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Abstract—One-sided communication decouples data move-
ment and synchronization by providing support for asynchronous
reads and updates of distributed shared data. While such inter-
faces can be extremely efficient, they also impose challenges in
properly performing asynchronous accesses to shared data.

This paper presents MC-Checker, a new tool that detects
memory consistency errors in MPI one-sided applications. MC-
Checker first performs online instrumentation and captures
relevant dynamic events, such as one-sided communications
and load/store operations. MC-Checker then performs analysis
to detect memory consistency errors. When found, errors are
reported along with useful diagnostic information. Experiments
indicate that MC-Checker is effective at detecting and diagnosing
memory consistency bugs in MPI one-sided applications, with
low overhead, ranging from 24.6% to 71.1%, with an average of
45.2%.

Categories and Subject Descriptors —
D.2.5 [Testing and Debugging]: Debugging Aids;
D.1.3 [Concurrent Programming]: Parallel programming;
D.4.4 [Communications Management]: Message sending

General Terms — Design, Performance, Reliability

Keywords — Bug Detection, MPI, One-Sided Communication

I. INTRODUCTION

MPI one-sided communication is becoming increasingly
popular because it enables programmers to directly leverage
the capabilities of RDMA interconnects. Compared with con-
ventional two-sided communication, one-sided communica-
tion decouples data movement from synchronization, enabling
greater concurrency in data movement and potentially greater
scalability for applications. Furthermore, one-sided commu-
nication can provide higher efficiency by removing message
matching and buffer coordination with the receiver, which
occur with two-sided messaging.

The ability to decouple data movement from synchro-
nization, while a strength of one-sided communication, also
presents challenges to programmers. One must navigate a

⋆Z. Chen was with The Ohio State University when this work was
conducted.

1: MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 0, 0, win);

2: MPI_Get(&
out
, 1, MPI_INT, 0, 0, 1, MPI_INT, win);

3: if (
out
 % 2 == 0)
/* bug: load/store access of out */

4:
 out
++;

5: ...

6: MPI_Win_unlock(0, win);


Fig. 1: Real-world MPI one-sided communication bug.

complex memory model and insert the synchronization op-
erations needed to maintain data consistency in the presence
of asynchronous and nonblocking data accesses from multiple
processes. This complexity can expose applications to synchro-
nization defects. Figure 1 shows such an example from a real-
world application, where the one-sided MPI_Get operation
(line 2) is nonblocking. As a result, the data may not be
ready until the invocation of MPI_Win_unlock (line 6).
This situation can cause the load access of out (line 3) to
retrieve an old value and the store access of out (line 4) to
be overwritten by a value retrieved from MPI_Get (line 2).

Few tools exist to aid users of one-sided parallel pro-
gramming models. Detection of memory model violations in
MPI is further complicated by its multiple synchronization
modes and operations, as well as its conservative seman-
tics, that are designed to be portable across coherent and
noncoherent hardware memory models. Significant work has
been conducted to detect concurrency bugs in shared memory
programs. Some approaches [1], [2], [3] detect data races
via static analysis, while others [4], [5], [6], [7] leverage
dynamic methods. However, these approaches cannot directly
be applied to MPI programs that perform one-sided data access
across distributed-memory platforms, because fundamentally
different synchronization primitives are used. While numerous
studies [8], [9], [10], [11], [12] have been done on bug
detection in MPI programs, none have focused on memory
consistency errors in MPI one-sided applications.

In this paper, we present a technique called MC-Checker
to detect memory consistency errors in MPI one-sided applica-
tions. Such errors occur when two or more accesses to shared
data—for example, MPI one-sided calls such as MPI_Put or
local load/store accesses—conflict with each other, leading to
an undefined or erroneous state. To detect memory consistency
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errors in MPI one-sided applications, we identify one-sided
data access epochs and concurrent execution regions, and we
check for memory model violations among the interleaving
of concurrent accesses to shared data. We summarize the
MPI memory model using compatibility tables that capture
the memory model defined by the MPI specifications.If two
operations conflict, MC-Checker will report the error and
provide diagnostic information to help locate and fix the bug.

MC-Checker first performs static analysis to efficiently
instrument CPU load and store operations that access shared
data. Next, a runtime trace is gathered at each process to
capture accesses to shared data. During offline analysis of this
trace, MC-Checker constructs a dynamic data access directed
acyclic graph (DAG), where events are ordered by the happens-
before relation defined by the MPI one-sided memory model.
Then it analyzes sets of operations that are unordered in
the DAG, potentially spanning multiple processes, to detect
consistency violations and data races that occurred, or could
have occurred in the application execution. Based on these
ideas, we have implemented a prototype of MC-Checker and
evaluated it with three real-world and two injected bugs in five
MPI one-sided applications. Our experiments show that MC-
Checker can effectively detect memory consistency errors in
the evaluated MPI applications.

In summary, MC-Checker has the following advantages:

1. MC-Checker is the first comprehensive approach to address
memory consistency errors in MPI one-sided communication.

2. MC-Checker incurs low runtime overhead; we observe
an average profiling runtime overhead of 45.2%. This low
overhead is achieved by utilizing static analysis to instrument
only relevant memory load/store accesses.

3. MC-Checker is easy to use and requires no program
modifications. Although our current implementation focuses
on the MPI applications written in C, we find no difficulties
in extending MC-Checker to MPI applications written in other
languages such as Fortran.

4. The analysis techniques used by MC-Checker can also be
applied to other one-sided programming models. Most one-
sided programming models share similar ordering and data
consistency semantics. Our analysis can be easily applied to
those programming models by defining the set of consistency
rules and ordering relations needed to build and analyze the
data access DAG.

