
Portable, MPI-Interoperable Coarray Fortran

Chaoran Yang
Department of Computer Science

Rice University
chaoran@rice.edu

Wesley Bland
Math. and Comp. Sci. Division
Argonne National Laboratory

wbland@mcs.anl.gov

John Mellor-Crummey
Department of Computer Science

Rice University
johnmc@rice.edu

Pavan Balaji
Mathematics and Computer Science Division

Argonne National Laboratory
balaji@mcs.anl.gov

Abstract
The past decade has seen the advent of a number of parallel
programming models such as Coarray Fortran (CAF), Uni-
fied Parallel C, X10, and Chapel. Despite the productivity
gains promised by these models, most parallel scientific ap-
plications still rely on MPI as their data movement model.
One reason for this trend is that it is hard for users to incre-
mentally adopt these new programming models in existing
MPI applications. Because each model use its own runtime
system, they duplicate resources and are potentially error-
prone. Such independent runtime systems were deemed nec-
essary because MPI was considered insufficient in the past
to play this role for these languages.

The recently released MPI-3, however, adds several new
capabilities that now provide all of the functionality needed
to act as a runtime, including a much more comprehensive
one-sided communication framework. In this paper, we in-
vestigate how MPI-3 can form a runtime system for one ex-
ample programming model, CAF, with a broader goal of en-
abling a single application to use both MPI and CAF with
the highest level of interoperability.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—Concurrent, dis-
tributed, and parallel languages; D.3.4 [Programming Lan-
guages]: Processors—Compilers, Runtime environments

Keywords Coarray Fortran; MPI; PGAS; Interoperability

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PPOPP’14, Feb. 15–19, 2014, Orlando, Florida, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2656-8/14/02.
http://dx.doi.org/10.1145/2555243.2555270

1. Introduction
Message Passing Interface (MPI) is the de facto standard for
programming large-scale parallel programs today. There are
several reasons for its success including a rich and standard-
ized interface coupled with heavily optimized implementa-
tions on virtually every platform in the world. MPI’s philos-
ophy is simple: it’s primary purpose is not to make simple
programs easy to implement; rather, it is to make complex
programs possible to implement.

In recent years a number of new programming mod-
els such as Coarray Fortran (CAF) [24], Unified Parallel C
(UPC) [29], X10 [25], and Chapel [7] have emerged. These
programming models feature a Partitioned Global Address
Space (PGAS) where data is accessed through language
load/store constructs that eventually translate to one-sided
communication routines at the runtime layer. Together with
the obvious productivity benefits of having direct language
constructs for moving data, these languages also provide the
potential for improved performance by utilizing the native
hardware communication features on each platform.

Despite the productivity promises of these newer pro-
gramming models, most parallel scientific applications are
slow to adopt them and continue to use MPI as their data
movement model of choice. One of the reasons for this trend
is that it is not easy for programmers to incrementally adopt
these new programming models in existing MPI applica-
tions. Because most of these new programming models have
their own runtime systems, to incrementally adopt them, the
user would need to initialize and use separate runtime li-
braries for each model within a single application. Not only
does this duplicate the runtime resources, e.g. temporary
memory buffers and metadata for memory segments, but it is
also error-prone with a possibility for deadlock if not used in
a careful and potentially in a platform-specific manner (more
details to follow).

Why do we need Interoperable Programming Models?
Because of MPI’s vast success in the parallel programming
arena, a large ecosystem of tools and libraries has developed
around it. There are high-level libraries using MPI for com-
plex mathematical computations, I/O, visualization and data
analytics, and almost every other paradigm used by scien-
tific applications. One of the drawbacks of other program-
ming models is that they do not enjoy such support, making
it hard for applications to utilize them. For example, a new
CAF application cannot directly utilize a math library (such
as PETSc or Trillinos) that is written with MPI. Similarly, if
one developed a high-performance FFT library in CAF, an
MPI application cannot directly plug it in if the underlying
runtime systems are not interoperable.

Such requirements are already seen in a number of sci-
entific applications today. For example, in [23], Preissl
et. al. identified that the Gyrokinetic Tokamak Simulation
code that is based on MPI+OpenMP can naturally bene-
fit from the language constructs in CAF that enable direct
remote data accesses. Consequently, they modified their ap-
plication to further hybridize it with MPI+CAF+OpenMP,
and demonstrated performance improvements with such a
model. QMCPACK [16], an MPI-based quantum monte-
carlo package developed by Oak Ridge National Laboratory,
and GFMC [17, 22], an MPI-based nuclear physics monte-
carlo simulation developed by Argonne National Labora-
tory, both demonstrate such requirements as well. Specif-
ically, both of these applications rely on large arrays that
reside on each node for their core sequential computations,
and they use MPI to communicate data between processes.
As problem sizes grow, however, these arrays are becom-
ing too large to reside on a single node, thus requiring the
memory of multiple nodes to accommodate them. Hybridiz-
ing with MPI+CAF provides a natural extension for these
MPI applications where they can simply define these arrays
as CAF coarrays, allowing the runtime system to distribute
them across nodes and convert load/store accesses of these
arrays to remote data access operations.

Challenges in Interoperable Programming Models. There
are several challenges in facilitating multiple programming
models to interoperate with each other. Some of these as-
pects are related to the programming semantics and the exe-
cution model itself. For instance, for a programming model
such as Chapel, which exposes a completely dynamic exe-
cution model where tasks can fork other tasks on demand, to
interoperate with a more static model such as MPI, a clear
definition of what the user is allowed to do needs to be speci-
fied. This part is not the focus of this paper. Instead we focus
on interoperation of CAF and MPI, which have similar exe-
cution model semantics, with a number of images/processes
that move data between each other.

Even for programming models with similar execution se-
mantics, various challenges exist that make interoperability
hard. For example, today, each programming model uses its

FFT 16 32 64 128 256 512 1024 2048 4096
CAF-MPI
CAF-GASNet
IDEAL-SCALE

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

6.2971 9.9241 17.9998 32.8323 74.2554 152.9704 305.3309 585.6462 945.5121
3.9050 7.2703 11.7259 20.4787 37.9913 66.6050 121.6078 233.8628 419.6483
6.2971 12.5942 25.1884 50.3768 100.7536 201.5072 403.0144 806.0288 1612.0576

16 32 64 128 256 512 1024 2048 4096
0.1 0.2 0.2 0.5 0.6 1.1 1.4 2.0 2.7
0.2 0.3 0.4 0.6 1.1 1.1 1.9 3.8 8.0

0.1231 0.2462 0.4924 0.9848 1.9696 3.9392 7.8784 15.7568 31.5136
16 64 256 1024 4096

0.113494752 0.4315327371 1.5640185942 5.4019310091 17.931944405
0.1153884087 0.4306770224 1.6010092905

0.113494752 0.4539790081 1.8159160323 7.2636641294 29.054656517
24 72 120 168 216 264 312 360
2373.33 800.57 483.73 481.15 325.18 323.59 324.06 166.37
2369.46 799.63 482.89 480.68 325.57 323.66 323.87 167.70
2367.96 794.29 482.83 477.60 322.41 321.47 320.01 162.31
2362.99 793.70 483.45 478.40 322.98 321.74 320.30 162.44

1

10

100

1000

10000

16 32 64 128 256 512 1024 2048 4096

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 32 64 128 256 512 1024 2048 4096

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 64 256 1024 4096

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0

750

1500

2250

3000

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

FFT 8 16 32 64 128 256 512 1024 2048
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

2.5360 3.5693 7.0194 13.9231 23.0590 50.3071 96.1904 152.0733 263.9797
2.3927 3.3042 4.9530 8.6560 15.3140 27.2440 43.8779 79.2683 118.1791

2.536 5.072 10.144 20.288 40.576 81.152 162.304 324.608 649.216
2.4315 3.5079 4.9294 8.4172 15.2665 26.5122 43.4191 77.4317 117.2695

8 16 32 64 128 256 512 1024 2048
0.1 0.1 0.1 0.3 0.4 0.6 0.9 1.3 1.5
0.1 0.1 0.2 0.4 0.2 0.3 0.4 0.7 1.0

0.06092 0.12184 0.24368 0.48736 0.97472 1.94944 3.89888 7.79776 15.59552
0.1 0.1 0.2 0.3 0.5 0.7 0.9 1.4 2.2

16 64 256 1024 0.4439374185
0.0350152743 0.1311492785 0.4805325189 1.7443695111
0.0330905247 0.122221024 0.4467551121 1.5327417036
0.0350152743 0.1400610971 0.5602443884 2.2409775535
0.0330424331 0.1254319838 0.4453462682 1.560673607

24 72 120 168 216 264 312 360
656.47 251.96 157.64 148.37 102.76 109.36 104.04 50.98
654.98 250.94 155.62 150.68 108.40 121.16 110.47 50.94
657.82 236.48 155.87 166.66 105.83 104.97 103.08 51.35
731.35 266.96 155.32 174.68 117.35 137.99 110.58 55.20

