
Processing MPI Derived Datatypes on
Noncontiguous GPU-Resident Data

John Jenkins, James Dinan, Pavan Balaji, Senior Member, IEEE, Tom Peterka,
Nagiza F. Samatova, Member, IEEE, and Rajeev Thakur

Abstract—Driven by the goals of efficient and generic communication of noncontiguous data layouts in GPU memory, for which
solutions do not currently exist, we present a parallel, noncontiguous data-processing methodology through the MPI datatypes
specification. Our processing algorithm utilizes a kernel on the GPU to pack arbitrary noncontiguous GPU data by enriching the
datatypes encoding to expose a fine-grained, data-point level of parallelism. Additionally, the typically tree-based datatype encoding
is preprocessed to enable efficient, cached access across GPU threads. Using CUDA, we show that the computational method
outperforms DMA-based alternatives for several common data layouts as well as more complex data layouts for which reasonable
DMA-based processing does not exist. Our method incurs low overhead for data layouts that closely match best-case DMA usage
or that can be processed by layout-specific implementations. We additionally investigate usage scenarios for data packing that
incur resource contention, identifying potential pitfalls for various packing strategies. We also demonstrate the efficacy of
kernel-based packing in various communication scenarios, showing multifold improvement in point-to-point communication and
evaluating packing within the context of the SHOC stencil benchmark and HACC mesh analysis.

Index Terms—MPI, graphics processing unit, CUDA, datatype

Ç

1 INTRODUCTION

CONSIDERABLE interest in the HPC community has
centered on the capabilities of graphics processing

units (GPUs) as inexpensive, many-core accelerators.
Evidence of this is seen in recent Top500 lists of super-
computers [1], where GPU accelerators are gaining in
popularity because of their effectiveness over a wide range
of computational loads and a favorable FLOPs-to-power
ratio.

Numerous technical challenges arise from adding a
fundamentally different computing architecture to existing
systems. Aside from the cost of developing, porting, and
optimizing codes to run on the GPU, a greater concern is
integrating them into algorithms with nontrivial point-to-
point and collective communication patterns. The currently
prevailing GPU accelerator model consists of discrete
graphics processing hardware with memory separate
from the CPU’s RAM. Hence, communication operations
involving data resident in GPU memory requires moving
data between GPU and CPU memories, adding another
‘‘hop’’ to the communication graph. Since the MPI

standard [2] does not define MPI’s interaction with GPU
memory managed by, for example, OpenCL [3] or CUDA
[4], the burden of managing distinct memory spaces,
especially of noncontiguous communication, falls on the
application developers.

Enabling MPI to interact directly with data stored in
GPU memory is an important step toward providing
transparent and efficient integration of GPUs into HPC
applications. A challenging problem within this interaction
is the communication of noncontiguous data. MPI datatypes
enable such communication for data in CPU memory,
allowing the programmer to define an arbitrary layout of
data for use in MPI operations. A common use of datatypes
in scientific computing is the transfer of noncontiguous
array slices from GPU to GPU in applications such as
stencil computations, which require array boundary
updates (cell exchange) between processes [5], [6], [7].

For the computational benefit of using the GPU to
outweigh the cost of data transfer into CPU main memory,
these communication operations must be performed with
minimal overhead. The naive solutions of transferring
point by point and transferring the entire noncontiguous
buffer to the CPU are unacceptable from a performance
point of view, suffering from unacceptably high latencies
and wasted bandwidth, respectively. To achieve a suffi-
ciently coarse transfer granularity when working with
noncontiguous data, one must pack the data into a
contiguous buffer prior to transfer. While effective packing
implementations exist for noncontiguous data residing in
CPU memory [8], no generalized packing methodology
exists for data residing within GPU memory that takes
advantage of GPU parallelism and memory bandwidth.

In this work, we present the design of an efficient, in-
GPU noncontiguous datatype processing system. We focus

. J. Jenkins and N.F. Samatova are with the Department of Computer
Science, North Carolina State University, Raleigh, NC 27695 USA. E-mail:
jpjenki2@ncsu.edu; samatova@csc.ncsu.edu.

. J. Dinan, P. Balaji, T. Peterka, and R. Thakur are with the Mathematics
and Computer Science Division, Argonne National Laboratory, Argonne,
IL 60439 USA. E-mail: {dinan, balaji, thakur}@mcs.anl.gov.

Manuscript received 1 Apr. 2013; revised 24 Aug. 2013; accepted 3 Sept.
2013. Date of publication 15 Sept. 2013; date of current version 17 Sept. 2014.
Recommended for acceptance by S. Ranka.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.234

U.S. Government work not protected by U.S. copyright.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10, OCTOBER 2014 2627

on NVIDIA’s CUDA interface, although the techniques
presented are applicable across accelerator hardware and
programming models. We develop a datatype represen-
tation that exposes fine-grained parallelism, and we
utilize a GPU kernel to leverage this parallelism to
accelerate data movement. We demonstrate comparable
or better noncontiguous data packaging compared with
CUDA’s built-in transfer routines, with low overhead
compared with hand-coded packing kernels. We demon-
strate up to 700 percent end-to-end latency improvement
for performing large, noncontiguous vector data commu-
nication. In addition, our system supports arbitrary
datatypes for which, to our knowledge, no equivalent
exists (though exposing GPUs to MPI and other distrib-
uted programming models is an active area of research
[9], [10], [11], [12], [13], [14]Vsee Section 1 of Supplemen-
tary Material which is available in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.
1109/TPDS.2013.234). We also evaluate the impact of
resource contention for GPU cores and access to the PCIe
bus. To realize these design goals, we identify and
address three key challenges in enabling efficient proces-
sing of MPI datatypes in GPU memory:

1. Datatype Representation in GPU Memory: As a first
step toward building an efficient packing algorithm,
we develop a GPU-optimized serialized datatype
representation for arbitrary MPI datatypes in GPU
memory, separated into a cacheable, constant-length
parameter space, and a variable-length parameter
space.

2. Parallel GPU Packing Kernel: We identify a fine-
grained, dependency-free parallel packing strategy
based on canonical datum identification and a
traversal algorithm based on the packing strategy
and datatype representation, to better match GPU
hardware characteristics.

3. Packing in the Presence of Resource Contention: The
scheduling policy of GPU kernels and PCIe activity
prevents resource sharing to the degree operating
systems and CPUs allow; a packing operation could
starve in the presence of another resource-intensive
kernel. Different communication patterns may ne-
cessitate different packing strategies. We present
experimentation illustrating such effects.