II. MEMORY CONSISTENCY ERRORS IN MPI RMA

A memory consistency error in MPI is an erroneous
program execution state, defined by the MPI semantics [13],
that results in undefined values for buffers exposed in an MPI
remote memory access (RMA) window. It occurs when at
least two conflicting operations are executed concurrently at
run time. In this work, we focus on the one-sided commu-
nication model defined in the MPI 2.2 specification [13], for
simplicity. We discuss applying our techniques to new MPI
3.0 standard [14] in Section V.

A. MPI Remote Memory Access Model

The MPI 2.2 standard defines a highly portable memory
model for one-sided communication. This model allows appli-

TABLE I: Compatibility matrix of RMA operations. BOTH in-
dicates that both overlapping and nonoverlapping combinations
of the given operations are permitted; NON-OV indicates that
only non-overlapping combinations are permitted; and ERROR
indicates that the combination is erroneous.

Load Store Get Put Acc
Load BOTH BOTH BOTH NON-OV NON-OV
Store BOTH BOTH NON-OV ERROR ERROR
Get BOTH NON-OV BOTH NON-OV NON-OV
Put NON-OV ERROR NON-OV NON-OV NON-OV
Acc NON-OV ERROR NON-OV NON-OV BOTH

cations to be portable even to systems without coherent mem-
ory subsystems. On such systems, the MPI implementation
must be able to perform software coherence. To this end, MPI
defines its memory model in terms of conflicting operations
that make it impossible for a software management mechanism
to resolve a consistent result in one or more locations in
memory that are exposed for remote access.

MPI’s put, get, and accumulate one-sided communi-
cation operations are nonblocking and are grouped into
completion units, called epochs. An epoch is a program
execution region that starts with an RMA synchroniza-
tion operation (e.g., MPI_Win_fence or MPI_Win_lock)
and ends with a matching RMA synchronization operation
(e.g., MPI_Win_fence or MPI_Win_unlock). Operations
within the same epoch can conflict with each other because
they are nonblocking and the order in which they are applied
is undefined. Two memory operations a and b within an epoch
are called conflicting if they access overlapping local memory
locations and one is an update operation. An exception to
this rule is made for accumulate operations that use the same
operation and basic datatype. Conflicts between epochs orig-
inating from different processes also occur when the epochs
occur concurrently on overlapping regions at the same target
process. At least one operation must be a write, and the same
exception is made for accumulate operations. Table I shows
which combinations are valid.

B. Memory Consistency Errors

Two memory operations a and b (i.e., remote or local
memory accesses) in MPI programs are concurrent if there
are no happens-before relation [15] and consistency order-
ing [13] between them. A happens-before relation between

two operations a and b (i.e., a
hb
−→ b) can be either the

program order within one process (i.e., the previous instruction
is executed before the later instruction) or the synchronization
order between different processes (e.g., MPI_Send at the
source process completes before MPI_Recv at the destination
process). A consistency order between two operations a and

b (i.e., a
co
−→ b) guarantees that the memory effects of a

are visible before b. This order is necessary because some
synchronization actions (e.g., MPI_Win_lock/unlock) or-
der memory accesses without synchronizing processes. For
example, if a is nonblocking, b is the operation immediately
following a, and both a and b access overlapping buffers,
there is no consistency order between a and b because of a’s
nonblocking nature.
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Fig. 2: Examples of memory consistency errors. Bold operations are unordered, resulting in conflicts.

Figure 2a shows an example of memory consistency errors
that occur within the same epoch. MPI_Put sends data in
buf from process P0 to process P1. After MPI_Put, the data
in buf may or may not be sent out because the MPI_Put is
nonblocking. However, the data may be corrupted by the store
operation right after MPI_Put. Such errors are common in
applications using one-sided communication. For example, an
older version of the Asynchronous Dynamic Load Balancing
(ADLB) [16] library, which is used in the Green’s function
Monte Carlo (GFMC) [17] nuclear physics application, used
MPI_Put to transfer data from a stack variable in a func-
tion and returned from the function without waiting for the
completion of that operation, since the epoch was closed later
elsewhere in the program. This procedure worked correctly
for several years on multiple generations of machines since
on most platforms small variables are copied into internal
temporary communication buffers for later transmission. When
the code was ported to the IBM Blue Gene/Q in early 2012,
however, in some cases the MPI implementation would run out
of internal temporary buffers and would need to transmit the
data later. In such cases, the function stack was overwritten by
other functions, resulting in data corruption[18].

Figure 2b shows an example of memory consistency errors
across processes in an active target epoch. The MPI_Put

operations in P0 and P2 are conflicting because they may
access the window location in P1 concurrently, leading to
data corruption or undefined results during program execution.
Figure 2c shows a similar example of memory consistency
errors across processes in a passive target epoch. Figure 2d
shows another example of memory consistency errors where
the MPI_Put in the origin process conflicts with the store
operation in the target process because they will write to the
same buffer concurrently and may cause data corruption.

III. DETECTING MEMORY CONSISTENCY ERRORS

MC-Checker performs three main steps to detect memory
consistency errors occurring in an MPI program. First, MC-
Checker collects relevant runtime events in all running MPI
processes. Next, MC-Checker converts the traces to a DAG
offline, by applying a happens-before relation to the collected
runtime events, and extracts concurrent regions from the DAG.
MC-Checker then applies a data access ruleset to operations
that are unordered in the DAG in order to detect memory model
violations. While we have focused on the MPI 2.2 one-sided
communication model in this work, any one-sided or PGAS
model for which a DAG based on happens-before relation and
data access ruleset can be constructed is amenable to analysis
by MC-Checker.

A. Profiling Runtime Events

The first step in MC-Checker analysis is online collec-
tion of an event trace from a running MPI program. MC-
Checker captures load/store and RMA accesses to data in
an RMA window, MPI RMA synchronization operations, and
MPI operations that synchronize among the processes (e.g.,
send/recv or barrier). Interprocess synchronization events must
be captured because they can partially order local or remote
memory accesses. As a result, MC-Checker can avoid estab-
lishing a more detailed ordering and eliminate false positives.
For example, two well-synchronized memory accesses from
different processes will never conflict if they are separated by
a call to MPI_Barrier.