1

10

100

1000

8 16 32 64 128 256 512 1024 2048

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

100

8 16 32 64 128 256 512 1024 2048

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

16 64 256 1024

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0

200

400

600

800

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

16 64 256
GASNet-only
MPI-only
Duplicate Runtimes

26 34 39
107 109 115
133 143 154

0

50

100

150

200

16 64 256

154
143

133
115109107

393426

Chart 5

M
ap

pe
d

M
em

or
y

Si
ze

 (M
B)

Number of processes

GASNet-only
MPI-only
Duplicate Runtimes

CAF-GASNet CAF-MVAPICH
Communication (AllToAll)
Local computation

17.92 6.1
7.94 8.3

0

6

12

18

24

30

CAF-GASNet CAF-MPI

8.31

7.94

6.06

17.92

Analysis of FFT
Ti

m
e

(s
ec

on
ds

)

All-to-all
Computation

FFT Analysis Percentage Time Percentage
29.4 100.00% 14363.8 11.4 100.00% 25865.4

Before
Permute comp

alltoall
PhaseI
TransposeI packf

TI-alltoall
PhaseII
TransposeII packf

TI-alltoall
ALLTOALL
COMPUTATION

0.5 1.70% 244.28 Before 0.1 0.88% 226.88947368
2.9 9.86% 1,416.84 Permute comp 0.4 3.51% 907.55789474
3.3 11.22% 1,612.26 alltoall 2.5 21.93% 5,672.2368421
8.1 27.55% 3,957.37 PhaseI 1.8 15.79% 4,084.0105263
0.5 1.70% 244.28 TransposeI packf 0.1 0.88% 226.88947368

6.20 21.09% 3,029.10 TI-alltoall 2.8 24.56% 6,352.9052632
4.4 14.97% 2,149.68 PhaseII 1.0 8.77% 2,268.8947368
0.6 2.04% 293.14 TransposeII packf 0.1 0.88% 226.88947368
2.9 9.86% 1,416.84 TI-alltoall 2.6 22.81% 5,899.1263158

6,058.2013605 17,924.268421
8,305.5986395 7,941.1315789

RA MPI Percentage Time RA GASNet Percentage Time
Computation
event_notify
event_wait
calc_put
Total

1.316 11.43% 81.974704134 Computation 12.44331 9.11% 46.360558574
AMRequestShort 3.517 30.56% 219.07677389 event_notify AMRequestShort 0.9671 0.71% 3.6031647686

4.1056 35.67% 255.74114384 event_wait 108.904 79.72% 405.74817078
2.57 22.33% 160.08737813 calc_put 14.3 10.47% 53.278105875

11.5086 100.00% 716.88 Total 136.61441 100.00% 508.99

CAF-GASNet CAF-MPI
Computation
coarray_write
event_wait
event_notify

46.36 81.97
53.28 160.09

405.75 255.74
3.60 219.08

0

200

400

600

800

CAF-GASNet CAF-MPI

219.08

3.60

255.74
405.75

RandomAccess

Ti
m

e
(in

 s
ec

on
ds

) Computation
coarray_write
event_wait
event_notify

Mira 16 32 64 128 256 512 1024 2048 4096
CAF-GASNet READ
CAF-GASNet WRITE
CAF-GASNet EVENT_NOTIFY
CAF-MPI READ
CAF-MPI WRITE
CAF-MPI EVENT_NOTIFY
CAF-MPI AlltoAll
CAF-GASNet AlltoAll

272479.56 266666.66 263852.25 256410.27 266666.66 256410.27 265957.47 247524.75 266666.66
221729.48 217864.92 216919.73 203665.98 213675.22 209205.03 211864.41 207039.33 206611.58
99304.867 97560.977 96993.211 95969.281 96432.023 96899.227 97465.883 96711.797 96899.227
76745.969 61614.293 61614.293 61614.293 61274.512 61274.512 60642.813 60569.352 60716.457
61087.355 51177.074 52273.914 50864.699 51229.508 50226.016 51733.059 51334.703 49358.340
100704.94 89847.258 89605.727 88967.977 88888.891 87489.063 89525.516 88809.945 89766.609
24096.387 21186.441 16778.523 11494.253 7087.1724 4071.6611 2230.1516 1166.3168 602.73645
3716.0906 1979.4141 984.83356 475.48856 221.75407 102.36043 45.536510 20.609421 9.9222002

0E+00

6E+04

1.2E+05

1.8E+05

2.4E+05

3E+05

16 32 64 128 256 512 1024 2048 4096
1E+00

1E+01

1E+02

1E+03

1E+04

1E+05
Mira Microbenchmarks

of

 p
oi

nt
-to

-p
oi

nt
 o

ps
 /

se
co

nd

of cores

of

 a
ll-

to
-a

ll o
ps

 /
se

co
nd

CAF-GASNet WRITE
CAF-GASNet READ
CAF-GASNet NOTIFY
CAF-GASNet AlltoAll
CAF-MPI WRITE
CAF-MPI READ
CAF-MPI NOTIFY
CAF-MPI AlltoAll

Edison 32 64 128 256 512 1024 2048 4096
CAF-GASNet READ
CAF-GASNet WRITE
CAF-GASNet EVENT_NOTIFY
CAF-MPI READ
CAF-MPI WRITE
CAF-MPI EVENT_NOTIFY
CAF-MPI AlltoAll
CAF-GASNet AlltoAll

445434.3 385951.4 324570.0 390930.4 293083.2 232342.0 264550.3 252079.7
579038.8 500250.1 490436.5 500000.0 256607.7 274499.0 364564.3 308261.4
674763.8 665779.0 655308.0 655308.0 655308.0 582411.2 654878.8 521920.7

207555 209205.0 205465.4 206996.5 176398.0 201612.9 201369.3 143082.0
210172.3 210305.0 206313.2 208159.9 177273.5 202880.9 200964.6 142227.3
700770.8 700770.8 700770.8 696864.1 696864.1 693962.6 686341.8 619962.8
12396.18 5767.345 2727.917 1272.507 514.6469 268.2957 112.9217 29.40790
24177.95 7081.150 2399.923 911.6103 258.6646 87.81258 44.26492 19.71037

0E+00

1.6E+05

3.2E+05

4.8E+05

6.4E+05

8E+05

32 64 128 256 512 1024 2048 4096
1E+00

1E+01

1E+02

1E+03

1E+04

1E+05
Edison Microbenchmarks

of

 p
oi

nt
-to

-p
oi

nt
 o

ps
 /

se
co

nd

of cores

of

 a
ll-

to
-a

ll o
ps

 /
se

co
nd

CAF-GASNet WRITE
CAF-GASNet READ
CAF-GASNet NOTIFY
CAF-GASNet AlltoAll
CAF-MPI WRITE
CAF-MPI READ
CAF-MPI NOTIFY
CAF-MPI AlltoAll

Edison 16 32 64 128 256 512 1024 2048
CAF-GASNet READ
CAF-GASNet WRITE
CAF-GASNet EVENT_NOTIFY
CAF-MPI READ
CAF-MPI WRITE
CAF-MPI EVENT_NOTIFY
CAF-GASNet AlltoAll
CAF-MPI AlltoAll

2.81E+05 2.75E+05 2.48E+05
3.73E+05 3.70E+05 3.14E+05
1.07E+06 8.02E+05 7.08E+05
1.75E+05 1.77E+05 1.69E+05
1.83E+05 1.74E+05 1.74E+05
7.99E+04 4.73E+04 9.77E+04
2.82E+04 7.96E+03 2.76E+03
5.41E+04 3.10E+04 1.97E+04

Figure 1. An example of memory usage when using both
GASNet and MPI.

1 PROGRAM MAY DEADLOCK
2 USE MPI
3

4 CALL MPI INIT (IERR)
5 CALL MPI COMM RANK(MPI COMM WORLD, MY RANK, IERR)
6

7 IF (MY RANK . EQ . 0) THEN
8 A (:) [1] = A (:)
9 END IF

10

11 CALL MPI BARRIER (MPI COMM WORLD, IERR)
12 CALL MPI FINALIZE (IERR)
13 END PROGRAM

Figure 2. A CAF program that may deadlock because CAF
cannot make progress when the process blocks in MPI.

own separate runtime system. For example, GASNet [5] is a
common runtime system used by Berkeley UPC, CAF 2.0,
and others. MPI, on the other hand, uses its own platform-
specific runtime system. An application that uses multiple
programming models would need to initialize and use multi-
ple runtime systems in a single application, thus duplicating
resources.

Figure 1 shows an example of the per-process memory
usage when initializing both GASNet and MPI in an applica-
tion. 1 The memory usage of both libraries grows along with
the number of processes. The duplicated runtime resources
reduce the resources available to an application, which will
eventually hurt performance or prevent the application from
running at a larger scale.

Using multiple runtime systems within a single applica-
tion also makes it hard to reason about the correctness of
codes. The semantics of an operation are often well-defined
with respect to its own runtime system but are unclear when
multiple runtime systems are used. For example, Figure 2
lists a simple CAF program that has the process with rank 0
perform a coarray write (line 8), then has every process par-
ticipate in an MPI BARRIER (line 11). Depending on the im-

1 GASNet uses less memory than MPI because it saves data such as meta-
data of memory segments in user-space buffers.

plementation of CAF, a coarray write operation may require
the involvement of the target process to complete. Although
such involvement is implicit, it requires the target process
to make a runtime call to make progress internally. In this
example, because the target process is likely to run into the
MPI BARRIER before seeing the write operation, the coar-
ray write on process 0 may never complete. Some implemen-
tations of CAF may use a separate progress thread or have
better support from the hardware allowing it to make asyn-
chronous progress. This makes the scenario implementation-
specific and even harder for users to debug.