This paper is organized as follows. In Section 2 we
provide an overview of MPI datatypes and their optimized
processing in CPU memory, as well as necessary concepts
in efficient GPU algorithm design. Section 3 discusses the
optimization of the datatype representation and describes
the packing algorithm, given the GPU datatype represen-
tation. A detailed evaluation of GPU datatype processing is
given in Section 4 and Section 5. In Section 6 we provide
concluding remarks and discussion.

This paper is an extended version of a previously
published paper [15]. In this paper, we provide a substan-
tially expanded set of experimental results, including
application benchmarks, comparison with MVAPICH
GPU-enabled communication, and a more complete set of
derived datatypes in microbenchmarks.

2 BACKGROUND

2.1 MPI Datatypes Specification
The Message Passing Interface (MPI) standard [2] specifies
the definition of datatypes, allowing users to portably
communicate noncontiguous data between processes
with minimal effort, while efficiently utilizing network
resources. For instance, a noncontiguous column vector can
be defined by using a vector type, as shown in Fig. 1. In
this example, the datatype CS has a stride of five elements
and a blocklength of two elements. The stride encodes the
distance between consecutive blocks, while the blocklength
encodes the number of datatype children per block. Other
datatypes include a sub-array defining an n-dimensional
subvolume, an indexed set of location-blocklength pairs
with a homogeneous underlying datatype, and a struct
consisting of location-blocklength-datatype tuples.

The most powerful aspect of the datatypes specification
is support for composition, layering datatypes to create
complex selections of data within a simple and concise API.
For instance, the ‘‘elements’’ of CS could themselves be
datatypes such as array subvolumes, and the packing
operation would pack, for each ‘‘element’’ of CS, the data
specified by the datatype. Primitive datatypes, such as
integer and floating-point variables, form the basis for
derived datatypes, such as MPI vectors, which can be
defined in terms of either primitive or other derived types.

To avoid initiating I/O or network operations for each
individual piece of data, MPI implementations pack the
data into contiguous buffers. For the computational aspect
of this process to be efficient, a simple datatype represen-
tation must be provided that allows for fast traversal of the
datatype. Datatype traversal refers to computing offsets in
the input buffer for each primitive defined by the datatype.
While datatypes are formally described as a list of
htype; displacementi pairs, in practice they are encoded by
using a tree structure, where each node in the tree
represents a datatype. This structure, as well as necessary
parent-child relationships, is captured in the MPICH
implementation of dataloops [8], which records type-specific
parameters and propagates information about datatypes
necessary for a simple traversal. Specifically, the extent and
size of child datatypes drive the processing algorithm,
where the extent is the distance between successive child
data types and the size is the amount of contiguous data
encoded by the type.

MPICH processes datatypes by unrolling a depth-first
search on the tree structure, using a concise stack-based

Fig. 1. Array slice, an MPI vector datatype CS encoding it, and the slice’s
packed form. The corresponding datatype initializer (for C element type
double) is MPI_Type_vector(3, 2, 5, MPI_DOUBLE, &CS).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10, OCTOBER 20142628

representation. Each stack element records type-specific
parameters, such as how many vector blocks have been
traversed. The extent and size at each level of the tree are
used to compute offsets from the raw data into the
contiguous buffer, and type-specific optimizations are
utilized to reduce traversal overhead, such as substituting
specialized memory copy functions for vector types.

2.2 GPU Architecture and Programming Model
NVIDIA’s Compute Unified Device Architecture (CUDA)
defines a programming abstraction for general-purpose
computation on GPUs (GPGPUs) [4]. For this paper, we
focus on CUDA and NVIDIA GPUs, although the algo-
rithms can be easily applied to other libraries, such as
OpenCL.

CUDA presents the GPU as a CPU-driven coprocessor,
where the CPU issues asynchronous parallel kernels on the
GPU. Kernel launches and memory copies between CPU
memory and separate GPU memory are performed across
the PCIe bus, a high-latency, high-bandwidth operation;
and direct memory access (DMA) enables both kernel calls
and memory operations to be performed asynchronously.

GPUs have multiple streaming multiprocessors (SMs),
each consisting of multiple scalar processors (SPs), giving
hundreds of total available cores for computation at a given
time. The threading model provided is single instruction,
multiple thread, or SIMT, which executes a group of threads
(a warp, typically 32) in lockstep. SIMT, unlike SIMD (single
instruction, multiple data), allows threads to diverge on
branch instructions, where each branch is executed serially
until a convergence point is reached. Threads are grouped
in three-dimensional grids, or thread blocks, where each
block is statically allocated register and cache memory and
scheduled on an SM. Compared with CPU threads, GPU
threads are extremely lightweight and far less powerful but
make up for these limitations in sheer parallelism potential
and extremely low context switch overhead.

The main memory in GPUs is optimized for parallel
access in large chunks (typically 128 B) that are coalesced by
adjacent threads in a warp; if adjacent threads access
adjacent memory, the operations are combined into a single
memory transaction. While the main memory is a high-
latency, high-bandwidth resource with a small L2 cache,
each multiprocessor also contains a fast but small user-
controlled scratch cache, called shared memory.

Given these components, a number of optimization
goals can be defined when devising GPU algorithms. First,
PCIe bus activity should be minimized, because of high
latency and transfer rates that pale in comparison with
GPU hardware specifications. Second, memory access
patterns on the GPU should be regular and exhibit locality
with respect to threads. Third, the shared memory space
should be used as much as possible to minimize main
memory accesses. Fourth, GPU algorithms should exhibit
fine-grained parallelism so that the hardware can utilize
context switching to hide main memory access latency and
stalls in the instruction pipeline.

2.3 GPU-GPU Communication in MPIVMVAPICH
Recently, the MVAPICH team has utilized key develop-
ments in recent CUDA frameworks to enable the transpar-

ent MPI communication of buffers in GPU memory [9],
[10]. In particular, CUDA Unified Virtual Addressing can
discern whether a pointer references GPU memory,
allowing MVAPICH to provide the same communication
interface for both CPU and GPU buffers. Currently,
MVAPICH can perform two types of communication
with data in GPU memory, relying solely on existing
CUDA library functions: contiguous buffers and strided
buffers encodable by CUDA’s two-dimensional memory
copy routine (cudaMemcpy2D). By contrast, we provide a
datatype-processing algorithm capable of representing and
packing arbitrary datatypes. Our methodology can be
integrated into MVAPICH’s buffer-pool-based framework
in a simple manner, however.