B. Constructing DAG and Concurrent Regions

After collecting the relevant runtime events for each MPI
process, MC-Checker converts these runtime events to a DAG.



Barrier()
 Barrier()


Barrier()
 Barrier()
 Barrier()


Barrier()
 Barrier()
 Barrier()


lock(shared)


store(LX)


unlock()


lock(shared)


Put(P1, X)


unlock()


lock(shared)


Get(P1, X)


unlock()


store(X)


a

c


d
 e


P0
 P1
 P2


Barrier()


lock(shared)


unlock()


Put(P1, X)


b
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Fig. 4: Data access DAG for the execution trace shown in
Figure 3.

Figure 3 shows an example of the execution of an MPI program
with three MPI processes and the relevant runtime events that
are collected. Figure 4 shows the resulting DAG for regions A
and B where the happens-before relation has been applied to
the event trace gathered in Figure 3. In this DAG, concurrent
put and store operations update the same memory location,
resulting in a data race.

The first step in transforming the event trace to a DAG
is to represent each runtime event as a vertex. Each vertex
is labeled with the process ID that performed the opera-
tion and its parameters, such as memory access type, mem-
ory locations accessed, and target process ID. Next, MC-
Checker connects vertices within each process based on the
happens-before relation. MPI RMA accesses are grouped into

epochs, which are program execution regions that start with
an RMA synchronization operation (e.g., MPI_Win_fence)
and end with a matching RMA synchronization operation (e.g.,
MPI_Win_fence). Nonblocking RMA operations occur after
the RMA synchronization operation that begins their epoch.
While the epochs in each MPI process are ordered based on
their execution, the nonblocking RMA operations within each
epoch are not ordered.

Next, MC-Checker connects the vertices that are ordered
across processes. Specifically, MC-Checker matches all syn-
chronization and communication events across different pro-
cesses, such as MPI collective calls and blocking send/receive
calls. For each pair of such matched events, MC-Checker
connects the corresponding pair of vertices by a directed edge
according to the happens-before relation. For example, MC-
Checker forms a directed edge between the paired MPI_Send
and MPI_Recv. Similarly, it constructs two directed edges
between a pair of MPI_Barrier’s in two different processes.
As a result of this step, a DAG is constructed by MC-Checker.

MC-Checker then extracts unordered subgraphs, or con-
current regions from the data access DAG, corresponding to
sets of operations that could have occurred concurrently in the
running program. In Figure 4 we show two concurrent regions,
A and B. While analyzing the DAG, MC-Checker identifies
global synchronization events (e.g., via barrier operations) that
partition the DAG. These synchronization events essentially
truncate the DAG into multiple execution regions, which are
sequentially ordered and can be used to improve the efficiency
of the analysis.

C. Identifying Conflicting Operations

For each concurrent region, MC-Checker applies a memory
model ruleset to detect memory consistency errors. There are
two classes of errors: errors caused by conflicting operations
within an epoch at a single process and errors caused by
conflicting operations across multiple processes.

For each concurrent region, MC-Checker first scans all
the vertices belonging to a process and identifies all the
epochs within the process by matching the synchronization
calls. For each identified epoch, MC-Checker further checks
memory access operations against a memory model ruleset.
The ruleset defines the memory operations, such as local
memory read/write accesses and one-sided communication
calls, that can be executed concurrently. Such compatibility
tables may be different for different one-sided communication
or PGAS models.

Detecting conflicting operations across processes is more
complex. For each concurrent region, MC-Checker extracts all
the vertices and edges of each pair of processes and performs a
compatibility check for the extracted vertices between the two
processes. Similarly the compatibility tables can be different
for different one-sided communication or PGAS models.

If a pair of conflicting operations is found for either
of the two types of memory errors, MC-Checker will re-
port the memory consistency error and provide diagnostic
information. For example, in Figure 2a, MC-Checker will
detect the conflicting pair of operations MPI_Put and local
write operation to the buffer within one epoch and report the
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Fig. 5: Design overview of MC-Checker.

error with relevant runtime events. In Figure 2b, MC-Checker
will identify the concurrent regions between P0 and P2. For
this pair of concurrent regions, MC-Checker will detect the
conflicting MPI_Put operations in P0 and P2 and report this
error. Similarly, in Figure 2c, MC-Checker will identify the
concurrent regions and detect the conflicting MPI_Put and
MPI_Get in P0 and P1, respectively.

We note that the passive target mode in MPI one-
sided communication requires other MPI calls such as
MPI_Barrier to perform interprocess synchronization. Con-
flicting operations in Figure 2b and 2c occur between the origin
processes. Conflicting operations may also occur between the
origin and target processes, as shown in Figure 2d. In this
example, MC-Checker will detect that the MPI_Put by P0
and the store operation by P1 conflict with each other. After
detecting the conflicting operations, MC-Checker will provide
diagnostic information, such as pairs of conflicting operations
and operation locations including file names, routine names,
and line numbers, to help programmers locate and fix the bugs.

IV. DESIGN OF MC-CHECKER AND IMPLEMENTATION

MC-Checker consists of three components: ST-Analyzer,
Profiler, and DN-Analyzer. As shown in Figure 5, ST-Analyzer
performs static analysis of MPI applications at the source
code level and generates a report consisting of relevant vari-
able names that need to be monitored for their load/store
instructions. Based on the result of ST-Analyzer, Profiler
then instruments MPI applications before program execution
and logs relevant runtime events to the trace files during
program execution. DN-Analyzer analyzes the runtime traces
and detects memory consistency errors. If it identifies a pair of
conflicting operations that are not ordered, DN-Analyzer will
report the error and provide important diagnostic information
to help locate and fix the bug. Of these three components,
Profiler is an online component because the instrumented code
is executed together with the MPI application; the other two
are offline components.