Contributions of this paper. One possible solution to the
interoperability issues described above is to use MPI as the
runtime system for CAF, thus allowing all data movement
to be funneled through a common runtime library. However,
the use of MPI as a runtime system was previously deemed
impossible for these PGAS programming models because
MPI was considered inadequate to implement these models.
Bonachea and Duell [6] put together a comprehensive list
of reasons why the remote memory access (RMA) features
introduced in the MPI-2 Standard fall short of the task of
serving as a compilation target of PGAS languages. The
recently released MPI-3 Standard, however, adds several
new capabilities including a much more comprehensive one-
sided communication (or RMA) model. These new additions
not only address the critiques raised about MPI-2 RMA but
also provide new functionality with performance benefits
over existing PGAS runtime systems. But whether MPI-3
can live up to the goal of forming a runtime basis for PGAS
programming models with these new additions is yet to be
validated in practice.

In this paper, we investigate the capability of MPI in
serving as the basis of a PGAS programming model such as
CAF. We redesigned the runtime system of CAF 2.0, which
was originally built on top of GASNet, to use MPI-3. The
paper describes various design choices we made during this
process. Further, we present the performance of CAF over
MPI-3 relative to that of the original CAF implementation,
and demonstrate that the MPI runtime system can achieve a
comparable or better performance in several cases. We also
point out some cases where the performance falls short of the
existing implementation; in such cases we present a detailed
analysis of the performance difference.

This paper is organized as follows: Section 2 presents an
overview of CAF-2.0 and MPI-3 and serves as background
knowledge for the later discussion of the paper. Section 3
describes the design of the CAF-MPI runtime system. In
Section 4 we evaluate our implementation using three HPC
Challenge Benchmarks [11] and the CGPOP miniapp [27],
which uses both CAF and MPI. In Section 5 we discuss
possible extensions to the MPI-3 RMA interface that may
provide further benefits when using MPI as the basis of
PGAS languages. We discuss related work in Section 6 and
present a summary of our work in Section 7.

2. Overview of CAF and MPI-3
To make the paper relatively self-contained, this section
briefly introduces the necessary context for this paper. We
will give an overview of CAF [18] and MPI-3 [19]. For fur-
ther background information, refer to the cited papers.

2.1 Coarray Fortran 2.0
We choose Coarray Fortran 2.0 (CAF 2.0) [18], developed
by Rice University, as our PGAS programming model to
test the new capabilities of MPI-3. CAF 2.0 is an open
source implementation of CAF and also contains a richer
set of PGAS extensions than CAF-1 that is integrated into
the Fortran 2008 standard. CAF 2.0 better represents the
semantics and requirements of modern PGAS languages and
would provide a better picture of the appropriateness of
MPI-3 as a basis for these models. We describe the PGAS
extensions in CAF 2.0 that are not included in Fortran 2008
standard in this section.

Teams. In CAF 2.0, a team is a first-class entity that rep-
resents a group of processes, analogous to an MPI commu-
nicator. Teams in CAF 2.0 serve three purposes: (a) the set
of images in a team serves as a domain onto which coar-
rays may be allocated; (b) a team provides a name space
within which images can be indexed by their relative rank
within that team; (c) a team provides an isolated domain for
members of a team to communicate and synchronize collec-
tively. When a CAF program starts, all images belong to the
same team named TEAM WORLD, and new teams can be cre-
ated with the team split operation.

Synchronization. CAF 2.0 provides a rich set of synchro-
nization constructs. These constructs are designed to enable
programmers to structure correct parallel programs while
allowing maximum opportunity to hide communication la-
tency with computation. These constructs were previously
introduced by Yang et. al. in [32].

Pair-wise synchronization between process images in
CAF 2.0 can be achieved with events, a first-class entity in
CAF 2.0. An event must be initialized with event init be-
fore any other operation can occur. Events can be allocated
as coarrays to enable them to be posted by other process im-
ages. One posts an event with the event notify operation.
An event wait operation blocks execution of the current
thread until the event is posted. event trywait is a non-
blocking operation which tests whether an event is posted
and returns immediately.

To synchronize asynchronous operations (described in
the next subsection), CAF 2.0 provides two synchroniza-
tion models: the implicit synchronization model, and the ex-
plicit synchronization model. All asynchronous operations in
CAF 2.0 optionally accept event arguments. Asynchronous
operations invoked with an event argument are explicitly syn-
chronized operations. The events passed to asynchronous
operations are notified by the runtime system when the syn-

chronization point is reached. One can test or wait for the
event to synchronize these operations.

One can also use the implicit synchronization model to
synchronize asynchronous operations. CAF 2.0 provides
cofence statements and finish blocks to serve this pur-
pose. A cofence statement blocks the current thread un-
til all asynchronous operations issued before the statement
complete locally. More specifically, a cofence ensures all
local buffers used by asynchronous operations issued pre-
viously are ready to be reused. A cofence also serves as
a compiler barrier; operations are not allow to be reordered
across a cofence statement.

finish is a block-structured global synchronization con-
struct in CAF 2.0, demarcated by finish and end finish

statements. finish in CAF 2.0 is similar to the finish

block in X10; it ensures that all asynchronous operations is-
sued within the block are globally complete before current
thread exits from the block. However, unlike the finish

statement in X10, a finish statement in CAF 2.0 is a col-
lective operation. A finish statement takes a team variable,
and each process image within the associated team should
create a finish block that matches those of its teammates.
When the thread exits from the block, all operations issued
by all images within the team are globally complete. finish
blocks can be nested within each other; this is useful be-
cause it allows asynchronous operations issued within the
outer finish block to proceed while the process is waiting
for the inner finish block to complete, which yields more
opportunity for communication-computation overlapping.

Asynchronous operations. CAF 2.0 provides three cat-
egories of asynchronous operations: asynchronous copy,
asynchronous collectives, and function shipping. Scherer et.
al. and Yang provide detailed descriptions of these opera-
tions elsewhere [26, 31].

A copy async operation transfers data from a buffer (the
source) to another buffer (the destination) asynchronously.
The source and destination may be local or remote coarrays.
An asynchronous copy takes three optional event arguments:
the predicate event, the source event, and the destination
event. The copy may proceed after its predicate event is
posted. The source event, when posted, indicates the source
buffer is ready to be reused. Notification of the destination
event indicates the data has been delivered to the destination;
the destination is ready to be read.

Asynchronous collectives have similar functionality as
their synchronous versions except that they are non-blocking.
For example, team reduce async performs a reduction
across a team asynchronously. An asynchronous collective
takes two optional event arguments: the data completion
event and the operation completion event. The data comple-
tion event indicates the local buffer is ready to be read, and
the operation completion event indicates the local buffer is
ready to be modified.

Function shipping is an new addition of CAF 2.0 that en-
ables programmers to transfer computation to where data is
located, rather than moving data towards computation. The
design of CAF 2.0 function shipping mechanism allows the
shipped function to perform the full range of CAF 2.0 oper-
ations, e.g., spawning more functions, performing blocking
communications, and synchronization.

2.2 MPI-3 Remote Memory Access Extensions
The MPI-3 Standard improved the MPI-2 RMA functional-
ity in a number of ways including the addition of atomic op-
erations, request-generating RMA operations, new synchro-
nization operations in passive target epochs, a new unified
memory model, and new window types. This section serves
as a introductory description of the features relevant to this
paper.

One-sided atomic operations. MPI-3 RMA provides sev-
eral operations that enable one to manipulate data in target
windows atomically. MPI ACCUMULATE and MPI GET
ACCUMULATE operations allow remote atomic updates of
data, with MPI GET ACCUMULATE further fetching the
original remote data back to the origin. The MPI-3 Stan-
dard also defines MPI FETCH AND OP, which is a special
case of MPI GET ACCUMULATE for single element prede-
fined datatypes (to provide a fast-path for such operations),
and MPI COMPARE AND SWAP, which provides a remote
compare-and-swap operation.

Request-generating operations. MPI-3 adds ‘R’ versions
of most of the RMA operations that return request handles,
such as MPI RPUT, MPI RGET, and MPI RACCUMULATE.
The request handles returned by these operations can be
later passed to MPI request completion routines, such as
MPI WAIT, to manage local completion of the operation.
These request-generating operations may be used only in
passive target synchronization epochs.

MPI-allocated windows. MPI-3 adds several new rou-
tines for creating windows. MPI WIN ALLOCATE allows
the MPI implementation to allocate memory for a window,
rather than using a user allocated buffer. When MPI allo-
cates memory for a window, it has the opportunity to allocate
special memory regions such as aligned memory segments
across a group or shared memory regions, which reduces
the overhead of RMA operations performed on that window.
MPI WIN ALLOCATE SHARED will allocate memory that
is shared by all processes in the group of the communicator
when the processes belong to the same shared-memory node.
MPI WIN CREATE DYNAMIC creates a window without
memory attached; one can dynamically attach memory later
with MPI WIN ATTACH.

