution of the simulation. We can see that this
object intermittently presents relatively large periods without
store accesses at the beginning (up to around 109 instructions),
becoming shorter and shorter as the execution progresses. It
also presents relatively short intermittent periods of not being
accessed at all. Overall, this object is read and written during
the entire execution, with a ratio of 3.8 of data loaded to
data stored. As can be seen in the plot, each successive stage
is shorter because approximately 20% fewer atoms remain.
Next, we briefly discuss the four main tasks of each cycle,
summarized in Table III.

Update Particles: Iterate through the nonabsorbed particles
to determine which of them are going to be absorbed in the
current stage, leave, or stay within the domain. This task
involves write accesses to the absorbed flag and optionally
the process identifier if the particle is not absorbed, leading to
a write-only stage with a reduced store-per-instruction rate.

Pack: Remove the absorbed particles from the array, and
compress it. This task translates into an array sorting, placing
first the nonabsorbed particles and sorting all of them by the
new process to hold them. The sorting is performed by means
of the GNU C library’s “qsort,” whose current implementation
is actually a merge-sort algorithm that employs auxiliary
buffers for the intermediate sorting stages and hence performs
only reads from the original buffer until reaching the last stage,
where both reads and writes are required to merge the two
last subarrays. A final traversal of the nonabsorbed particles
is performed in order to count them. This leads to an overall
ratio of 8 bytes read per each written.

Exchange: Exchange leaving and arriving particles. This
task involves O(nonabsorbed) accesses to the particles array.
Since most of this task consists of data transfers, it is a short
task in terms of instructions, comprising a high ratio of read
and write accesses.

Eliminate Sent: Eliminate the sent particles from the array.
This task is performed by another sort operation with a com-

TABLE III
ACCESSES PER TASK FOR MCCK AND XSBENCH

Action Loads Stores Instruct.
MCCK’s particle object (1st stage)

Update 0 MB 0.0 B/ins 7 MB 0.1 B/ins 129 · 106
Pack 366 MB 0.4 B/ins 46 MB 0.0 B/ins 968 · 106
Exchange 21 MB 0.9 B/ins 18 MB 0.8 B/ins 25 · 106
Elimin. 158 MB 0.2 B/ins 55 MB 0.1 B/ins 848 · 106

XSBench’s NGP object
Initial 1 MB 0.2 B/ins 1 MB 0.1 B/ins 6 · 106
Generate 31 MB 0.4 B/ins 0 MB 0.0 B/ins 89 · 106
Simulat. 212 MB 0.8 B/ins 0 MB 0.0 B/ins 267 · 106

parison function that ignores the absorbed status. It requires a
final pass through the particles in order to count them. In this
case, the overall ratio of bytes read per each written is only 3,
because fewer fields need to be considered when comparing
elements if compared with the sorting procedure in Pack.

C. XSBench

XSBench [7] targets the typically most computationally
intensive piece of Monte Carlo transport algorithms: the com-
putation of macroscopic neutron cross-sections. According to
its authors, in a typical simulation this poses around 85% of
the total run time.

The input of XSBench includes the number of nuclides
to simulate, the number of grid points per nuclide, and the
number of lookups of cross-section data to perform.

We run our analysis on XSBench version 11 performing
150,000 lookups on a reactor of 68 nuclides with 100 grid
points per nuclide, using eight MPI processes.

Table I shows the two most-accessed memory objects in our
execution, representing over 45% of the accesses. The most
accessed object—xs_vector—is an array of five double-
sized floating-point elements used to store the vector of the
cross section. NGP is an array of data structures comprising six
double-sized floating-point elements representing the energy
and the cross-section attributes of each nuclide grid point; it
holds the matrix of nuclide grid points. The next most-accessed
object represents only 3.6% of the total data accesses of our
simulation. As in the rest of the cases, we drop the fixed-size
memory object (xs_vector) from the rest of our analysis.

Figure 4 depicts the single-process access pattern of the
NGP memory object. As we can see in the plot, this object
is used extensively on read accesses, while no write accesses
are performed during most of the execution. This is a good
example of a variable that could benefit from its placement
in a memory technology optimized for read-only accesses. In
addition, we can observe that its access rate varies markedly
between the two main stages of the simulation: the generation
of the unionized energy grid and the lookup iterations.

We next describe the main stages of this miniapplication,
whose access data is summarized in Table III.

Initial Tasks: The two major initial tasks comprise the
generation of the nuclide energy grids and their subsequent
sorting. These do not involve a large number of instructions
executed nor a high rate of data accesses.



Fig. 4. XSBench access pattern for the most-accessed memory objects.