A. ST-Analyzer: Identifying Relevant Memory Accesses

To perform thorough memory consistency checking, Pro-
filer needs to instrument every memory access, leading to large
runtime overhead. To address this issue, ST-Analyzer performs
static analysis to identify relevant memory access instructions
that need to be instrumented by Profiler.

In order to identify relevant memory access instructions
for detecting memory consistency errors, one straightforward
approach is to analyze each load/store instruction, branch,
loop, the scope of each variable, and so on. Such complete
and sound analysis is expensive and slow, however, since it
requires context-sensitive and parameter-sensitive interproce-
dure analysis and sound pointer alias analysis.

ST-Analyzer simplifies the analysis without losing the
load/store instructions in which we are interested. First, ST-
Analyzer identifies all variables that belong to the window
buffers or the buffers being accessed by one-sided commu-
nication calls. It labels these variables as “relevant.” Then
ST-Analyzer propagates such labels by following pointer as-
signments or function calls involving pointers. After that, ST-
Analyzer records all labeled variables in the report. These
variables are the ones we would like to instrument in the
load/store instructions. Our design of ST-Analyzer is conserva-
tive in that it is insensitive to branch and loop. In other words,
ST-Analyzer may mark some variables that do not need to be
instrumented in reality, but it will not fail to mark those that
need to be instrumented. The current prototype of ST-Analyzer
is implemented by using the Clang front-end as a library in
the LLVM [19] compiler framework.

B. Profiler: Collecting Runtime Information

To facilitate error checking, Profiler collects relevant run-
time events and logs them in trace files. In particular, we need
to collect four types of MPI calls during program execution.
The first type is MPI one-sided calls, including MPI one-sided
initialization calls, communication calls, and synchronization
calls. Examples of this type include MPI_Win_create,
MPI_Put, and MPI_Win_fence. These MPI calls are re-
quired because they are directly related to one-sided communi-
cation. The second type is MPI datatype manipulation routines
such as MPI_Type_struct. These routines create new
datatypes from existing primitive datatypes (e.g., MPI_INT)
or other user-defined datatypes. They are needed because
message data during one-sided communication may reside in
a memory location specified by such derived datatypes. The
third type is general synchronization calls. Examples include
MPI_Barrier, MPI_Bcast, MPI_Send, and MPI_Recv.
These synchronization calls should be instrumented because
they may affect data availability for MPI communication and
the derivation of concurrency among operations. The fourth
type is MPI support routines such as MPI_Comm_rank and
MPI_Group_incl. We need them to retrieve basic informa-
tion for error detection.

In addition to instrumenting the four types of MPI calls,
Profiler needs to collect memory load/store accesses because
they may conflict with one-sided communication operations.
Profiler takes the report from ST-Analyzer as its input. The
report contains the names of the variables and pointers that
need to be instrumented for their memory accesses. Profiler
logs the memory accesses of the identified variables to the
trace files.

For each instrumented function call, Profiler logs the
function name and the arguments to the trace files. For each
memory access, Profiler logs the access type (e.g., read or
write), the address of the accessed memory, and the size of the



accessed memory data. Such information is sufficient to detect
memory consistency errors for MPI one-sided communication.

We leverage techniques from the LLVM [19] compiler
framework to implement the current prototype of Profiler.
Specifically, the LLVM compiler front-end first transforms the
MPI application to LLVM intermediate representation (IR).
Next, the Profiler pass is applied and transforms the original
IR into the instrumented IR. Then, the code generation part of
LLVM converts the instrumented IR into binary code.

C. DN-Analyzer: Trace Analysis and Bug Detection

DN-Analyzer preprocesses the collected traces, constructs
DAG and concurrent regions, and then detects memory con-
sistency errors offline.

1) Preprocessing trace files and extract information:
Before checking memory consistency errors, DN-Analyzer
preprocesses the trace files to retrieve some basic information.
There are four types of such information: communicator,
group, window buffer, and datatype.

a) Processing communicators and groups: An MPI
program can use communicator/group manipulating routines to
create user-defined communicators/groups based on previously
defined or basic communicators/groups. For example, the MPI
call MPI_Group_incl creates a new group including part
of the processes from an old group. The rank information in
this function call is relative to the old group, not the basic
group associated with MPI_COMM_WORLD. For convenience,
DN-Analyzer transfers all relative ranks in the newly created
communicators/groups to absolute ranks in the basic commu-
nicator. DN-Analyzer then stores all the communicator/group
information in a hash map for future analysis.

b) Processing window buffers: A window buffer is
created by the MPI call MPI_Win_create. After finishing
the call, an MPI program generates a handle to represent this
chunk of window buffer for one-sided communication. DN-
Analyzer stores the handle of the window buffer in the hash
map. As a result, when one-sided communication involves
the window buffer, DN-Analyzer can retrieve its detailed
information for error detection.

c) Processing datatypes: MPI datatypes are complex.
They range from simple primitive contiguous datatypes such as
MPI_INT to complex user-defined noncontiguous datatypes.
DN-Analyzer uses a data-map structure to represent a datatype.
A data-map consists of a series of segments, each containing
the displacement and the length of a contiguous chunk of the
buffer. For example, MPI_INT is represented as a data-map
{(0, 4)}, where 0 is displacement and 4 is length. Similarly,
a derived datatype containing two MPI_INTs separated by an
8-byte gap is represented as {(0, 4), (12, 4)}. DN-Analyzer
processes all datatype-manipulating routines and stores them
in the hash map.