3 IN-GPU DATATYPE PROCESSING

The communication data flow driving our datatype
processing is shown in Fig. 2, using as an example the CS
datatype from Fig. 1. Given a datatype definition, the data
is packed within GPU memory by using a kernel, then is
transferred to CPU memory to be communicated. To
optimize this flow, we organize the datatype representa-
tion to be efficiently accessed by GPU threads. Further-
more, we use a packing algorithm that fully utilizes GPU
threading resources, so that each thread reads a noncon-
tiguous element and places it into contiguous space, free of
interthread dependencies. For illustrative purposes, we
assume that CS is composed of a second vector type
CSvec. In other words, CSvec is a child datatype of CS.

3.1 MPI Datatype Encoding in GPU Memory
As opposed to the dynamic tree structure that MPI
implementations such as dataloops typically use, GPU
best practices suggest storing the type representation
contiguously, preferably loading into shared memory
once upon kernel invocation. However, many datatypes
have a variable-length encoding, such as the indexed and
struct types. This presents a problem because hundreds,
if not thousands, of threads may be resident on a single SM,
and we cannot assume that the available shared memory is
sufficient to store the full variable-length encoding.

Thus, we enforce a cache policy that all GPU threads can
benefit from, caching only the fixed-length parameter
space of the datatype(s). To facilitate this, the datatype

Fig. 2. Communication pattern necessitating GPU packing (unpacking if
arrows are reversed).

JENKINS ET AL.: PROCESSING MPI DERIVED DATATYPES ON NONCONTIGUOUS GPU-RESIDENT DATA 2629

representation is separated into fixed- and variable-length
parameter spaces, using a serialization order corresponding
to a preorder traversal of the type tree. With variable-length
datatype fields left aside, we observe that the remaining type
tree can be stored in shared memory, as each type otherwise
requires a small amount of fixed-length memory to encode.
See Table 1 for a listing of datatypes with their fixed- and
variable-length parameters.

Fig. 3 shows an example type tree of arbitrary types. The
type tree is preorder-traversed, storing the fixed-length
parameters contiguously. The variable-length parameters
are stored in a separate contiguous buffer, called the
lookaside buffer. For each datatype with a variable-length
parameter, a pointer to the lookaside buffer is included
into the type’s fixed-length parameters. We call this
the lookaside offset. To control traversal and remove the
explicit encoding of primitives, a bitfield is used to
specify the node type (leaf vs. nonleaf), encoding the
primitive type if the node is a leaf (e.g., integer, floating
point). This bitfield is also included in the fixed-length
parameter space.

Since the type tree is preorder-serialized, a top-down
traversal to a datum requires no additional linkage
information for nearly every type. The only exception is
a struct type with multiple derived datatype children,
requiring additional pointers in the variable-length para-
meters to differentiate where in memory the children
types are.

For most derived datatypes, the encoding is simple. For
example, the encoding for CS is the fixed parameters in
rows Common and vector in Table 1, followed by the
same parameters encoding CSvec. A single indexed type
is equally simple, although different from an implementa-
tion point of view. It has a similarly small fixed-length
storage size, followed by a potentially large list of
blocklengths and displacements, requiring storage in
GPU main memory.

3.2 Parallel GPU Packing Kernel
CPU-side datatype processing implementations, such as
dataloops, are based on serially filling fixed-size buffers
from noncontiguous data in CPU memory, leaving the
possibility for the coarse-grained parallelism of filling
multiple buffers. This runs contrary to best practices on the
GPU, where a finer grain of parallelism is critical to
performance. Hence, a straightforward ‘‘port’’ of existing
methods is undesirable. Section 3.2.1 addresses the mis-
match in parallel packing strategies, while Section 3.2.2
discusses the algorithm itself, based on the parallel proces-
sing strategy and optimized datatype representation.

3.2.1 Parallelism Via Point-Based Retrieval
To enable a finer degree of parallelism than the coarse-
grained method of filling multiple packing buffers, we
enrich the dataloop’s datatype encoding with minimal
additional knowledge about child datatypes to produce a
dependency-free parallel traversal. In addition to caching the
size and extent of child datatypes, the number of primitives
can be similarly cached, allowing for fine-grained paral-
lelism on a per-primitive level.

Recall that datatypes, and hence any datatype encoding,
are formally represented as a list of htype; displacementi
pairs. To facilitate our parallel traversal, we assign a
canonical integer ID to each pair in the sequence. Then,
given an ID and the datatype encoding, we can compute in
which part of the encoded datatype the primitive appears.
For example, consider the vector type CS in Fig. 1, with
underlying type MPI_DOUBLE (making CS a leaf type).
There are three blocks, each containing two primitives.
Given the canonical ID 3 (position 7 in the figure), we can
conclude that the primitive resides in block 1 of the type by
the computation ‘‘ID/blocklength’’ and is element 1 in the
block by the computation ‘‘ID percent blocklength.’’ In
other words, we compute the block of the datatype in
which the primitive appears, then compute the location
within that block. This calculation can similarly be
performed for other datatypes.

When defining derived datatypes, the number of
primitives encoded by a type gets propagated upward, so
that the parent type (e.g., CS) records the number of
primitives in each instance of the child datatype (e.g.,
CSvec). When mapping canonical IDs to locations within a
derived datatype, computations must be performed with
respect to the number of primitives within the child
datatype. So, if CS has CSvec as a child type, the global
ID mapping to block and block offset in CS would occur by
means of the computations ‘‘(ID/# primitives)/block-
length’’ and ‘‘(ID/# primitives) percent blocklength,’’
where the number of primitives is with respect to CSvec.

TABLE 1
MPI Datatypes and Their Fixed- and Variable-Length

Parameters. The ‘‘Common’’ Row Contains Parameters
Common to All Datatypes in Our Implementation

Fig. 3. Example type tree, serialized into GPU memory. Branches in
trees appear only for struct types.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10, OCTOBER 20142630

Further, we can recursively perform the same operations
on CSvec by binding the global ID to the local ID within
CSvec, using ‘‘(ID percent # primitives).’’

3.2.2 GPU Datatype Traversal Algorithm
The datatype representation and the parallel datatype
traversal strategy on the GPU yield a straightforward
packing algorithm with two favorable properties: constant
per-thread storage, aside from the shared datatype repre-
sentation, and no interthread dependencies.