Generation of Unionized Energy Grid: This stage comprises
the allocation of the unionized energy grid and the assignment
of its relationship with the energy levels of the nuclide grids.
After allocating the energy grid, a sorted nuclide grid point
matrix is created, the original nuclide grid is copied into it, and
the energies are subsequently sorted by means of the “qsort”
interface. Next, the energies from the sorted grid of nuclides
are assigned to the energy grid. Last, the energy grids are
related to the nuclide energy grids (by means of assigning
pointers to them). This last task comprises the major part of
this operation, involving O(gridpoints × isotopes2) binary
searches. The overall stage leads to an average of 0.4 bytes
read from the NGP memory object per instruction executed.

Simulation: The simulation stage consists of performing the
requested number of cross-section lookups. A single lookup is
a negligible operation in terms of both instructions executed
and data accessed (fewer than 2,000 instructions and 1.5 KB
per lookup), since it involves generating a pair of random
numbers to represent the energy and the material, as well as
a binary search on the unionized energy grid looking for that
energy level. Next, for every input material (12 by default in
XSBench) a lookup (of asymptotic constant time) is performed
in the nuclide grid. This leads to an asymptotic logarithmic
time. Since the nuclide grid is extensively accessed, the ratio
of accesses per instruction doubles that of the previous stage.

III. RELATED WORK

The potential benefits of object-differentiated profiling were
presented by optimization case studies based on the triangular
system solve phase of the incomplete Cholesky conjugate gra-
dient algorithm [8] and blocked-matrix multiply code [9]. The
recently emerged Gleipnir memory analysis tool—which in-
cludes object-differentiated capabilities—was presented along
with some examples of its use in optimizing data access per-
formance [10]. A performance study of the MCF benchmark
from the SPEC CPU 2000 benchmark suite including object-
differentiated profiling data based on hardware counters was
presented for the UltraSPARC-III family of processors by

extending the functionality of the Sun ONE Studio compilers
and performance tools [11].

Our work differs from those previous efforts in that
we present and extensively analyze access patterns of ker-
nels from different domains of wide interest to the high-
performance computing community.

IV. CONCLUSIONS

The different memory objects leveraged by the codes we
analyzed present markedly different access patterns among the
different execution stages. For instance, we have seen that the
object storing the atoms’ forces in MiniMD is not accessed
during the reneighboring stage for 250 million instructions,
while being actively accessed for both reading and writing
during the computation of the forces. In the case of MCCK, the
object storing the particles information is accessed mostly by
an out-of-place sorting algorithm that performs only writes to
this buffer during the last merge stage. On the other hand, the
memory object of interest in our XSBench execution revealed
a read-only access pattern.

Memory usage and bandwidth requirements are a major
concern of system designers. Using miniapplications for an-
alyzing access patterns of individual memory objects helps
researchers and developers understand the way applications
access data and provides insight into unexpected behaviors.

ACKNOWLEDGMENTS

This work was supported by the U.S. Dept. of Energy, Office
of Science, Advanced Scientific Computing Research (SC-21),
under contract DE-AC02-06CH11357.

REFERENCES

[1] A. J. Peña and P. Balaji, “Toward the efficient use of multiple explicitly
managed memory subsystems,” in IEEE Cluster, Sep. 2014.

[2] ——, “A framework for tracking memory accesses in scientific ap-
plications,” in 43nd International Conference on Parallel Processing
Workshops (ICPP-W), Sep. 2014.

[3] Argonne National Laboratory, “Center for Exascale Simulation of Ad-
vanced Reactors,” http://cesar.anl.gov, 2015.

[4] Sandia National Laboratories, “Home of the Mantevo project,”
http://mantevo.org, 2015.

[5] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving performance via mini-applications,” Sandia
National Laboratories, Tech. Rep., 2009.

[6] K. Felker, A. R. Siegel, and S. F. Siegel, “Optimizing memory con-
strained environments in Monte Carlo nuclear reactor simulations,”
International Journal of High Performance Computing Applications,
vol. 27, no. 2, pp. 210–216, 2013.

[7] J. R. Tramm and A. R. Siegel, “XSBench — the development and verifi-
cation of a performance abstraction for Monte Carlo reactor analysis,” in
PHYSOR — The Role of Reactor Physics toward a Sustainable Future,
2014.

[8] M. Martonosi, A. Gupta, and T. Anderson, “MemSpy: Analyzing mem-
ory system bottlenecks in programs,” ACM SIGMETRICS Performance
Evaluation Review, vol. 20, no. 1, pp. 1–12, 1992.

[9] M. Martonosi, A. Gupta, and T. E. Anderson, “Tuning memory perfor-
mance of sequential and parallel programs,” Computer, vol. 28, no. 4,
pp. 32–40, 1995.

[10] T. Janjusic, K. Kavi, and B. Potter, “Gleipnir: A memory analysis tool,”
in International Conference on Computational Science (ICCS), 2011.

[11] M. Itzkowitz, B. J. Wylie, C. Aoki, and N. Kosche, “Memory profiling
using hardware counters,” in Supercomputing Conference (SC), 2003.