2) Constructing DAG and concurrent regions: As shown
in Figure 2, MPI one-sided communication calls may cause
memory consistency errors with other one-sided communica-
tion calls or load/store operations in another process. However,
not every pair of operations will cause such errors. The reason
is that MPI applications have synchronization calls to enforce

happens-before [15] and/or consistency ordering relations be-
tween two operations. For example, in Figure 3, operation
c (i.e., MPI_Put in process P2) and d (i.e., MPI_Get in
process P1) will not cause memory consistency errors since
the barriers in P0, P1, and P2 make c always happens before

d (i.e., c
hb
−→ d) and c is consistent before d (i.e., c

co
−→ d).

Only when two operations fall into a concurrent execution
region may they cause memory consistency errors, such as
a and c or d and e in this example. In this paper, a concurrent
program region is defined as a group of program regions across
multiple processes that can be executed concurrently, without
happens-before and consistency ordering relations. Since the
concurrent regions are formed by MPI synchronization calls,
DN-Analyzer needs only to identify matching MPI synchro-
nization calls across different processes and detect conflicting
operations in each concurrent region.

a) Matching synchronization calls: To identify the con-
current regions, DN-Analyzer first matches MPI synchroniza-
tion calls across multiple processes, which form happens-
before and consistency ordering relations among processes. A
concurrent region is formed by the set of program regions
in all processes that are not ordered by happens-before and
consistency ordering relations.

MPI has different types of synchronization calls, including
all collective calls, blocking send/receive, and nonblocking
send with its corresponding wait or test in the nonblocking
receive process. Matching all these synchronization calls is a
challenging task. A straightforward approach is as follows. For
each synchronization call, one scans through all the traces in
the corresponding processes and locates its matching synchro-
nization calls. This algorithm is time-consuming and error-
prone, however, especially for large trace files. The reason is
that MPI applications may use the same synchronization calls
with the same arguments many times during program execu-
tion. Hence, it is not easy to determine which synchronization
calls to match in other processes for a specific synchronization
call in the current process.

DN-Analyzer uses a more efficient approach for matching
synchronization calls. This approach tries to simulate the
progress of real MPI processes. Specifically, DN-Analyzer
maintains a vector of “progress counters” to track the matching
progress for each process. The progress counter for a process
is defined as the ratio of the number of matched entries
over the number of all entries in the process. Each entry is
a runtime event logged in the trace file for a process. At
each step, DN-Analyzer selects the process counter with the
minimum value and starts the matching process for its first
unmatched entry. If the entry is not a synchronization call,
DN-Analyzer will skip it and update the progress counter of
the current process. If the entry is a synchronization call, DN-
Analyzer retrieves the argument values of the synchronization
call. Based on the argument information, DN-Analyzer figures
out other processes that have matching synchronization calls.
For collective calls, DN-Analyzer can retrieve this informa-
tion from the communicators. For blocking send/receive, the
information can be fetched from send/receive arguments that
specify the corresponding receive/send rank. After identifying
the target processes of the matching synchronization calls, DN-
Analyzer handles one process at a time. For each matching
process, DN-Analyzer does not search from the beginning of



Algorithm 1 Match synchronization calls

1: minProgRank ← 0
2: while progress[minProgRank] < 1 do
3: entry ← getEntry(progress[minProgRank])
4: if entry is not synchronization call then
5: continue
6: else
7: match synchronization calls with other processes and

store matching information
8: end if
9: update progress[minProgRank]

10: minProgRank ← getMinProgRank(progress)
11: end while

the trace file since doing so is inefficient and unnecessary.
Instead, DN-Analyzer locates the first unmatched entry from
recorded progress counter information and searches for the
nearest matching synchronization calls from there. After a
matching call is found, DN-Analyzer stores the matching
information for both synchronization calls.

Algorithm 1 shows how DN-Analyzer identifies matching
synchronization calls. Line 1 initializes the minProgRank

to 0. The while loop in line 2 checks whether the matching
completes for a particular process. Inside the while loop, DN-
Analyzer retrieves the first unmatched entry for the process in
line 3. If it is not a synchronization call, it simply skips the
entry in line 5. Otherwise, DN-Analyzer finds matching calls
in other processes and stores the matching information in line
7. Then it updates the progress for the current rank in line 9
and finds the next minimum progress rank in line 10.

b) Representing concurrent regions using DAG: After
matching the synchronization calls, DN-Analyzer leverages
the DAG to represent the synchronization information. The
happens-before relation is represented by a direct edge. As
shown in Figure 4, the MPI_Barrier is the synchronization
call, which can be represented as one node in the DAG. If the
synchronization calls are blocking send and receive, they will
be represented by a direct edge pointing from send to receive.
In this DAG, we can also get two concurrent regions, A and
B.

3) Detecting conflicting operations within an epoch: As
Figure 2a shows, MPI applications with one-sided communi-
cation can have conflicting operations within an epoch. The
reason is that these one-sided operations are nonblocking.
The data may not be moved in/out until the epoch ends.
Based on the MPI specification [13], we derived the operation
compatibility rules for operations within an epoch: (a) if the
MPI_Get is followed by any other operation, only non-
overlapping accesses are permitted; (b) if MPI_Put/Acc is
followed by local store or MPI_Get, only non-overlapping
accesses are permitted; and (c) for all other cases, both
overlapping and non-overlapping accesses are permitted. We
can detect conflicting operations based on these rules. As
shown in Figure 3, operations a and b are conflicting operations
based on rule b because they access overlapping buffer.

When we are constructing the DAG, the nonblocking oper-
ations are represented parallel with other following operations.
As shown in Figure 4, MPI_Put is parallel with store. For all

these concurrent operations within an epoch, we will check the
rules for potential violations. If a violation is found, we will
report the bug and provide diagnostic information.

4) Detecting conflicting operations across processes: After
identifying the concurrent regions, DN-Analyzer detects pos-
sible memory consistency errors for each concurrent region.
A straightforward method involves DN-Analyzer examining
each pair of operations in a concurrent region against the
compatibility table. Unfortunately, the time complexity is
combinatorial with respect to the total number of operations
within one concurrent region. Can we do better?