The traversal algorithm assigns each GPU thread to a
single primitive datum and traverses the type tree in a top-
down fashion, using the datatype’s extent, size, and number
of child type primitives to update read and write offsets. The
composed data structure type is based on Table 1. After the
‘‘leaf’’ derived datatype is encountered, the offsets point to
the locations in memory of both the element to pack and
where to place it. Algorithm 1 shows the general process. By
‘‘recursively’’ assigning the element ID to a pack based on
the type being visited on Line 9 (see Section 3.2.1), the
algorithm need merely track and update the memory read
and write offsets as each level of the tree is visited. Packing
and unpacking can be toggled by merely switching the
direction of the read/write on Line 12. On Line 17, pointer
jumping is necessary only for struct types with multiple
derived children; see Section 3.1. Note that adjacent threads
are implicitly assigned adjacent primitives defined by the
datatype, so locality between adjacent primitives enables
coalesced memory operations on them. Furthermore, on the
most common MPI datatypes (vector, subarray,
blockindexed), threads experience no branch divergence
because of a single code path.

Algorithm 1: Point-based traversal and packing of arbitrary
datatype.

input : user buffer: buffer with data to pack

input : type: serialized datatype, starting at root

input : ID: element to pack, in canonical order

output : packed buffer: packed buffer

1 // in, out: location in user/packed buffer, respectively

2 in 0, out 0

3 Load type fixed-length parameters into cache
4 while true do

5 // increment buffer offsets based on datatype

6 in inþ inc read ðID;TYPEÞ
7 out out þ inc write ðID; typeÞ
8 // compute element ID w.r.t. child type

9 ID ID % type:#primitives
10 if type is leaf then

11 // finished processing datatypes, perform r/w

12 packed buffer ½out� user buffer ½in�
13 break

14 else

15 // process child type; for non-struct,

16 // translates to type þ¼ sizeofðtypeÞ
17 type type:child

The functions inc_read and inc_write are type-
dependent. Fortunately, they are simple to compute for the

contiguous, vector, subarray, and blockindexed
types, as each has a very regular structure. All but the
subarray type have an Oð1Þ complexity, and the subarray
type has an OðdÞ complexity, where d is the number of
dimensions. The inc_read and inc_write functions for
the vector type computation are shown together in
Algorithm 2. The general strategy is to compute the block
that the primitive resides in, update the offsets appropri-
ately, and then ‘‘recurse’’ on the child type.

Algorithm 2: Read/write offset computation for the
vector type.

input : type: vector datatype

input : ID: primitive to pack, in canonical order

output: in inc; out inc: read/write offset increments

1 // offset w.r.t. child datatypes

2 count offset ID = type:#primitives
3 // offset w.r.t. vector blocks

4 block offset count offset = type:blocklength
5 // for each block, advance by stride bytes

6 // for each child datatype in block, advance by extent

7 in inc block offset �type:strideþ type:extent �ðcount
offset % type:blocklengthÞ

8 // for each child datatype, advance by child size

9 out inc count offset � type:size
10 return in inc; out inc

For the composite types CS and CSvec, Trace 3 shows
the execution trace of a single thread traversing to its
corresponding primitive. Note that the execution trace for
this type is the same across all threads launched.

Trace 3: Execution trace of vector-of-vectors traversal for a
single thread.

input : user buffer: buffer to pack

input : ID: thread/datum ID

output : packed buffer: packed buffer

1 in out 0

2 Coordinated load of CS;CSvec into shared memory

3 type CS
4 Increment in; out using Alg. 2, with ID; type
5 ID ID % type:#primitives
6 Is type a leaf type? (no)

7 Increment type pointer by sizeof (vector type)

8 // type CSvec
9 Increment in; out using Alg. 2, with ID; type

10 ID ID % type:#primitives
11 Is type a leaf type? (yes)

12 packed buffer ½out� user buffer ½in�

For the datatypes with variable-length parameters, such
as indexed, the process is more nuanced. To avoid a per-
thread linear scan of the blocklengths, preprocessing is
performed to allow a logarithmic-time binary search. First,
a prefix-sum is performed on the indexed type’s list of

JENKINS ET AL.: PROCESSING MPI DERIVED DATATYPES ON NONCONTIGUOUS GPU-RESIDENT DATA 2631

blocklengths. Then, given a count of n and a list of prefix-
summed blocklengths b0; b1; . . . ; bn, the terminating condi-
tion for thread (primitive) i in the binary search is

bh �
i

e
G bhþ1; (1)

where 0 � h G n and e are the number of elements in the
child datatype. The additional bn term is needed to check
the condition at h ¼ n� 1.

Having observed that all writes are performed into a
contiguous buffer and are thus highly coalesced by
adjacent GPU threads, we enable zero-copy memory
transactions to dramatically improve the packing opera-
tion. Instead of packing the data into GPU main memory
and then performing a bulk copy on the packed buffer,
current-generation GPUs can utilize memory mapping of
CPU memory into the GPU’s memory space. Then, the
streaming multiprocessors can, in effect, write directly
across the PCIe bus into CPU main memory. Since threads
write exactly once and at the end of their traversal, memory
mapping is a perfect opportunity to obtain additional
performance with minimal effort, by avoiding the GPU
main memory and implicitly pipelining the computational
and PCIe loads.

4 EVALUATION WITH MICROBENCHMARKS

We evaluate our datatypes processing methodology using
microbenchmarks of packing performance on numerous
MPI datatypes, comparing with CUDA alternatives as well
as optimized type-specific packing kernels. We also look at
full-context GPU-to-GPU communication through a non-
contiguous ping-pong test, comparing with MVAPICH
version 1.8. Moreover, we examine the effects of GPU
resource contention on packing and memory copy opera-
tions by modifying the issuing order of packing and other
operations. For all tests, we used North Carolina State
University’s ARC cluster, with nodes containing an AMD
Opteron 6128 at 800 MHz and an NVIDIA C2050 GPU with
version 4.1 of CUDA. Each node is connected by QDR
InfiniBand. We pin CPU memory used in transfers to
enable DMA, and we enable zero-copy for all datatypes but
the struct type during packing. An extended collection of
experiments can be found in Section 2 of the Supplemen-
tary Material available online.

4.1 Test Datatypes
To measure kernel overhead and provide an upper bound
on packing performance, we perform a baseline compar-
ison with the contiguous datatype, which can be satisfied
with a single memory copy call (cudaMemcpy).

To benchmark strided arrays such as column vectors, we
use a vector type, compared with the CUDA alternative
of cudaMemcpy2D. We fix the stride between blocks to 512
bytes, which enables maximum performance of the CUDA
operation; unaligned arrays greatly hamper CUDA’s
performance in this regard. Furthermore, we vary the
blocklength to analyze the performance implications of
block width.

To benchmark array types outside the scope of vector
representation, we use a four-dimensional subvolume

encoded as a subarray type, compared with iterative
calls to cudaMemcpy3D. We fix the containing volume to be
64� 64� 64� 64 and pack/transfer a four-dimensional
hypercube of increasing size.