Unified memory model. MPI-2 RMA assumes no coher-
ence in the memory subsystem or network interface, result-
ing in logically distinct public and private copies of a win-
dow. This conservative model (the separate model) is a poor

match for systems where coherent memory subsystems are
available. The new unified memory model added in MPI-3
better exposes these hardware capabilities to the user. This
assumption relaxes several restrictions present in the sepa-
rate model such as access to non-overlapping regions in a
window by an MPI PUT and a regular store operation con-
currently, thus allowing for higher concurrency in access to
the window data.

Passive target synchronization. MPI-3 adds a pair of
locking routines to lock and unlock all targets of a win-
dow simultaneously. With MPI WIN LOCK ALL, finer-
grained synchronization can be achieved, for example using
request-generating operations described earlier in this sec-
tion. Two new synchronization routines, MPI WIN FLUSH
and MPI WIN FLUSH ALL, were also added that allow the
user to complete all operations initiated by an origin process
to a specified target or to all targets.

3. Designing CAF over MPI-3
In this section, we describe the key details of a new imple-
mentation of CAF 2.0 using MPI-3 as its communication
substrate. CAF 2.0 features that are trivial to implement with
MPI, e.g., teams and collectives, are left out due to space
constrains. In the rest of the paper, we will sometimes refer
to our implementation of CAF as CAF-MPI and the original
CAF 2.0 as CAF-GASNet.

3.1 Coarrays
Coarrays are the main addition of CAF to Fortran 95. Coar-
rays add a codimension to a plain Fortran array. The codi-
mension indicates the process image on which an array
is located. Coarrays on remote images can be accessed
with a Fortran 95 array section syntax plus a codimension.
Thus, reading from or writing to a remote coarray is a one-
sided operation that is mapped naturally to MPI GET and
MPI PUT.

The original CAF 2.0 runtime system represents a ref-
erence to a remote memory location with a (image ID,

address) tuple. Because MPI RMA hides the absolute ad-
dress of a remote memory in the window object, and cur-
rently provides no interface to access this information, we
augmented the tuple with a remote coarray location that in-
cludes with an window object and the offset from the start
of the window. Thus, the new remote memory reference be-
come a (window, rank, displacement) tuple.

CAF-MPI allocates coarrays using MPI WIN ALLOCATE.
With MPI WIN ALLOCATE, an MPI implementation can
potentially improve performance by allocating aligned mem-
ory segments or shared memory regions for the window.

The semantics of coarray read and write operations re-
quire the effect of the operation to be globally visible after
the operation completes. Proper synchronization is needed
to ensure this semantic. Because the active target synchro-
nization model in MPI requires the participation of the tar-

get processes, it is more convenient to use the passive target
synchronization model in CAF. With the new additions of
synchronization routines in the MPI-3 passive target model,
we can lock all targets with MPI WIN LOCK ALL when a
coarray is allocated. Blocking read and write operations in
CAF-MPI use MPI WIN FLUSH to ensure remote comple-
tion. The target processes of a window are only unlocked
when the coarray is deallocated.

3.2 Active Messages
Active Messages (AM) [30] are an integral component of
GASNet. The CAF runtime system of makes heavy use of
them in various places, e.g., function shipping and event
mechanisms. For CAF-MPI, we implemented Active Mes-
sages using MPI’s two-sided communication routines. Our
design of the AM interface is a near-exact replica of the
AM interface in the GASNet core API to maintain maxi-
mum compatibility with the original CAF 2.0 runtime sys-
tem. GASNet’s AM API consists of three categories of AM:
the short Active Messages carry only a few integer argu-
ments, the medium Active Message can carry an opaque data
payload in addition to integer arguments, and the long Ac-
tive Message can also carry an opaque data payload but user
needs to specify a predetermined address in the target pro-
cess’s memory space to receive the data payload. The num-
ber of integer arguments that a short AM can carry can be
queried with gasnet AMMaxArgs() function; the size of the
data payload a medium AM can carry can be queried with
gasnet AMMaxMedium(). Providing different APIs for dif-
ferent message sizes allows the compiler to generate more
efficient code when the message size is known at compile
time.

Since AMs are used in many places in CAF 2.0’s runtime
system, its performance is critical. To ensure a fast message
injection rate for AM, we used MPI ISEND to send all mes-
sages. Integer arguments of medium data payload are inter-
nally buffered to use MPI ISEND, and waiting for local com-
pletion of the send operation is delayed until the next syn-
chronization point. The data payload of long AMs are sent
with an extra blocking MPI SEND. Theoretically, this extra
send could be replaced by an MPI PUT operation to avoid
the internal data buffering within MPI. However, because
the current MPI standard does not provide a mechanism to
notify the target on the arrival of an MPI PUT, it is hard to
ensure that the AM is invoked only after its data payload ar-
rives. Hence we stayed with the MPI SEND based design in
our approach.

3.3 Asynchronous Operations
The original CAF 2.0’s asynchronous progression model is
based on a common progress engine that all aspects of the
CAF runtime plug into. Thus, if a process is waiting on one
CAF event, the runtime can make progress on other opera-
tions that are internally queued up. This progress model is
similar to what most runtime systems, including MPI, use.

When redesigning CAF’s runtime system with MPI, one
of the restrictions we faced was with the asynchronous
progress engine as it relates to MPI RMA operations. Specif-
ically, the MPI-3 Standard does not provide a mechanism to
test for remote completion for all MPI RMA operations. The
‘R’ versions of MPI RMA operations (e.g., MPI RPUT and
MPI RGET) provide requests that can be tested or waited on
for completion but completion of this request only refers to
local completion for MPI RPUT and MPI RACCUMULATE,
while it refers to both local and remote completion for
MPI RGET and MPI RGET ACCUMULATE. For remote
completion of MPI PUT and MPI ACCUMULATE, MPI-3
only provides MPI WIN FLUSH and MPI WIN FLUSH ALL,
apart from the epoch close operations such as MPI WIN LOCK
and MPI WIN LOCK ALL. These operations can be block-
ing (e.g., when someone else is holding the lock) and do
not have a request handler that can be used to test for their
completion.

To workaround this issue, we use the following mapping
of operations:

1. For one-sided communication operations, if no local or
remote completion event is requested, we use MPI PUT
and MPI GET.

2. If a local or remote completion event is requested for
GET-style operations, we use MPI RGET which returns
an MPI request on which we can wait or test.

3. If only a local completion event is requested for a PUT-
style operation, we use MPI RPUT which returns an MPI
request on which we can wait or test.

4. If a remote completion event is requested for a PUT-
style operation, we use active messages (that are based on
MPI SEND and MPI RECV as described in Section 3.2)
to transfer data in the source buffer to the target process,
copy data into the destination buffer, then post the des-
tination event associated with the asynchronous opera-
tion. This option is obviously not as efficient as a direct
MPI PUT or MPI GET, which can be implemented more
efficiently on current network hardware. But it provides
the necessary functionality. We will further discuss this
limitation of MPI-3 and other possible solutions in Sec-
tion 5.

3.4 Explicit Event Notification
There are two obvious approaches to implement the event
mechanism in CAF-MPI. One approach is to leverage the
newly added MPI FETCH AND OP operation in MPI-3 to
notify an event and use the MPI COMPARE AND SWAP op-
eration to busy-wait for the event to be posted in event wait.
The second approach is to use MPI ISEND to notify an event
and use MPI RECV to wait for the event to be posted. The
performance implication of these two methods are unclear
at this point and may largely depend on the underlying
MPI implementation. CAF-MPI used the second method

since the performance of MPI SEND and MPI RECV rou-
tines are more well-tuned to date, and a two-sided commu-
nication model fits more naturally the event notify and
event wait model.

event wait is a blocking operation; it blocks the pro-
cess until the event being waited upon is posted. To be se-
mantically correct, event wait also forbids asynchronous
operations in program order after an event wait from be-
ing reordered to a position before the event wait (i.e., it
also functions as a compiler barrier). This restriction is guar-
anteed by the code generation process of CAF-MPI source-
to-source translator. event wait uses a blocking network
polling operation to wait for a specific message to arrive; the
polling operation internally uses MPI blocking receive. The
benefit of using a blocking polling operation allows the MPI
runtime to make progress internally to respond to other pro-
cesses’ requests.

The semantics of the event notify operation specify
that when a process posts the notification for an event, the
target of the event can only see the notification after all pre-
vious operations issued by the notifying process are com-
plete at their respective targets. However, the notification
itself is nonblocking to avoid a possible deadlock situa-
tion caused by circular event wait and event notify

chains. We implement event notify with a release bar-
rier and an short AM request. The release barrier holds a
request handle to every asynchronous operation initiated
locally. Upon event notify, the release barrier waits to
complete all its request handles with MPI WAITALL; this
ensures local completion of these operations. Furthermore,
a MPI WIN FLUSH ALL is required to ensure the remote
completion of all previous operations. The actual notifica-
tion in event notify is performed by sending an AM re-
quest to the target process. We use an MPI ISEND to avoid
the deadlock possibility mentioned above.

