Using Global View Resilience (GVR) to add
Resilience to Exascale Applications

Hajime Fujita*f, Nan Dun*f, Aiman Fang*, Zachary A. Rubenstein*, Ziming Zheng?,
Kamil Iskra®, Jeff Hammonds$, Anshu Dubeyﬂ, Pavan BalajiT, Andrew A. Chien*T
*University of Chicago TArgonne National Laboratory
THP Vertica SIntel Labs YLawrence Berkeley National Laboratory

I. INTRODUCTION

Resilience is a great challenge for future exascale computers.
In such a hardware, dealing with all the failures in hardware
level could be almost impossible or inefficient. Moreover, there
are various kinds of errors, many of them cannot be handled
by existing approaches, such as latent errors (or often called
silent data corruption).

We propose Global View Resilience (GVR), a new library
that exploits a global view data model and adds reliability
through versioning (multi-version), user control timing and
rate (multi-stream), and flexible cross layer error signaling and
recovery. GVR enables programmers to exploit deep scientific
and application code insights to manage resilience and its
overhead in a flexible, portable fashion.

II. GLOBAL VIEW RESILIENCE

GVR provides several primitives to assist reliable execu-
tion of applications. It provides multi-version, multi-stream
distributed array as a reliable storage, and also unified error
handling interface for leveraging the investment to application-
level error handling mechanisms. GVR also enables data-
oriented resilience, protecting application data as a foundation
of resilience. An application programmer specifies which data
to protect, how much cost to spend on protecting it.

GVR is designed to allow incremental investment on
resilience for existing scientific applications. Therefore, we
implement GVR as a user-level library on top of MPI-3, such
that an application programmer can easily insert library calls
to where the program requires resilience. This means changes
required for existing code are minimal.

A. Multi-version, Multi-stream Distributed Array

GVR provides a PGAS-style distributed array similar to
GA [1], reliable data store as a foundation of resilient execution.
There are two unique ideas in GVR arrays. One is the concept
of multi-version array (Fig. 1). Applications control the timing
and rate to create a version. And GVR intelligently maintains
an appropriate number of versions across storage hierarchy
subject to error rate, capacity limitation, etc. When a recovery is
needed, applications can retrieve an arbitrary version preserved
in GVR. We define preserved versions as read-only, which
simplifies data movement, size optimization, hardening, etc.
Multi-version scheme enables applications to employ powerful
recovery schemes from complex errors such as latent errors [2].
Under assumption of latent errors, there is a latency between the
actual error occurrence and detection. Thus not only the current
contents of the array, but also several recent versions may have

Parallel Computation proceeds from | |Phases create new
phase to phase logical versions

R :/5?72/'/><\:> Jibitins!

Rollback & recompute if 7 | App-semantics
uncorrected error based recovery

Fig. 1. Multi-version distributed array in GVR preserves multiple snapshots
as computation evolves.

Approximate

Restart

X
Rollback 7
7

other()

Fig. 2. Unified error handling interface allows application programmers to
write error handlers for different kinds of errors in the same style.

been already corrupted by the error. In that case the application
can reload some old version which is not affected by the error.
With traditional checkpoint/restart systems, this is impossible
because they provide access only to the newest checkpoint
which might have been corrupted. The second concept is
multi-stream. Applications can create multiple arrays, each
is independently managed. Because of this property different
arrays can be optimized for different resilience requirement.
For example, read-only or read-mostly array does not need
frequent snapshot, whereas heavily modified array should be
versioned more frequently.

B. Open Resilience

Program execution can encounter varieties of errors, such as
node crash, memory error, network error, sanity check error, etc.
GVR aims to allow applications to handle all kinds of errors
across all kinds of layers, in order to maximize the recoverable
errors. However, this would require more programmer effort
for writing error handlers. To mitigate the cost, GVR provides
a unified error signaling & handling interface (Fig. 2), which
provides flexible matching between error signals and error
handlers. Thus one error handler could also be generalized for
other kinds of errors.

TABLE 1. REQUIRED CODE CHANGES FOR APPLYING GVR
Code/App Size (LOC) Changed Leverage Change SW
(LOC) Global View Architecture
Trilinos/PCG 300K <1% Yes No
Trilinos/GMRES 300K <1% Yes No
OpenMC 30K <2% Yes No
ddcMD 110K <0.3% Yes No
Chombo 500K <1% Yes No

III. APPLICATION STUDIES

To explore the utility of GVR with HPC applications, we
have done studies using GVR’s multi-versioning approach to
add resilience to a number of applications, miniMD, ddcMD,
miniFE, PCG with Trilinos, GMRES with Trilinos, Chombo,
etc. Here we discuss the following four applications.

ddcMDI[3]: We replicated L1 cache parity error recovery
capability in ddcMD and generalize the classes of errors that can
be detected and recovered, including memory system errors
(L2, L3, DRAM), hardware corruption, network error, etc.
GVR’s distributed arrays match distributed particle and velocity
structures gracefully. Versions create temporal redundancy well
suited to error recovery in particle simulation.

PCG[4]: We build GVR-provided resilience into linear
algebra primitives rather than requiring the applications to
interact with GVR directly, via Trilinos vector objects with
methods to snapshot and restore states on demand with GVR.

OpenMC[5]: We made OpenMC resilient by data versioning
to the tally data which is region-based and accumulated data.
GVR enables efficient forward correction for OpenMC.