By further analyzing MPI specification and programs, we
observe that memory consistency errors across processes can
occur only in the window buffers at target processes. There are
two types of memory consistency errors across processes. The
first type involves two operations, both of which are MPI one-
sided communication calls, such as the example in Figure 2b
and 2c. One condition for such errors is that they perform
remote memory operations on the same target process. The
second type involves one MPI one-sided communication call
and one local load/store, such as the example in Figure 2d.
The local load/store is performed in the target process of the
one-sided communication calls.

Based on this observation, we devise a more efficient
error detection approach whose time complexity is linear to
the total number of operations. In particular, we need to
examine the memory operations only on the window buffer
in the target process. This approach has two steps. First, DN-
Analyzer checks the memory consistency errors for all one-
sided MPI calls that operate on the window buffers in the target
processes. Additionally, it stores all one-sided MPI operations
on the window buffers in the target processes for the next
step. Second, DN-Analyzer checks whether the local memory
operations conflict with the stored remote one-sided operations
for each window buffer. The local operations include local
load/store and the MPI calls that access a local buffer. We
discuss more technical details of this approach as follows.

For each concurrent region, DN-Analyzer uses a vector to
store the information of the window buffers, one buffer per
vector entry. Each entry stores the rank of the target process,
the window location, and all previous one-sided operations one
the window buffer. First, DN-Analyzer scans all of the remote
one-sided operations in the concurrent region and record
them to the correspond vector entry. Before recording them,
DN-Analyzer need to check the compatibility with existing
operations to the window buffer against Table I. If a conflict
is found, DN-Analyzer reports the error and provide relevant
diagnostic information.

After checking the memory consistency errors for all one-
sided calls, DN-Analyzer examines all local operations for
each process to see whether they conflict with any previous
remote one-sided calls to the overlapping window buffers
stored in the vector. The local operations include the local
load/store and all MPI calls performed to a local buffer. Since
MPI_Put and MPI_Get access a local buffer, they can be
treated as local load and store, respectively.

We note that if a local memory operation under examina-
tion is a local store (not MPI_Get accessing a local buffer), we
need to treat it differently. The reason is that MPI 2.2 specifies



that a local store cannot be combined with any MPI_Put or
MPI_Accumulate even when they do not have any buffer
overlap. DN-Analyzer then checks whether there are buffer
overlaps between the local buffer currently under examination
and the window buffers for the process.

V. DISCUSSION

Several factors can complicate the detection of memory
consistency errors. Invalid arguments to MPI operations can
lead to erroneous programs. MC-Checker does not check for
these errors; instead it relies on the MPI implementation
or on another tool, such as Marmot [10], to detect such
errors. Pointer aliasing is also a challenge in capturing direct
load/store access to the window buffer. ST-Analyzer can detect
most pointer aliasing by detecting pointer assignments and
passing pointers to function calls. However, there are other
mechanisms by which pointers can be aliased, such as through
memory copies. Currently, pointer aliasing is a source for
potential false negatives. ST-Analyzer could be extended to
track such operations and catch the additional sources of
pointer aliasing through dynamic tracking.

DN-Analyzer currently captures direct process-to-process
synchronization; however, indirect synchronization, for exam-
ple through send and receive operations by several different
processes, can result in a transitive ordering. In addition,
several sets of synchronizing MPI operations are omitted from
our analysis, such as collectives and nonblocking operations.
Currently, the lack of such synchronizations is a potential
source of false positives. We limit the scope of analysis to
reduce overheads; to capture such indirect synchronizations in
our analysis, we would need to perform a complete analysis
after building the DAG.

In this work, we have focused on the MPI-2 memory
model. This memory model represents a subset of the MPI-3
functionality, and operating within this constrained environ-
ment has enabled us to clearly identify the type of analysis
needed to detect RMA data races. We believe that the tech-
niques we have developed can be applied to the MPI-3 one-
sided communication model, as well as to other one-sided and
PGAS models. To extend this analysis to a new model, one
must define a happens-before relation that orders operations on
remotely accessible data and can be used to create a data access
DAG. Also needed is a set of rules that define combinations of
operations that result in undefined or erroneous behavior when
performed concurrently.

VI. EVALUATION METHODOLOGY

We perform our experiments on the Glenn cluster at the
Ohio Supercomputer Center [20]. The cluster contains 658
computer nodes. Each node is a quad-core machine with 2.5
GHz AMD R© Opteron⋆ CPU, 24 GB RAM, and 393 GB local
disk space. The operating system running on the cluster is
Linux⋆ 2.6.18. We use the cluster for online profiling. For
analyzing the trace files, we use a computer with 2.67 GHz
Intel R© CoreTM i5 processor, 4 GB RAM, and 1 TB hard
drive. The static analyzer and online profiler are implemented
by using the LLVM compiler framework [19]. The offline
analyzer is implemented as a single-threaded application using
C++. We plan to further improve it by using multithreaded
programming.

We evaluate the effectiveness of MC-Checker by using five
real-world MPI one-sided applications: (1) emulate, a program
emulating distributed shared memory; (2) BT-broadcast [21], a
binary tree broadcast algorithm using one-sided MPI discussed
in a paper’s appendix; (3) lockopts, an RMA test case in
the MPICH [22] library package; (4) ping-pong, a benchmark
using ARMCI-MPI [23] in the MPICH library package; and
(5) jacobi, an MPI one-sided implementation of the Jacobi
method. The first three applications contain real-world bug
cases of memory consistency errors within an epoch or across
processes. We change exclusive lock to shared lock for the
lockopts bug. To evaluate whether our tool can detect most of
the buggy scenarios, we inject another two memory consis-
tency errors in the last two applications.