To benchmark an indexed type, for simplicity, we use
the same data format as in our test vector type. Other
datatypes would be used in practice and be much more
efficient, but this benchmark is a reasonable indicator of
indexed performance; varying blocklengths would cause
less divergence than the uniform blocklength would, and a
regular displacement allows us to control coalescence in a
fine-grained manner. For comparison, we transfer the data
block by block using cudaMemcpy.

We additionally evaluate the indexedblock type
(abbreviated as idxblock in the experiments), which is
similar to the indexed type but has a uniform blocklength,
rendering the need to perform a binary search unnecessary.
For simplicity, we use the same data format as the indexed
and vector types. For comparison, we transfer the data
block by block using cudaMemcpy.

We use a struct type to test the effect of thread
divergence on writing. We use a simple C-style struct
containing an 8-byte double, two 4-byte ints, and a char,
which amounts to 24 bytes with padding. For comparison
we copy the extent of each struct using cudaMemcpy.
Furthermore, we disable the use of zero-copy for this type,
as the uncoalesced write pattern induced by thread
divergence leads to the issuance of a PCIe transaction for
each struct member, causing significant performance
regression.

4.2 Noncontiguous Packing Performance
For each datatype presented in Section 4.1, we evaluate the
general performance of packing from GPU memory into
CPU memory, with respect to the size of the packed buffer.
Fig. 4 shows these experiments compared with their
respective CUDA alternatives. Furthermore, we compare
with hand-coded packing routines to test the overhead of
our generic packing methodology.

A number of interesting trends can be observed for the
different datatypes. First, since a relatively large gap exists
between command latency and throughput, transfers on
the lower KB level are latency-bound, and thus very small
absolute differences are seen between the CUDA API calls
and the packing kernel. Given the current architecture of
discrete GPUs, little can be done to improve these results,
although combined CPU and GPU architectures, such as
AMD’s Fusion [16], show promise in bridging this perfor-
mance gap in the future. Furthermore, the latency of issuing
kernels is slightly larger than that of issuing memory copies,
adversely affecting our kernelized packing for smaller inputs
(though only on the order of microseconds).

Second, the packing kernel is clearly preferable for types
that do not have a CUDA equivalent (e.g., cudaMemcpy2D),
because of the latency in initiating each blockwise memory
copy. Blockwise memory copies, such as for the indexed
type, could compete with the packing kernel only for extremely
large block sizes.

For the types that do have a CUDA equivalent, the
results are more nuanced. Besides latency, performance is
largely a function of the data layout: for two-dimensional

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10, OCTOBER 20142632

memory copies, each block must be wide enough to
saturate the bus for best performance. While the packing
kernel is up to 20 times faster for an 8-byte-blocklength
vector, the memory copy outperforms the packing kernel
in all cases for a 128-byte-blocklength vector, especially
for small and medium-sized inputs, because of the
additional kernel latency. The relative performance for
large blocks converges as the PCIe bandwidth is reached.

The four-dimensional subarray type, despite being
reasonably mapped to the CUDA API, sees major perfor-
mance improvements when using a kernelized packing
operation. Since the three-dimensional memory copies
must be made iteratively to transfer the type, the latency
is aggregated through the copies and hurts overall
performance.

Compared with type-specific implementations, the ge-
neric packing algorithm performs well, with little difference
in performance. The performance of each type except the
struct type show an approximately 20-30 percent over-
head, reaching near parity for buffers larger than a megabyte
(in packed form). This overhead, however, amounts to
between about two and five microseconds for most inputs.
The differences in performance between the type-specific
and generic algorithms are due to the overhead of loading
the type representation and instruction overhead from
supporting arbitrary type representations. The differences
in the struct implementations (a 20 percent to 80 percent
overhead compared with that os the hand-coded version) are
a result of hard-coding the relative location of each struct
primitive, benefiting from compiler optimization and greatly
simplified traversal logic, and is an exceptional, nongeneral
case. For more detailed results, refer to Section 2.1 of the
Supplementary Material available online.

Since the vector type is one of the more widely used
MPI datatypes and performance is highly dependent on the
parameterization, we further explore the vector type’s

performance characteristics in Fig. 5. We fix the number of
blocks and compare the performance of the packing kernel
and the two-dimensional memory copy for varying
blocklengths. As seen in the figure, the performance of
CUDA is highly dependent on the blocklength. Block-
lengths that are multiples of 32 bytes perform best, but all
others experience significant performance regression. Sim-
ilar performance characteristics are seen when varying the
stride parameter, although these are not shown in the
paper.

4.3 Full Evaluation: GPU-to-GPU Communication
We now assess the packing performance within the context
of MPI point-to-point communication. Because of the
inefficient performance of CUDA-based methods on irreg-
ular data (e.g., indexed, struct), we consider only the
packing of a vector type of varying blocklength; an
MPI_Send where data is packed at the rate of 4 MB per
second will not perform well. For this test, version 1 of
GPUDirect is used, allowing both CUDA and InfiniBand

Fig. 5. vector pack performance vs. cudaMemcpy2D.

Fig. 4. Time-to-CPU packing time using the CUDA API, and corresponding relative performance of packing kernel.

JENKINS ET AL.: PROCESSING MPI DERIVED DATATYPES ON NONCONTIGUOUS GPU-RESIDENT DATA 2633

drivers to pin the same memory and avoid extraneous
memory copies. Fig. 6 shows the completion time of a GPU-
to-GPU ping-pong benchmark. The sender packs the
vector data from GPU memory into contiguous CPU
memory, immediately followed by a send operation, while
the receiver unpacks the vector into GPU memory. This
process is then repeated back to the original sender.

The efficiency of the communication is again dependent
on the data layout. A small blocklength and large buffer size,
which favors the packing operation, cause a large relative
performance increase compared with using the two-
dimensional memory copy. A larger blocklength causes the
memory copy to be largely equivalent to the packing
operation. For small message sizes, GPU-to-CPU latency is
the primary cost, which in this benchmark is felt four times
over. Network latency, by comparison, was much lower. For
medium- to large-sized messages, the measured network
bandwidth of 2.0 GB/s formed the bottleneck, which is much
lower than the packing and memory copy throughput.

Compared with MVAPICH, our packing methodology
performs roughly equivalently for small- and medium-
sized buffers and begins to outperform MVAPICH’s vector
communication algorithm for large-sized buffers. MVA-
PICH uses a specialized communication routine for
vectors, performing a two-dimensional memory copy into
GPU memory and then transferring the now-contiguous
data to the CPU. While this avoids poor PCIe utilization
from narrow vector blocklengths as seen from two-
dimensional copying directly to the CPU, the approach is
more memory intensive, using two sets of memory
operations. Furthermore, no overlapping of PCIe and
packing activity is performed. Through our use of zero-
copy, both of these problems are overcome.