Chombo[6]:GVR’s multi-stream array matches the data
hierarchy structure in AMR well, where data with different
resolution evolves in different time step resolution.

IV. EVALUATIONS
A. Code Changes

Table I shows the sizes of code changes when applying
GVR to applications. From the table we see that the required
code change is less than 2%. Also, no software architecture
changes are required for existing applications. These results
suggest that GVR can be easily applied to existing applications.

B. Runtime Performance Overhead

We measured the runtime overhead of GVR. Experiments
for ddcMD and OpenMC were done on the UChicago RCC
Midway, whereas experiments for Chombo were conducted on
NERSC Edison. As for the MPI library, we used MVAPICH2-
2.0 Midway and Cray MPT 7.0.0 on Edison.

Tables II show the results for three applications. “Native’
means the original application without GVR, “GVR” means
GVR-augmented but performs no versioning, and “GVR Nm”
means the application creates a version every N minutes.
Numbers shown are the elapsed time in seconds, and the
percentages are the relative overhead compared to the native run
(for OpenMC baseline is the GVR-augmented version without
versioning). The results show that the overhead is less than 5%.
For versioning every 30 minutes, which is reasonable recovery
in actual failure rates, the overhead is less than 1%.

s

TABLE II. RUNTIME OVERHEAD FOR APPLICATIONS

ddecMD
#procs 8 64 256 512

Native 1807 (0.00%) 2135 (0.00%) 1862 (0.00%) 1897 (0.00%)
GVR 1810 (0.21%) 2111 (-1.13%) 1840 (-1.23%) 1906 (0.45%)

GVR 30m 1801 (-0.29%) 2003 (-6.20%) 1836 (-1.42%) 1910 (0.69%)
GVR 15m 1804 (-0.14%) 2010 (-5.86%) 1844 (-0.98%) 1924 (1.44%)
GVR 5m 1808 (0.06%) 2034 (-4.73%) 1832 (-1.63%) 1985 (4.62%)
#procs 8 64 256
GVR 3302 (0.00%) 4687 (0.00%) 6253 (0.00%)
OpenMC GVR 30m 3315 (0.40%) 4677 (-0.21%) 6270 (0.27%)
GVR 15m 3297 (-0.14%) 4725 (0.80%) 6258 (0.08%)
GVR 5m 3286 (-0.48%) 4704 (0.35%) 6287 (0.55%)
#procs 128 256 1024
Native 1746 (0.00%) 1747 (0.00%) 1726 (0.00%)
Chombo GVR 1757 (0.64%) 1750 (0.22%) 1733 (0.38%)
GVR 30m 1756 (0.59%) 1752 (0.29%) 1742 (0.89%)
GVR 5m 1768 (1.30%) 1784 (2.12%) 1782 (3.24%)

V. SUMMARY AND FUTURE WORK

GVR enables portable, flexible application controlled re-
silience. It requires minimal change to existing applications
and incurs negligible performance overhead. In future, we
will continue to improve the implementation and work with
community to establish Open Resilience APIs, infrastructures
and portable error types/handling.

ACKNOWLEDGMENTS

We thank Mark Hoemmen, Mike Heroux, and Keita Teranishi for giving
useful discussions on Trilinos and linear solvers, Brian van Straalen for advices
on Chombo, Ignacio Laguna, David Richards for insights on ddeMD, and
John R. Tramm, Andrew R. Siegel for supports on OpenMC. This work was
supported by the Office of Advanced Scientific Computer Research, Office
of Science, U.S. Department of Energy, under Award DE-SC0008603 and
Contract DE-AC02-06CH11357 and completed in part with resources provided
by the University of Chicago RCC, and resources of the NERSC, a DOE
Office of Science User Facility supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Apra,
“Advances, applications and performance of the Global Arrays shared
memory programming toolkit,” International Journal of High Performance
Computing Applications, vol. 20, no. 2, pp. 203-231, Summer 2006.

[2] G. Lu, Z. Zheng, and A. A. Chien, “When is multi-version checkpointing
needed?” in Proceedings of the 3rd Workshop on Fault-tolerance for HPC
at extreme scale, ser. FTXS *13. New York, NY, USA: ACM, 2013, pp.
49-56.

[3] F. H. Streitz, J. N. Glosli, M. V. Patel, B. Chan, R. K. Yates, B. R.
de Supinski, J. Sexton, and J. A. Gunnels, “Simulating solidification in
metals at high pressure: The Drive to Petascale Computing,” Journal of
Physics: Conference Series, vol. 46, no. 1, pp. 254-267, 2006.

[4] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G.
Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps et al.,
“An overview of the trilinos project,” ACM Transactions on Mathematical
Software (TOMS), vol. 31, no. 3, pp. 397-423, 2005.

[5] P. K. Romano and B. Forget, “The OpenMC Monte Carlo particle transport
code,” Ann. Nucl. Energy, vol. 51, pp. 274-281, 2013.

[6] P. Colella, D. Graves, N. Keen, T. Ligocki, D. Martin, P. McCorquodale,
D. Modiano, P. Schwartz, T. Sternberg, and B. Van Straalen, “Chombo
software package for AMR applications design document,” Lawrence
Berkely National Laboratory, Applied Numerical Algorithms Group,
Computational Research Division, Tech. Rep., 2009.