We evaluate the runtime overhead of MC-Checker by using
three applications in the GA [24] package (Lennard-Jones,
SCF, and Boltzmann), SKaMPI [25], and LU in the NAS
Parallel Benchmarks. We replace the ARMCI library with
ARMCI-MPI [23] so that GA will use ARMCI-MPI as com-
munication library. The ARMCI-MPI library is implemented
by using MPI one-sided communication and is available in
MPICH-3.0.4 package. LU is run in the configuration of
1500 by 1500 matrix. To evaluate the runtime overhead, we
run the applications with two configurations: one with MC-
Checker’s Profiler and one without MC-Checker’s Profiler.
Each configuration is run five times in 64 processes. We also
evaluate the scalability of MC-Checker’s Profiler on the LU
benchmark with various numbers of processes ranging from 8
to 128.

VII. EXPERIMENTAL RESULTS

We measure the overall effectiveness of MC-Checker by
examining whether it can detect the bugs and locate their root
causes. The results are shown in Table II. Also listed is the bug
information including error location, root cause, and failure
symptom. We record the number of processes involved in our
experiments for each bug case.

As indicated in the table, MC-Checker not only detects all
the evaluated three real-world and two injected bugs but also
pinpoints the root causes of all five bugs. Additionally, MC-
Checker detects the bugs residing in different error locations,
with root causes of different conflicting operations and failure
symptoms. For example, MC-Checker detects the errors in
emulate, where the bug resides within an epoch and is caused
by conflicting MPI_Get and local load/store operations. As
another example, MC-Checker locates the root cause of the
bug in lockopts where the bug occurs across two processes
due to conflicting local load/store and remote MPI_Put/Get
operations. MC-Checker is effective in detecting memory
consistency errors because it can accurately capture the timing
of the MPI one-sided calls and the local load/store operations;
then it identifies the conflicting operations.

Table II also shows that MC-Checker’s detection capability
is not affected by the scale of the system. MC-Checker can
detect the memory consistency errors occurring in a small scale
such as emulate in 2 processes, as well as the errors occurring
in a larger scale such as lockopts in 64 processes. The reason
is that MC-Checker is a rule-based approach. It can accurately
capture program semantics at runtime and detect violation of



TABLE II: Overall effectiveness of MC-Checker. Note that some bug IDs use the date of the applications and some use svn
revision or version number. The bug whose application name ended with “rev” is revised. The bug ended with “inj” is injected.

MPI Apps Bug IDs Detect? Pinpoint Error Locations Mode Conflicting Failure Num. of
Root Cause? Operations Symptoms Proc.

emulate 04/2011 Yes Yes within an epoch passive get and load/store incorrect result 2
BT-broadcast 06/2004 Yes Yes within an epoch active get and load program hang 2
lockopts-rev r10308 Yes Yes across processes passive put/get and load/store incorrect result 64
pingpong-inj 3.0.3 Yes Yes across processes passive put and put incorrect result 64
jacobi-inj 09/2008 Yes Yes across processes active put and get incorrect result 64

specific program rules. In contrast, previous statistics-based
approaches [26], [27] can detect only those bugs occurring in
large scale because such approaches need to collect a large
amount of statistical data at runtime.

To the best of our knowledge, MC-Checker is the first
comprehensive approach to detect memory consistency errors
in MPI one-sided applications. While Marmot [10] can de-
tect some one-sided errors in MPI applications, it is limited
to deadlock and parameter errors. A model-checking ap-
proach [28] was proposed to detect deadlocks in MPI one-sided
applications; however, it cannot handle memory consistency
errors. A recently proposed work, SyncChecker [29], can
detect the errors occurring within an epoch; however, it cannot
detect memory consistency errors across processes.

A. Case Studies

This section presents two representative real-world bug
cases evaluated in our experiments. One is from the algorithm
in the appendix of a paper by Leucke et al. [21], while the
other one is from the RMA test case in the MPICH package.

1) Case 1: Conflicting MPI_Get and load operations in
BT-broadcast: This memory consistency error was found in
a binary tree broadcast algorithm [21]. The error causes the
program to execute a while loop forever. In our evaluation, we
implement the algorithm in C code and run it in the cluster.
Figure 6 shows the buggy code extracted from the algorithm.
Line 1 and line 8 form a one-sided communication epoch.
Within the epoch, line 3 performs a store operation to initialize
the local variable check, which is followed by a while loop
between line 4 and line 6. The MPI_Get will update the value
of check from a remote process. However, it may not be
completed until the end of the epoch at line 8 because of the
nonblocking nature of one-sided communication. As a result,
the program will execute the while loop forever as the value
of variable check is always 0.

This error can be triggered by running BT-broadcast in
two processes. After being applied to this program, MC-
Checker reports that a local load operation is conflicting with
MPI_Get. In addition, MC-Checker identifies the locations
of these two conflicting operations, which are line 4 and
line 5 in Figure 6. With such detailed diagnostic information,
programmers can easily locate the bug and fix it.

2) Case 2: Conflicting MPI_Put/Get and load/store op-
erations in lockopts: This memory consistency error was
found in the RMA test case in the MPICH package with
svn revision number 10308. It can cause the program to

1: MPI_Win_fence(0, win);

2: ...

3: check = 0;

4: while(check == 0){
 // buggy load access

5:   MPI_Get(&check, 1, MPI_DOUBLE, ...);

6: }

7: ...

8: MPI_Win_fence(0, win);


Fig. 6: Bug case 1: Conflicting MPI_Get and load operations
in BT-broadcast. Note that the load operation of check is
conflicting starting from the second iteration of while loop.
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Fig. 7: Bug case 2: Conflicting operations in lockopts-rev.
load/store in section A is concurrent with put in section D.

yield nondeterministic results. Figure 7 illustrates the buggy
scenario extracted from the source code. Because of space
limits, we show only the code snippet of part of the buggy
areas. The double directional arrows show the synchronization
points with happens-before and consistency ordering relations.
This is a revised version of the bug. The original bug has
an exclusive lock in P0. We can see that the load and store
operations in section A are within the concurrent region of
the MPI_Put (abbreviated as Put in the figure) in section
D. By checking with the compatibility table, we see that the
load/store operation is conflicting with MPI_Put. Thus the
program will generate incorrect results. For the original bug
with the exclusive lock, we can also detect it but report only a
warning. We need to rely on programmers to identify its buggy
scenario from the warning.
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This bug can be triggered by running lockopts in 64
processes. After being applied to this bug case, MC-Checker
reports the conflicting put and load/store operations. Addi-
tionally, MC-Checker pinpoints the location of the conflicting
operations so that programmers can quickly identify the bug.