4.4 Resource Contention Effects on Packing
The packing methodology was discussed with an under-
lying assumption of resource availability and without
consideration of scenarios where packing could actually be
detrimental to overall performance. For instance, what if a
user initiates a send for data residing on the GPU while a
fully occupant kernel is running? In the worst case, the
scheduling policy of current GPUsVwhich schedules
blocks to run to completion and allows only a single kernel
to be run on each multiprocessorVcan easily lead to
starvation of a packing kernel, in turn leading to unaccept-
ably high wait times.

A number of communication patterns could introduce
resource contention, centered on concurrently performing
communication and other operations. At the computation-
al level, communication can be performed asynchronously
to enable computational overlap, causing the packing
operation to coincide with that computation. Furthermore,
PCIe transfers can be occurring while a communication
operation is being performed, such as in CPU-moderated
algorithms that follow an iterative setup-compute-collect
model, that clash with packed data transfer. A combination
of these can also occur, such as when multiple users or MPI
processes are accessing the same underlying hardware.

To induce these contention scenarios, we use a few
simple operations to stress the resource in question. We call
these the application (user) operations. For both directions
of PCIe activity, we merely issue a memory copy. For SM
contention, we utilize a vector add operation. The reason
we do so is to tie it closely to a packing operation (using the
vector type), with packing time similar to the application
operation time.

The parameter space for this experiment is enormous, so
we chose a representative exemplar that best highlights the
contention trends. For each of the following experiments,
we used a vector of total size 16 MB and defined the
vector datatype to have a count of 262,144, a blocklength
of 8, and a stride of 64 bytes. Rather than choosing more
realistic parameter sets (these cover the entire buffer), we
chose these values so that each operation has a similar run
time, to simplify analysis. Since the trends are based on
GPU schedule operation, we expect similar results for other
datatypes and operations, although on differing scales.

Our experimental results are shown in Table 2. We time
each operation in isolation as a baseline. To measure
contention effects induced by the first-come, first-serve
GPU scheduling policy, we initiate one of the operations
(either application operation or pack/copy) followed by the
other operation, measuring the completion time of the latter.
For example, the row ‘‘User! Pack’’ initiates the application
operation followed by the packing operation. We also
measure the completion time of both operations as a whole,
to assess the degree of overlap between the operations.

For the SM experiment, the order of initiation is critical.
When using the packing kernel, either operation, when
initiated after the other, gets starved out, starting only
when SMs are available. The two-dimensional memory
copy, avoiding the SMs entirely, does not suffer this

Fig. 6. GPU-to-GPU ping-pong test, on the vector type with 8-, 32-, and 128-byte blocks, compared with cudaMemcpy2D. The vector stride is
aligned to maximize CUDA performance.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10, OCTOBER 20142634

problem and sees no degradation in performance. In other
words, the direct memory access (DMA) engine handles
the copy operation, leaving the GPU’s SMs untouched.

For the GPU-to-CPU PCIe experiment, both the applica-
tion operation and the pack/memory copies suffer, since
both must use the same lane of the bridge. In the User! Pack
case, however, the scheduling mechanism seems to treat the
SM-issued bus transactions more favorably. Using CUDA
memory copies instead of the pack does not overlap at all
with the application memory copy and vice versa, since the
transfers are completely serialized on the CPU end (regard-
less of using different CUDA streams).

For the CPU-to-GPU PCIe experiment, while we would
expect an insignificant degree of contention because of the
operations using different PCIe lanes (PCIe is full duplex),
we actually see some degradation in the time taken, although
the totals for issuing both concurrently are much less than
that for the completely serial case. We cannot explain this
behavior with absolute certainty, but we hypothesize it to be
an artifact of the scheduler or a small degree of contention
with respect to transferring kernel parameters.

More complex contention scenarios, such as mixed
PCIe/SM loads and multiple users, are not shown because
of the countless possibilities they entail, although we can
make a few observations. For algorithm patterns that
interleave PCIe transfers and kernels, the scheduler has
more flexibility to insert other operations between them.
Therefore, the starvation would not be as strict as that
shown in Table 2. Perhaps, in future GPU architectures,
advanced schedulers will be able to enable resource
sharing on a finer-grained level, increasing the fairness
with respect to performance of multiple application
contexts hitting on the same hardware.

5 EVALUATION WITH APPLICATIONS

In this section, we evaluate GPU datatype processing on
both a stencil computation and an analysis code.

5.1 Stencil Computation
To evaluate our packing methodology on a publicly avail-
able, commonly used application kernel, we modified the
parallel, two-dimensional, nine-point stencil code from the
Scalable Heterogeneous Computing (SHOC) benchmarking
suite [17]. Specifically, the original halo exchange consists of
up to two contiguous exchanges (with the ‘‘north’’ and
‘‘south’’ neighbors) and up to two strided exchanges (with
the ‘‘east’’ and ‘‘west’’ neighbors). The GPU stencil bench-
mark copies all halo regions into CPU memory, performs the
halo exchange, and transfers all results back to the GPU. We
replace the noncontiguous GPU copying code, which relies
on CUDA DMA, with our packing methodology.

Table 3 shows mean stencil GFLOPS for four nodes for
varying per-node problem sizes and for single- and double-
precision floating-point data. As is shown, the time using a
packing kernel is nearly equivalent to that using CUDA
DMA. We attribute the likeness in performance to the ratio
of computation to communication in the overall stencil cost
as well as to the fact that half of the transfers performed are
over contiguous data.

5.2 Analysis Code
The next application benchmark is taken from the analysis of
cosmological simulations. The HACC [18] cosmology code is
a framework for N-body particle simulations of dark matter
tracer particles. Some analysis tasks such as identifying
cosmological voids are enabled by the conversion of raw
particle data to a Voronoi tessellation [19], which converts a
point cloud to a polyhedral mesh. When executed in a
spatially decomposed data-parallel manner, each MPI pro-
cess computes the data structure shown in Fig. 7.

When writing and reading results from parallel storage
using MPI-IO, the data in Fig. 7 are accessed by using a
single custom MPI datatype by each MPI process. This is a
packing challenge because it contains a combination of
integer and floating-point scalars and vectors, together

TABLE 3
SHOC Stencil Double-Precision (DP) and Single-Precision (SP)

Mean GFLOPS Per Node, using both CUDA DMA and
Kernelized Packing to Perform the Halo Exchange

Fig. 7. HACC analysis data structure to pack.