3.5 cofence and finish

Thanks to the new additions of request-generating RMA op-
erations in MPI-3, local completion of RMA operations can
be easily waited upon using the request handles of RMA op-
erations. The cofence statement takes an optional argument
that a user can use to request local completion notification
of PUT or GET operations. Thus, CAF-MPI runtime sys-
tem internally maintains an array of request handles of im-
plicitly synchronized PUT operations and another array of
request handles of implicitly synchronized GET operations.
The cofence statement translates to an MPI WAITALL call
for the local completion of these operations.

finish is implemented in the same way as in the orig-
inal CAF implementation; it uses a distributed termination
detection algorithm presented by Yang [31]. Yang’s algo-
rithm detects termination by repeatedly performing SUM re-
ductions across a team to compute the global difference be-
tween the number of shipped functions and the number of
completed functions shipped from others. Global termina-

tion occurs when a sum reduction yields zero for the differ-
ence. This algorithm uses n rounds of reductions in the worst
case, where n is the length of the longest chain of function
shipping calls in the finish block. We also implement a
fast version of finish that can be used when function ship-
ping is not used in an application. This version of finish
involves calling MPI WIN FLUSH ALL on every window
that the local process has touched within the block followed
by an MPI BARRIER across the team associated with the
finish block.

4. Evaluation
We have evaluated CAF-MPI on two platforms: Fusion, an
InfiniBand cluster at Argonne National Laboratory, and Edi-
son, a Cray XC30 system at Lawrence Berkeley National
Laboratory. The hardware characteristics of these systems
are given in Table 1. For each platform, we compare the per-
formance of CAF-MPI with CAF-GASNet. We evaluate the
performance of our implementation with three HPC Chal-
lenge Benchmarks: HPL, FFT, and RandomAccess [11].
These benchmarks exhibit different communication vs. com-
putation ratios and data access patterns and thus can serve
as representative examples for a wide range of applications.
We also demonstrate the performance of CAF-MPI with the
CGPOP miniapp, which uses both CAF and MPI simulta-
neously. All benchmarks are compiled with Intel compilers
and optimization level “-O3” on both platforms.

4.1 RandomAccess Benchmark
The HPC Challenge RandomAccess benchmark evaluates
the rate at which a parallel system can apply read-modify-
write updates to randomly indexed entries in a distributed ta-
ble. Performance of the RandomAccess benchmark is mea-
sured in Giga Updates Per second (GUP/s). GUP/s is cal-
culated by identifying the number of table entries that were
randomly updated in one second, divided by 1 billion (109).

The CAF 2.0 implementation of RandomAccess uses a
software routing algorithm that uses a hypercube-based pat-
tern of bulk communication to route updates to the process
image co-located with the table index being updated. The
CAF 2.0 primitives most heavily used in the RandomAccess
benchmark are coarray write and event notify.

Because the performance of RandomAccess benchmark
largely depends on the performance of one-sided communi-
cation of the communication library used. The result of Ran-
domAccess benchmark is a good indication of the overhead
of the communication library on top of the underlying net-
work hardware. Figure 3 shows the performance difference
of RandomAccess between CAF-MPI and CAF-GASNet on
Fusion. The CAF-GASNet version of RandomAccess out-
performs the CAF-MPI version by a small constant factor
up to 64 cores; this indicates that the overhead of the MPI-3
RMA implementation has a constant overhead for each op-
eration which is higher than the overhead of GASNet RMA.

FFT 16 32 64 128 256 512 1024 2048 4096
CAF-MPI
CAF-GASNet
IDEAL-SCALE

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

6.2971 9.9241 17.9998 32.8323 74.2554 152.9704 305.3309 585.6462 945.5121
3.9050 7.2703 11.7259 20.4787 37.9913 66.6050 121.6078 233.8628 419.6483
6.2971 12.5942 25.1884 50.3768 100.7536 201.5072 403.0144 806.0288 1612.0576

16 32 64 128 256 512 1024 2048 4096
0.1 0.2 0.2 0.5 0.6 1.1 1.4 2.0 2.7
0.2 0.3 0.4 0.6 1.1 1.1 1.9 3.8 8.0

0.1231 0.2462 0.4924 0.9848 1.9696 3.9392 7.8784 15.7568 31.5136
16 64 256 1024 4096

0.113494752 0.4315327371 1.5640185942 5.4019310091 17.931944405
0.1153884087 0.4306770224 1.6010092905

0.113494752 0.4539790081 1.8159160323 7.2636641294 29.054656517
24 72 120 168 216 264 312 360
2373.33 800.57 483.73 481.15 325.18 323.59 324.06 166.37
2369.46 799.63 482.89 480.68 325.57 323.66 323.87 167.70
2367.96 794.29 482.83 477.60 322.41 321.47 320.01 162.31
2362.99 793.70 483.45 478.40 322.98 321.74 320.30 162.44

1

10

100

1000

10000

16 32 64 128 256 512 1024 2048 4096

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 32 64 128 256 512 1024 2048 4096

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 64 256 1024 4096

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0

750

1500

2250

3000

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
im

e
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

FFT 8 16 32 64 128 256 512 1024 2048
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

2.5360 3.5693 7.0194 13.9231 23.0590 50.3071 96.1904 152.0733 263.9797
2.3927 3.3042 4.9530 8.6560 15.3140 27.2440 43.8779 79.2683 118.1791

2.536 5.072 10.144 20.288 40.576 81.152 162.304 324.608 649.216
2.4315 3.5079 4.9294 8.4172 15.2665 26.5122 43.4191 77.4317 117.2695

8 16 32 64 128 256 512 1024 2048
0.1 0.1 0.1 0.3 0.4 0.6 0.9 1.2 1.5
0.1 0.1 0.2 0.4 0.2 0.3 0.4 0.7 1.0

0.06092 0.12184 0.24368 0.48736 0.97472 1.94944 3.89888 7.79776 15.59552
0.1 0.1 0.2 0.3 0.5 0.7 0.9 1.4 2.2

16 64 256 1024
0.0350152743 0.1311492785 0.4805325189 1.7443695111
0.0330905247 0.122221024 0.4467551121 1.5327417036
0.0350152743 0.1400610971 0.5602443884 2.2409775535
0.0330424331 0.1254319838 0.4453462682 1.560673607

24 72 120 168 216 264 312 360
656.47 251.96 157.64 148.37 102.76 109.36 104.04 50.98
654.98 250.94 155.62 150.68 108.40 121.16 110.47 50.94
657.82 236.48 155.87 166.66 105.83 104.97 103.08 51.35
731.35 266.96 155.32 174.68 117.35 137.99 110.58 55.20

1

10

100

1000

8 16 32 64 128 256 512 1024 2048

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

100

8 16 32 64 128 256 512 1024 2048

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

8 16 32 64

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0

200

400

600

800

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
im

e
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

16 64 256
MPI+GASNet
MPI
GASNet

133 143 154
107 109 115

26 34 39

Figure 3. Performance of RandomAccess benchmark on
Fusion.

FFT 16 32 64 128 256 512 1024 2048 4096
CAF-MPI 6.2971 9.9241 17.9998 32.8323 74.2554 152.9704 305.3309 585.6462 945.5121
CAF-GASNet 3.905 7.2703 11.7259 20.4787 37.9913 66.605 121.6078 233.8628 419.6483
IDEAL-SCALE 6.2971 12.5942 25.1884 50.3768 100.7536 201.5072 403.0144 806.0288 1612.0576

RA 16 32 64 128 256 512 1024 2048 4096
CAF-MPI 0.1231 0.1592 0.2153 0.4872 0.6470 1.1240 1.4230 2.0300 2.7140
CAF-GASNet 0.2180 0.3354 0.3531 0.5853 1.0780 1.0950 1.8970 3.7530 8.0280
IDEAL-SCALE 0.1231 0.2462 0.4924 0.9848 1.9696 3.9392 7.8784 15.7568 31.5136

HPL 16 64 256 1024 4096
CAF-MPI 0.113494752021220.4315327371089121.564018594248695.4019310091196217.9319444054242
CAF-GASNet 0.1153884086875730.430677022444471.6010092904759
IDEAL-SCALE 0.113494752021220.453979008084881.815916032339527.2636641293580829.0546565174323
CGPOP 24 72 120 168 216 264 312 360
CAF-MPI (PUSH) 2373.33 800.57 483.73 481.15 325.18 323.59 324.06 166.37
CAF-MPI (PULL) 2369.46 799.63 482.89 480.68 325.57 323.66 323.87 167.7
CAF-GASNet (PUSH) 2367.96 794.29 482.83 477.6 322.41 321.47 320.01 162.31
CAF-GASNet (PULL) 2362.99 793.7 483.45 478.4 322.98 321.74 320.3 162.44

CAF-MPI (PUSH) 643.68 226.05 155.64 138.02 92.16 101.51 98.95 49.15
CAF-MPI (PULL) 642.62 226.21 155.68 138.70 92.39 105.18 102.48 49.37