From this bug case, we can also see that one can easily
make mistakes when writing MPI one-sided applications. The
lockopts bug occurred in an RMA test case that is part of
the MPICH MPI implementation, and was written by an MPI
expert. Thus, tools to assist programmers in detecting bugs are
valuable in aiding the development of one-sided applications.

B. Runtime Overhead

Figure 8 shows the execution time of five applications
without and with MC-Checker’s Profiler. The execution time
for each application is normalized to the native execution,
namely, the original program without MC-Checker. As shown
in the figure, the runtime overhead incurred by MC-Checker’s
Profiler is low, ranging from 24.6% to 71.1%, with an average
of 45.2%.

The reason for the low runtime overhead is that MC-
Checker logs only the necessary load/store and MPI function-
level events. This is the benefit from static analysis. Without
static analysis, MC-Checker may cause hundreds of times
more overhead because it needs to instrument all memory
load/store accesses, as demonstrated in previous studies such
as SyncChecker [29] and Purify [30]. Although SyncChecker’s
Profiler performs runtime optimizations, the average overhead
is still 3.85 times.

Figure 9 shows the scalability study of MC-Checker’s
Profiler on the LU benchmark. As shown in the figure, the
runtime overhead decreases from 147.2% to 37.1% when the
number of processes increases from 8 to 128. The reason
is that Profiler logs the runtime events into the local disk
independently for each process. As shown in Figure 10, the
rate of profiling runtime events, especially load/store events,
decreases while the number of processes increases, which
explains the reason that overhead drops.
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The overhead of MC-Checker comes mainly from memory
access instrumentation, which is proportional to the computa-
tion events in each node. Communication event instrumenta-
tion is light weight. The LU benchmark scalability experiment
is strong scaling experiment. When the number of nodes
increases, the rate of computation events decreases. Therefore
the rate of profiling events decreases, leading to decreasing
runtime overhead. For weak scaling experiments, the workload
assigned to each processing node stays constant, we expect a
constant overhead when the number of nodes increases.

This subsection focuses on the runtime overhead of Profiler,
the online component of MC-Checker. While MC-Checker
analyzes the traces offline, we can extend it to perform online
analysis by leveraging streaming processing algorithms in the
future.

VIII. RELATED WORK

Our work is related to the following categories of studies.

Bug detection for MPI one-sided programs. Only a few
studies have been done on detecting bugs in MPI one-sided
programs. Marmot [10] focuses on checking parameter er-
rors during MPI RMA calls and deadlock problems. Model
checking [28] can also uncover potential deadlock problems.
Scalasca [31] can identify potential performance bottlenecks in
RMA programs and offer guidance in exploring their causes.



Our work, however, focuses on memory consistency errors in
MPI RMA programs.

Bug detection and validation for general MPI programs.
Tools for detecting MPI application bugs have been broadly
investigated within the community. Tools and algorithms for
deadlock detection generate wait-for graphs to detect cycles
in blocking MPI calls [11], [12]. Validation tools have been
developed to prove that MPI programs are deadlock-free [32],
[33]. To our best knowledge, the work we present is the first to
tackle memory consistency error detection for MPI one-sided
programs.

Bug detection for other one-sided models. UPC-Thrille is
a tool for data race detection in Unified Parallel C (UPC)
programs [34], [35]. UPC is a partitioned global address
space parallel programming model, which uses a one-sided
communication runtime system. Important differences in the
UPC and MPI memory models distinguish this work from ours.
For but one example, UPC’s memory model is coherent and
relies on a global total ordering for strict accesses. In contrast,
the MPI memory model is designed for noncoherent platforms
and does not provide strict ordering guarantees.

Shared-memory data race detection. In shared-memory
programs, much research has been conducted to detect memory
consistency errors, also called data races. Some approaches [1],
[2], [3] detect data races via static analysis, while others [4],
[5], [6], [7] leverage dynamic methods that use algorithms such
as lock-set to automatically detect data races in shared memory.
Several key differences can be distinguished between shared-
memory data race detection and detecting memory consistency
errors in the MPI one-sided memory model. In the MPI RMA
model, only the owning process can perform direct load and
store accesses; all other accesses are performed through library
calls, which are coarser in granularity and can be easily tracked
through library interposition. In addition, in the MPI RMA
model, only buffers that are involved in RMA calls can be
locations for memory consistency errors, whereas any location
is possible in shared-memory programs. Because of the above
key differences, the bug detection algorithms are different.

IX. CONCLUSIONS

This paper presents MC-Checker, a new method to detect
memory consistency errors in MPI one-sided applications.
Based on collected runtime events, MC-Checker checks the
MPI one-sided calls and local load/store operations against
the compatibility tables to see whether they have memory
consistency errors. If any error is found, MC-Checker reports
the bug, along with diagnostic information.

We have built a prototype of MC-Checker on Linux⋆.
Our evaluation with three real-world and two injected bugs
in five MPI one-sided applications shows that MC-Checker is
effective in detecting memory consistency errors. In addition,
MC-Checker provides diagnostic information to help locate
and fix the bugs. Furthermore, our experiments with the five
applications show that MC-Checker incurs low runtime over-
head, ranging from 24.6% to 71.1%, with an average of 45.2%.
These results indicate that MC-Checker can be applied to
production runs without degrading performance substantially.
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