TABLE 2
User Workloads in Contention With the Pack Kernel and CUDA API Calls, Using the vector Type, in Milliseconds. Type Proc.:

Time Between Initialization of the Latter Packing/CUDA Operation and It’s Completion

JENKINS ET AL.: PROCESSING MPI DERIVED DATATYPES ON NONCONTIGUOUS GPU-RESIDENT DATA 2635

with pointers that need to be followed to access the actual
data members. Each process contains a different number of
particles, hence different lengths of buffers that need to be
fetched. Traversing the datatype results in a set of
contiguous pieces combined in a noncontiguous fashion.

To assess the performance of packing this datatype, we
first logged the memory accesses of the CPU packing done
by MPI for a test run of 32,768 dark matter tracer particles
converted to a Voronoi mesh using eight MPI processes.
Each process produced a trace that logged the base type,
quantity, and starting address associated with fetching
each structure member.

We then regenerated the identical memory access pattern
in our benchmark and compared the performance of three
versions of datatype packing. Table 4 shows those results.
‘‘CPU Ref.’’ is the time to pack the original MPI data type
using the CPU only. The ‘‘CUDA DMA’’ column is the time
to pack the GPU-resident data using a sequence of GPU-to-
CPU copies, one for each struct field, solely using
cudaMemcpy. The ‘‘Kernel’’ column is our GPU packing
kernel version. Our results show a 13-43 percent reduction in
time-to-CPU by using packing, with a median reduction of
20.8 percent. We attribute these results to the reduced latency
costs in issuing a single kernel versus multiple copies.

6 CONCLUDING REMARKS

Since GPUs are expected to continue evolving to be capable
of more general-purpose computations, they need to be
integrated into widely used libraries in the HPC commu-
nity, such as MPI. We have presented one important aspect
toward this end: the processing of arbitrary, noncontiguous
GPU-resident data. We have shown that kernelizing the
packing operation leads to huge performance improve-
ments in datatypes that describe two nonexclusive data
layouts: highly noncontiguous data and irregularly located
data. These cases are particularly important as GPUs
continue to branch out in terms of the complexity of
operations performed on them; algorithms could have local
access patterns that differ from global communication
patterns, and if efficient packing is available, applications
could focus more on optimizing the local patterns.

Overall, we view our method as complementing the
goal of robust integration of GPU technology into high-
performance data movement frameworks such as MPI, as
well as a baseline for future MPI library implementations. A
complete solution to GPU data movement within MPI not

only would minimize internal memory copies and fully
utilize current/future architecture-specific optimizations but
also would be able to flexibly determine the best methodol-
ogy for transferring the data, especially noncontiguous data.
Refer to Section 3 of the Supplementary Material for an
extended discussion of these concerns.

ACKNOWLEDGMENT

This work was supported in part by the U.S. Department of
Energy under contract DE-AC02-06CH11357, and addi-
tionally by the National Science Foundation under Grant
No. 0958311. The submitted manuscript has been created
by UChicago Argonne, LLC, Operator of Argonne National
Laboratory (‘‘Argonne’’). Argonne, a U.S. Department of
Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government
retains for itself, and others acting on its behalf, a paid-up
nonexclusive, irrevocable worldwide license in said article
to reproduce, prepare derivative works, distribute copies
to the public, and perform publicly and display publicly,
by or on behalf of the Government.

REFERENCES

[1] ‘‘Top 500 Supercomputing Sites.’’ [Online]. Available: http://
www.top500.org.

[2] MPI Forum, MPI-2: Extensions to the Message-Passing Interface,
Univ. Tennessee, Knoxville, TN, USA, Tech. Rep., 1996.

[3] Khronos OpenCL Working Group, The OpenCL Specification
Version 1.1. Khronos Group, 2011. [Online]. Available: http://
www.khronos.org/opencl/.

[4] NVIDIA, ‘‘NVIDIA CUDA Compute Unified Device Architec-
ture. [Online]. Available: http://developer.nvidia.com/category/
zone/cuda-zone.

[5] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka, ‘‘Physis: An
implicitly parallel programming model for stencil computations
on large-scale GPU-accelerated supercomputers,’’ in Proc. ACM/
IEEE Int. Conf. High Perform. Comput., Netw., Storage Anal., 2011,
pp. 1-12.

[6] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, ‘‘3.5-D
blocking optimization for stencil computations on modern CPUs
and GPUs,’’ in Proc. ACM/IEEE Int. Conf. High Perform. Comput.,
Netw., Storage Anal., 2010, pp. 1-13.

[7] A. Schafer and D. Fey, ‘‘High performance stencil code
algorithms for GPGPUs,’’ in Proc. ICCS, 2011, pp. 2027-2036.

[8] R. Ross, N. Miller, and W. Gropp, ‘‘Implementing fast and
reusable datatype processing,’’ in Recent Advances in Parallel Virtual
Machine and Message Passing Interface, vol. 2840, J. Dongarra,
D. Laforenza, and S. Orlando, Eds. Berlin, Germany: Springer-
Verlag, 2003, pp. 404-413.

[9] H. Wang, S. Potluri, M. Luo, A.K. Singh, S. Sur, and D.K. Panda,
‘‘MVAPICH2-GPU: Optimized GPU to GPU communication for
InfiniBand clusters,’’ in Proc. ISC, 2011, pp. 1-27.

[10] H. Wang, S. Potluri, M. Luo, A.K. Singh, X. Ouyang, S. Sur, and
D.K. Panda, ‘‘Optimized non-contiguous MPI datatype commu-
nication for GPU clusters: Design, implementation and evalua-
tion with MVAPICH2,’’ in Proc. IEEE Int. Conf. Cluster, 2011,
pp. 308-316.

[11] J.A. Stuart and J.D. Owens, ‘‘Message passing on data-parallel
architectures,’’ in Proc. 23rd IEEE Int. Parallel Distrib. Process.
Symp., May 2009, pp. 1-12.

[12] O. Lawlor, ‘‘Message passing for GPGPU clusters: CudaMPI,’’ in
Proc. IEEE Cluster PPAC Workshop, 2009, pp. 1-8.

[13] I. Gelado, J.E. Stone, J. Cabezas, S. Patel, N. Navarro, W. Mei, and
W. Hwu, ‘‘An asymmetric distributed shared memory model for
heterogeneous parallel systems,’’ in Proc. 15th Edition ASPLOS,
2010, pp. 347-358.

[14] Z. Fan, F. Qiu, and A.E. Kaufman, ‘‘Zippy: A framework for
computation and visualization on a GPU cluster,’’ Comput.
Graph. Forum, vol. 27, no. 2, pp. 341-350, 2008.