FFT

G
Fl

op
s

1

10

100

1000

10000

Number of processes
16 32 64 128 256 512 1024 2048 4096

CAF-MPI
CAF-GASNet
IDEAL-SCALE

RandomAccess

G
UP

S

0.1000

1.0000

10.0000

100.0000

Number of processes
16 32 64 128 256 512 1024 2048 4096

CAF-MPI
CAF-GASNet
IDEAL-SCALE

HPL

TF
lo

ps

0.1

1

10

100

Number of processes
16 64 256 1024 4096

CAF-MPI
CAF-GASNet
IDEAL-SCALE

CGPOP

Ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

0

750

1500

2250

3000

Number of processes
24 72 120 168 216 264 312 360

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

FFT 8 16 32 64 128 256 512 1024 2048
CAF-MPI 2.536 3.5693 7.0194 13.9231 23.059 50.3071 96.1904 152.0733 263.9797
CAF-GASNet 2.3927 3.3042 4.953 8.656 15.314 27.244 43.8779 79.2683 118.1791
IDEAL-SCALE 2.536 5.072 10.144 20.288 40.576 81.152 162.304 324.608 649.216
CAF-GASNet-NOSRQ 2.4315 3.5079 4.9294 8.4172 15.2665 26.5122 43.4191 77.4317 117.2695

RA 8 16 32 64 128 256 512 1024 2048
CAF-MPI 0.06092 0.08127 0.14460 0.26490 0.37180 0.55590 0.82550 1.54600 2.28000
CAF-GASNet 0.08138 0.11930 0.19460 0.36090 0.20760 0.30790 0.41440 0.66870 0.97430
IDEAL-SCALE 0.06092 0.12184 0.24368 0.48736 0.97472 1.94944 3.89888 7.79776 15.59552
CAF-GASNet-NOSRQ 0.08139 0.11950 0.18130 0.30630 0.48190 0.67120 0.86760 1.42900 2.21500

HPL 16 64 256 1024
CAF-MPI 0.03501527427419750.1311492785337550.48053251893751.74436951110407
CAF-GASNet 0.03309052474613430.1222210239688550.4467551120772491.53274170356913
IDEAL-SCALE 0.03501527427419750.140061097096790.560244388387162.24097755354864
CAF-GASNet-NOSRQ 0.033042433075980.1254319837809020.4453462681551781.56067360700123

CGPOP 24 72 120 168 216 264 312 360
CAF-MPI (PUSH) 656.47 251.96 157.64 148.37 102.76 109.36 104.04 50.98
CAF-MPI (PULL) 654.98 250.94 155.62 150.68 108.4 121.16 110.47 50.94
CAF-GASNet (PUSH) 657.82 236.48 155.87 166.66 105.83 104.97 103.08 51.35
CAF-GASNet (PULL) 731.35 266.96 155.32 174.68 117.35 137.99 110.58 55.2

FFT

G
Fl

op
s

1

10

100

1000

Number of processes
8 16 32 64 128 256 512 1024 2048

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

RandomAccess

G
UP

S

0.01000

0.10000

1.00000

10.00000

100.00000

Number of processes
8 16 32 64 128 256 512 1024 2048

0.060920.08127
0.14460

0.26490
0.37180

0.55590
0.82550

1.54600
2.28000

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

HPL

TF
lo

ps

0.01

0.1

1

10

Number of processes
16 64 256 1024

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

CGPOP

Ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

0

200

400

600

800

Number of processes
24 72 120 168 216 264 312 360

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

16 64 256
GASNet-only 26 34 39
MPI-only 107 109 115
Duplicate Runtimes 133 143 154

M
ap

pe
d

M
em

or
y

Si
ze

 (M
B)

0

50

100

150

200

Number of processes
16 64 256

154
143

133
115109107

393426

GASNet-only
MPI-only
Duplicate Runtimes

CAF-GASNet CAF-MVAPICH
Communication (AllToAll) 17.92 6.1
Local computation 7.94 8.3

Analysis of FFT

Ti
m

e
(s

ec
on

ds
)

0

6

12

18

24

30

CAF-GASNet CAF-MPI

8.31

7.94

6.06

17.92

All-to-all
Computation

FFT Analysis Percentage Time Percentage
29.4 100.00% 14363.8 11.4 100.00% 25865.4

Before 0.5 1.70% 244.28 Before 0.1 0.88% 22,688.95%
Permute comp 2.9 9.86% 1,416.84 Permute comp 0.4 3.51% 90,755.79%

alltoall 3.3 11.22% 1,612.26 alltoall 2.5 21.93% 567,223.68%
PhaseI 8.1 27.55% 3,957.37 PhaseI 1.8 15.79% 408,401.05%
TransposeI packf 0.5 1.70% 244.28 TransposeI packf 0.1 0.88% 22,688.95%

TI-alltoall 6.20 21.09% 3,029.10 TI-alltoall 2.8 24.56% 635,290.53%
PhaseII 4.4 14.97% 2,149.68 PhaseII 1 8.77% 226,889.47%
TransposeII packf 0.6 2.04% 293.14 TransposeII packf 0.1 0.88% 22,688.95%

TI-alltoall 2.9 9.86% 1,416.84 TI-alltoall 2.6 22.81% 589,912.63%
ALLTOALL 6,058.20 1,792,426.84%
COMPUTATION 8,305.60 794,113.16%

RA MPI Percentage Time RA GASNet Percentage Time
Computation 1.316 11.43% 8,197.47% Computation 12.44331 9.11% 4,636.06%
event_notify AMRequestShort 3.517 30.56% 21,907.68% event_notify AMRequestShort 0.9671 0.71% 360.32%
event_wait 4.1056 35.67% 25,574.11% event_wait 108.904 79.72% 40,574.82%
calc_put 2.57 22.33% 16,008.74% calc_put 14.3 10.47% 5,327.81%
Total 11.5086 100.00% 716.88 Total 136.61441 100.00% 508.99

CAF-GASNet CAF-MPI
Computation 46.36 81.97
coarray_write 53.28 160.09
event_wait 405.75 255.74
event_notify 3.60 219.08

RandomAccess

Ti
m

e
(in

 s
ec

on
ds

)

0

200

400

600

800

CAF-GASNet CAF-MPI

219.08
3.60

255.74
405.75

Computation
coarray_write
event_wait
event_notify

Mira 16 32 64 128 256 512 1024 2048 4096
CAF-GASNet READ 272479.56 266666.66 263852.25 256410.27 266666.66 256410.27 265957.47 247524.75 266666.66
CAF-GASNet WRITE 221729.48 217864.92 216919.73 203665.98 213675.22 209205.03 211864.41 207039.33 206611.58
CAF-GASNet EVENT_NOTIFY 99304.867 97560.977 96993.211 95969.281 96432.023 96899.227 97465.883 96711.797 96899.227
CAF-MPI READ 76745.969 61614.293 61614.293 61614.293 61274.512 61274.512 60642.813 60569.352 60716.457
CAF-MPI WRITE 61087.355 51177.074 52273.914 50864.699 51229.508 50226.016 51733.059 51334.703 49358.34
CAF-MPI EVENT_NOTIFY 100704.94 89847.258 89605.727 88967.977 88888.891 87489.063 89525.516 88809.945 89766.609
CAF-MPI AlltoAll 24096.387 21186.441 16778.523 11494.253 7087.1724 4071.6611 2230.1516 1166.3168 602.73645
CAF-GASNet AlltoAll 3716.0906 1979.4141 984.83356 475.48856 221.75407 102.36043 45.53651 20.609421 9.9222002

Mira Microbenchmarks

of

 a
ll-

to
-a

ll o
ps

 /
se

co
nd

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

of

 p
oi

nt
-to

-p
oi

nt
 o

ps
 /

se
co

nd

0E+00

6E+04

1.2E+05

1.8E+05

2.4E+05

3E+05

of cores
16 32 64 128 256 512 1024 2048 4096

CAF-GASNet WRITE
CAF-GASNet READ
CAF-GASNet NOTIFY
CAF-GASNet AlltoAll
CAF-MPI WRITE
CAF-MPI READ
CAF-MPI NOTIFY
CAF-MPI AlltoAll

Edison 32 64 128 256 512 1024 2048 4096
CAF-GASNet READ 445434.3 385951.4 324570 390930.4 293083.2 232342 264550.3 252079.7
CAF-GASNet WRITE 579038.8 500250.1 490436.5 500000 256607.7 274499 364564.3 308261.4
CAF-GASNet EVENT_NOTIFY 674763.8 665779 655308 655308 655308 582411.2 654878.8 521920.7
CAF-MPI READ 207555 209205 205465.4 206996.5 176398 201612.9 201369.3 143082
CAF-MPI WRITE 210172.3 210305 206313.2 208159.9 177273.5 202880.9 200964.6 142227.3
CAF-MPI EVENT_NOTIFY 700770.8 700770.8 700770.8 696864.1 696864.1 693962.6 686341.8 619962.8
CAF-MPI AlltoAll 12396.18 5767.345 2727.917 1272.507 514.6469 268.2957 112.9217 29.4079
CAF-GASNet AlltoAll 24177.95 7081.15 2399.923 911.6103 258.6646 87.81258 44.26492 19.71037

Edison Microbenchmarks

of

 a
ll-

to
-a

ll o
ps

 /
se

co
nd

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

of

 p
oi

nt
-to

-p
oi

nt
 o

ps
 /

se
co

nd

0E+00

1.6E+05

3.2E+05

4.8E+05

6.4E+05

8E+05

of cores
32 64 128 256 512 1024 2048 4096

CAF-GASNet WRITE
CAF-GASNet READ
CAF-GASNet NOTIFY
CAF-GASNet AlltoAll
CAF-MPI WRITE
CAF-MPI READ
CAF-MPI NOTIFY
CAF-MPI AlltoAll

Edison 16 32 64 128 256 512 1024 2048
CAF-GASNet READ 2.81E+05 2.75E+05 2.48E+05
CAF-GASNet WRITE 3.73E+05 3.70E+05 3.14E+05
CAF-GASNet EVENT_NOTIFY 1.07E+06 8.02E+05 7.08E+05
CAF-MPI READ 1.75E+05 1.77E+05 1.69E+05
CAF-MPI WRITE 1.83E+05 1.74E+05 1.74E+05
CAF-MPI EVENT_NOTIFY 7.99E+04 4.73E+04 9.77E+04
CAF-GASNet AlltoAll 2.82E+04 7.96E+03 2.76E+03
CAF-MPI AlltoAll 5.41E+04 3.10E+04 1.97E+04

Figure 4. Time decomposition of RandomAccess on 2048
cores on Fusion.

CAF-GASNet’s performance drops at 128 cores. Further in-
vestigation shows that this is caused by the use of the Shared
Receive Queue (SRQ) in GASNet. The default configuration
of GASNet library automatically enables SRQ as soon as do-
ing so reduces the memory usage of GASNet. The effect of
using SRQ in MVAPICH2 is not noticed in our experiment
of up to 2048 cores. By disabling the use of SRQ in GASNet,
CAF-GASNet performs roughly the same as CAF-MPI. The
CAF-GASNet version shows slightly better scalability than
the CAF-MPI version on 1024 and larger cores.

We profiled the 2048-core run of RandomAccess with
HPCToolkit [2] to analyze CAF-MPI; the analysis results
are shown in Figure 4. The CAF-MPI version of RandomAc-
cess spends around 200 seconds in event notify while the
CAF-GASNet version spends almost none. This is because
of how event notify is implemented in these two libraries.
In CAF-MPI, event notify invokes MPI WIN FLUSH ALL
to ensure that all previously issued operations have been
completed before performing the notification. The current
implementation of MPI WIN FLUSH ALL in all MPICH
derivatives (including MVAPICH and Cray MPI) performs
a flush operation on each process within the communicator;
hence the execution time of MPI WIN FLUSH ALL grows
linearly with the number of processes. This is, of course, a

System Nodes Cores per Node Memory per Node Interconnect MPI Version
Cluster (Fusion) 320 2 x 4 36GB InfiniBand QDR MVAPICH2-1.9
Cray XC30 (Edison) 5,200 2 x 12 64GB Cray Aries CRAY-MPICH-6.0.2

Table 1. Experimental platforms and system characteristics.

FFT 16 32 64 128 256 512 1024 2048 4096
CAF-MPI
CAF-GASNet
IDEAL-SCALE

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

6.2971 9.9241 17.9998 32.8323 74.2554 152.9704 305.3309 585.6462 945.5121
3.9050 7.2703 11.7259 20.4787 37.9913 66.6050 121.6078 233.8628 419.6483
6.2971 12.5942 25.1884 50.3768 100.7536 201.5072 403.0144 806.0288 1612.0576

16 32 64 128 256 512 1024 2048 4096
0.1 0.2 0.2 0.5 0.6 1.1 1.4 2.0 2.7
0.2 0.3 0.4 0.6 1.1 1.1 1.9 3.8 8.0

0.1231 0.2462 0.4924 0.9848 1.9696 3.9392 7.8784 15.7568 31.5136
16 64 256 1024 4096

0.113494752 0.4315327371 1.5640185942 5.4019310091 17.931944405
0.1153884087 0.4306770224 1.6010092905
0.113494752 0.4539790081 1.8159160323 7.2636641294 29.054656517

24 72 120 168 216 264 312 360
2373.33 800.57 483.73 481.15 325.18 323.59 324.06 166.37
2369.46 799.63 482.89 480.68 325.57 323.66 323.87 167.70
2367.96 794.29 482.83 477.60 322.41 321.47 320.01 162.31
2362.99 793.70 483.45 478.40 322.98 321.74 320.30 162.44

1

10

100

1000

10000

16 32 64 128 256 512 1024 2048 4096

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 32 64 128 256 512 1024 2048 4096

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 64 256 1024 4096

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0

750

1500

2250

3000

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
im

e
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

FFT 8 16 32 64 128 256 512 1024 2048
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

2.5360 3.5693 7.0194 13.9231 23.0590 50.3071 96.1904 152.0733 263.9797
2.3927 3.3042 4.9530 8.6560 15.3140 27.2440 43.8779 79.2683 118.1791
2.536 5.072 10.144 20.288 40.576 81.152 162.304 324.608 649.216

2.4315 3.5079 4.9294 8.4172 15.2665 26.5122 43.4191 77.4317 117.2695
8 16 32 64 128 256 512 1024 2048

0.1 0.1 0.1 0.3 0.4 0.6 0.9 1.2 1.5
0.1 0.1 0.2 0.4 0.2 0.3 0.4 0.7 1.0

0.06092 0.12184 0.24368 0.48736 0.97472 1.94944 3.89888 7.79776 15.59552
0.1 0.1 0.2 0.3 0.5 0.7 0.9 1.4 2.2

16 64 256 1024
0.0350152743 0.1311492785 0.4805325189 1.7443695111
0.0330905247 0.122221024 0.4467551121 1.5327417036
0.0350152743 0.1400610971 0.5602443884 2.2409775535
0.0330424331 0.1254319838 0.4453462682 1.560673607

24 72 120 168 216 264 312 360
656.47 251.96 157.64 148.37 102.76 109.36 104.04 50.98
654.98 250.94 155.62 150.68 108.40 121.16 110.47 50.94
657.82 236.48 155.87 166.66 105.83 104.97 103.08 51.35
731.35 266.96 155.32 174.68 117.35 137.99 110.58 55.20

1

10

100

1000

8 16 32 64 128 256 512 1024 2048

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

100

8 16 32 64 128 256 512 1024 2048

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

8 16 32 64

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0

200

400

600

800

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
im

e
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

16 64 256
MPI+GASNet
MPI
GASNet

133 143 154
107 109 115
26 34 39

Figure 5. Performance of RandomAccess benchmark on
Edison.

simple performance scalability issue that can be addressed
within the MPI implementation, but as of the writing of this
paper, this issue exists.

The performance of RandomAccess on Edison, shown in
Figure 5, tells roughly the same story as it does on Fusion.
The MPI-3 RMA operations in Cray MPI are currently im-
plemented internally with send and receive routines rather
than directly leveraging RDMA support in the network. This
causes a more obvious performance loss of CAF-MPI ver-
sion of RandomAccess on Edison. Better implementations
of MPI RMA on Cray platforms, such as foMPI [10], al-
ready exist and deliver performance competitive with CAF
and UPC. However, the foMPI implementation is not inte-
grated into Cray MPI yet.

4.2 FFT Benchmark
The HPC Challenge FFT benchmark measures the ability
of a system to overlap computation and communication
while calculating a very large Discrete Fourier Transform
of size m. Performance of the FFT benchmark is mea-
sured in GFLOP/s, with calculated performance defined as
5mlog2m

t 10−9, where m is the size of the DFT and t is the
execution time in seconds. Parallel FFT algorithms have
been well studied in the past [3, 13, 28].

The CAF 2.0 FFT implementation uses a radix-2 binary
exchange formulation that consists of three parts: permuta-
tion of data to move each source element to the position that
is its binary bit reversal; local FFT computation for as many
layers of the DFT calculation as can fit in the memory of a
single processor; and remote DFT computation for the layers
that span multiple processor images. The CAF 2.0 FFT im-

FFT 16 32 64 128 256 512 1024 2048 4096
CAF-MPI
CAF-GASNet
IDEAL-SCALE

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

6.2971 9.9241 17.9998 32.8323 74.2554 152.9704 305.3309 585.6462 945.5121
3.9050 7.2703 11.7259 20.4787 37.9913 66.6050 121.6078 233.8628 419.6483
6.2971 12.5942 25.1884 50.3768 100.7536 201.5072 403.0144 806.0288 1612.0576

16 32 64 128 256 512 1024 2048 4096
0.1 0.2 0.2 0.5 0.6 1.1 1.4 2.0 2.7
0.2 0.3 0.4 0.6 1.1 1.1 1.9 3.8 8.0

0.1231 0.2462 0.4924 0.9848 1.9696 3.9392 7.8784 15.7568 31.5136
16 64 256 1024 4096

0.113494752 0.4315327371 1.5640185942 5.4019310091 17.931944405
0.1153884087 0.4306770224 1.6010092905
0.113494752 0.4539790081 1.8159160323 7.2636641294 29.054656517