TABLE 4
HACC Analysis Structure Packing Times in Milliseconds by

Rank. CPU Ref.: Reference CPU Packing Time. CUDA DMA:
GPU-to-CPU Packing Time Using Memory Copies for Each
GPU Buffer. Kernel: GPU-to-CPU Kernelized Packing Time

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 10, OCTOBER 20142636

[15] J. Jenkins, J. Dinan, P. Balaji, N.F. Samatova, and R. Thakur,
‘‘Enabling fast, noncontiguous GPU data movement in hybrid
MPIþGPU environments,’’ in Proc. IEEE Int. Conf. CLUSTER,
2012, pp. 468-476.

[16] N. Brookwood, ‘‘AMD fusion family of APUs: Enabling a
superior, immersive PC experience,’’ Insight, vol. 64, pp. 1-8, 2010.

[17] A. Danalis, G. Marin, C. McCurdy, J.S. Meredith, P.C. Roth,
K. Spafford, V. Tipparaju, and J.S. Vetter, ‘‘The Scalable Heteroge-
neous Computing (SHOC) benchmark suite,’’ in Proc. 3rd Workshop
GPGPU, 2010, pp. 63-74. [Online]. Available: http://doi.acm.org/
10.1145/1735688.1735702.

[18] S. Habib, V. Morozov, H. Finkel, A. Pope, K. Heitmann, K. Kumaran,
T. Peterka, J. Insley, D. Daniel, P. Fasel, N. Frontiere, and Z. Lukic,
‘‘The universe at extreme scale: Multi-petaflop sky simulation on the
BG/Q,’’ in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal.,
Nov. 2012, pp. 1-8, ArXiv e-prints.

[19] T. Peterka, J. Kwan, A. Pope, H. Finkel, K. Heitmann, S. Habib,
J. Wang, and G. Zagaris, ‘‘Meshing the universe: Integrating
analysis in cosmological simulations,’’ in Proc. SC12 Ultrascale
Vis. Workshop, Salt Lake City, UT, USA, 2012, pp. 186-195.

John Jenkins received the BS degree in
computer science from Lafayette College in
2010 and is currently pursuing the PhD degree
at North Carolina State University. His research
interests include parallel runtime data manage-
ment, accelerator architecture and algorithms,
and scientific data analysis.

James Dinan received the BS degree in com-
puter systems engineering from the University of
Massachusetts, Amherst, MA, and the MS and
PhD degrees in computer science from the Ohio
State University, Columbus, OH. He is a soft-
ware architect at Intel Corporation, engaged in
high performance computing research. He was
previously the James Wallace Givens postdoc-
toral fellow at Argonne National Laboratory. His
research interests include parallel programming
models, high-performance runtime systems,

distributed algorithms, scientific computing applications, and computer
architecture.

Pavan Balaji holds appointments as a computer
scientist and group lead at Argonne National
Laboratory, as a research fellow of the Compu-
tation Institute at the University of Chicago, and
as an institute fellow of the Northwestern-
Argonne Institute of Science and Engineering
at Northwestern University. His research inter-
ests include parallel programming models and
runtime systems for communication and I/O,
modern system architecture (multicore, accel-
erators, complex memory subsystems, high-

speed networks), cloud computing systems, and job scheduling and
resource management. He has nearly 100 publications in these areas
and has delivered nearly 120 talks and tutorials at various conferences
and research institutes. He is a recipient of the U.S. Department of
Energy’s Early Career Award. He has also received several other
awards including the Director’s Technical Achievement award at Los
Alamos National Laboratory, an Outstanding Researcher award at the
Ohio State University, and five best-paper awards. He serves as the
worldwide chairperson for the IEEE Technical Committee on Scalable
Computing. He has also served as a chair or editor for nearly 50
journals, conferences, and workshops and as a technical program
committee member in numerous conferences and workshops. He is a
Senior Member of the IEEE and a professional member of the ACM.

Tom Peterka received the PhD in computer
science from the University of Illinois at Chicago,
where he was a James Scholarship and Univer-
sity Fellowship winner. He is an assistant com-
puter scientist at Argonne National Laboratory, a
fellow at the Computation Institute of the
University of Chicago, and an adjunct assistant
professor at the University of Illinois at Chicago,
USA. His interests are in large-scale parallelism
for scientific visualization and analysis of scien-
tific datasets. He has contributed to three best-

paper awards and numerous publications in ACM and IEEE conference
and journals.

Nagiza F. Samatova received the BS degree in
applied mathematics from Tashkent State Univer-
sity, Uzbekistan, in 1991, the MS degree in com-
puter science from the University of Tennessee,
Knoxville, TN, in 1998, and the PhD degree in
mathematics from the Computing Center of Rus-
sian Academy of Sciences, Moscow, Russia, in
1993. She is an associate professor in the
Computer Science Department of North Carolina
State University and a senior research scientist in
the Mathematics and Computer Science Division

of Oak Ridge National Laboratory. She specializes in high-performance
data analytics, data management, scientific and high-performance
computing, graph theory and algorithms, bioinformatics, systems biology,
and machine learning. She is the author of over 150 publications in peer-
reviewed journals and conference proceedings. She is a member of
the IEEE.

Rajeev Thakur received the PhD degree in
computer engineering from Syracuse University.
He is the Deputy Director of the Mathematics
and Computer Science Division at Argonne
National Laboratory, where he is also a Senior
Scientist. He is also a Senior Fellow in the
Computation Institute at the University of Chica-
go and an adjunct professor in the Department of
Electrical Engineering and Computer Science at
Northwestern University. His research interests
are in the area of high-performance computing in

general and particularly in parallel programming models, runtime
systems, communication libraries, and scalable parallel I/O. He is a
member of the MPI Forum that defines the Message Passing Interface
(MPI) standard. He is also co-author of the MPICH implementation of
MPI and the ROMIO implementation of MPI-IO, which have thousands
of users all over the world and form the basis of commercial MPI
implementations from IBM, Cray, Intel, Microsoft, and other vendors.
MPICH received an R&D 100 Award in 2005. Rajeev is a co-author of
the book Using MPI-2: Advanced Features of the Message Passing
Interface published by MIT Press, which has also been translated into
Japanese. He was an associate editor of IEEE Transactions on Parallel
and Distributed Systems (2003-2007) and was Technical Program
Chair of the SC12 conference.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

JENKINS ET AL.: PROCESSING MPI DERIVED DATATYPES ON NONCONTIGUOUS GPU-RESIDENT DATA 2637

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