24 72 120 168 216 264 312 360
2373.33 800.57 483.73 481.15 325.18 323.59 324.06 166.37
2369.46 799.63 482.89 480.68 325.57 323.66 323.87 167.70
2367.96 794.29 482.83 477.60 322.41 321.47 320.01 162.31
2362.99 793.70 483.45 478.40 322.98 321.74 320.30 162.44

1

10

100

1000

10000

16 32 64 128 256 512 1024 2048 4096

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 32 64 128 256 512 1024 2048 4096

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 64 256 1024 4096

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0

750

1500

2250

3000

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
im

e
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

FFT 8 16 32 64 128 256 512 1024 2048
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

2.5360 3.5693 7.0194 13.9231 23.0590 50.3071 96.1904 152.0733 263.9797
2.3927 3.3042 4.9530 8.6560 15.3140 27.2440 43.8779 79.2683 118.1791
2.536 5.072 10.144 20.288 40.576 81.152 162.304 324.608 649.216

2.4315 3.5079 4.9294 8.4172 15.2665 26.5122 43.4191 77.4317 117.2695
8 16 32 64 128 256 512 1024 2048

0.1 0.1 0.1 0.3 0.4 0.6 0.9 1.2 1.5
0.1 0.1 0.2 0.4 0.2 0.3 0.4 0.7 1.0

0.06092 0.12184 0.24368 0.48736 0.97472 1.94944 3.89888 7.79776 15.59552
0.1 0.1 0.2 0.3 0.5 0.7 0.9 1.4 2.2

16 64 256 1024
0.0350152743 0.1311492785 0.4805325189 1.7443695111
0.0330905247 0.122221024 0.4467551121 1.5327417036
0.0350152743 0.1400610971 0.5602443884 2.2409775535
0.0330424331 0.1254319838 0.4453462682 1.560673607

24 72 120 168 216 264 312 360
656.47 251.96 157.64 148.37 102.76 109.36 104.04 50.98
654.98 250.94 155.62 150.68 108.40 121.16 110.47 50.94
657.82 236.48 155.87 166.66 105.83 104.97 103.08 51.35
731.35 266.96 155.32 174.68 117.35 137.99 110.58 55.20

1

10

100

1000

8 16 32 64 128 256 512 1024 2048

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

100

8 16 32 64 128 256 512 1024 2048

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

8 16 32 64

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0

200

400

600

800

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
im

e
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

16 64 256
MPI+GASNet
MPI
GASNet

133 143 154
107 109 115
26 34 39

Figure 6. Performance of FFT benchmark on Fusion.

FFT 16 32 64 128 256 512 1024 2048 4096
CAF-MPI
CAF-GASNet
IDEAL-SCALE

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

6.2971 9.9241 17.9998 32.8323 74.2554 152.9704 305.3309 585.6462 945.5121
3.9050 7.2703 11.7259 20.4787 37.9913 66.6050 121.6078 233.8628 419.6483
6.2971 12.5942 25.1884 50.3768 100.7536 201.5072 403.0144 806.0288 1612.0576

16 32 64 128 256 512 1024 2048 4096
0.1 0.2 0.2 0.5 0.6 1.1 1.4 2.0 2.7
0.2 0.3 0.4 0.6 1.1 1.1 1.9 3.8 8.0

0.1231 0.2462 0.4924 0.9848 1.9696 3.9392 7.8784 15.7568 31.5136
16 64 256 1024 4096

0.113494752 0.4315327371 1.5640185942 5.4019310091 17.931944405
0.1153884087 0.4306770224 1.6010092905

0.113494752 0.4539790081 1.8159160323 7.2636641294 29.054656517
24 72 120 168 216 264 312 360
2373.33 800.57 483.73 481.15 325.18 323.59 324.06 166.37
2369.46 799.63 482.89 480.68 325.57 323.66 323.87 167.70
2367.96 794.29 482.83 477.60 322.41 321.47 320.01 162.31
2362.99 793.70 483.45 478.40 322.98 321.74 320.30 162.44

1

10

100

1000

10000

16 32 64 128 256 512 1024 2048 4096

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 32 64 128 256 512 1024 2048 4096

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 64 256 1024 4096

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0

750

1500

2250

3000

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
im

e
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

FFT 8 16 32 64 128 256 512 1024 2048
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

2.5360 3.5693 7.0194 13.9231 23.0590 50.3071 96.1904 152.0733 263.9797
2.3927 3.3042 4.9530 8.6560 15.3140 27.2440 43.8779 79.2683 118.1791

2.536 5.072 10.144 20.288 40.576 81.152 162.304 324.608 649.216
2.4315 3.5079 4.9294 8.4172 15.2665 26.5122 43.4191 77.4317 117.2695

8 16 32 64 128 256 512 1024 2048
0.1 0.1 0.1 0.3 0.4 0.6 0.9 1.2 1.5
0.1 0.1 0.2 0.4 0.2 0.3 0.4 0.7 1.0

0.06092 0.12184 0.24368 0.48736 0.97472 1.94944 3.89888 7.79776 15.59552
0.1 0.1 0.2 0.3 0.5 0.7 0.9 1.4 2.2

16 64 256 1024
0.0350152743 0.1311492785 0.4805325189 1.7443695111
0.0330905247 0.122221024 0.4467551121 1.5327417036
0.0350152743 0.1400610971 0.5602443884 2.2409775535
0.0330424331 0.1254319838 0.4453462682 1.560673607

24 72 120 168 216 264 312 360
656.47 251.96 157.64 148.37 102.76 109.36 104.04 50.98
654.98 250.94 155.62 150.68 108.40 121.16 110.47 50.94
657.82 236.48 155.87 166.66 105.83 104.97 103.08 51.35
731.35 266.96 155.32 174.68 117.35 137.99 110.58 55.20

1

10

100

1000

8 16 32 64 128 256 512 1024 2048

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

100

8 16 32 64 128 256 512 1024 2048

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

8 16 32 64

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0

200

400

600

800

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
im

e
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

16 64 256
MPI+GASNet
MPI
GASNet

133 143 154
107 109 115
26 34 39

Figure 7. Performance of FFT benchmark on Edison.

FFT 16 32 64 128 256 512 1024 2048 4096
CAF-MPI
CAF-GASNet
IDEAL-SCALE

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

6.2971 9.9241 17.9998 32.8323 74.2554 152.9704 305.3309 585.6462 945.5121
3.9050 7.2703 11.7259 20.4787 37.9913 66.6050 121.6078 233.8628 419.6483
6.2971 12.5942 25.1884 50.3768 100.7536 201.5072 403.0144 806.0288 1612.0576

16 32 64 128 256 512 1024 2048 4096
0.1 0.2 0.2 0.5 0.6 1.1 1.4 2.0 2.7
0.2 0.3 0.4 0.6 1.1 1.1 1.9 3.8 8.0

0.1231 0.2462 0.4924 0.9848 1.9696 3.9392 7.8784 15.7568 31.5136
16 64 256 1024 4096

0.113494752 0.4315327371 1.5640185942 5.4019310091 17.931944405
0.1153884087 0.4306770224 1.6010092905
0.113494752 0.4539790081 1.8159160323 7.2636641294 29.054656517

24 72 120 168 216 264 312 360
2373.33 800.57 483.73 481.15 325.18 323.59 324.06 166.37
2369.46 799.63 482.89 480.68 325.57 323.66 323.87 167.70
2367.96 794.29 482.83 477.60 322.41 321.47 320.01 162.31
2362.99 793.70 483.45 478.40 322.98 321.74 320.30 162.44

1

10

100

1000

10000

16 32 64 128 256 512 1024 2048 4096

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 32 64 128 256 512 1024 2048 4096

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 64 256 1024 4096

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0

750

1500

2250

3000

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

FFT 8 16 32 64 128 256 512 1024 2048
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

2.5360 3.5693 7.0194 13.9231 23.0590 50.3071 96.1904 152.0733 263.9797
2.3927 3.3042 4.9530 8.6560 15.3140 27.2440 43.8779 79.2683 118.1791
2.536 5.072 10.144 20.288 40.576 81.152 162.304 324.608 649.216

2.4315 3.5079 4.9294 8.4172 15.2665 26.5122 43.4191 77.4317 117.2695
8 16 32 64 128 256 512 1024 2048

0.1 0.1 0.1 0.3 0.4 0.6 0.9 1.2 1.5
0.1 0.1 0.2 0.4 0.2 0.3 0.4 0.7 1.0

0.06092 0.12184 0.24368 0.48736 0.97472 1.94944 3.89888 7.79776 15.59552
0.1 0.1 0.2 0.3 0.5 0.7 0.9 1.4 2.2

16 64 256 1024 0.4439374185
0.0350152743 0.1311492785 0.4805325189 1.7443695111
0.0330905247 0.122221024 0.4467551121 1.5327417036
0.0350152743 0.1400610971 0.5602443884 2.2409775535
0.0330424331 0.1254319838 0.4453462682 1.560673607

24 72 120 168 216 264 312 360
656.47 251.96 157.64 148.37 102.76 109.36 104.04 50.98
654.98 250.94 155.62 150.68 108.40 121.16 110.47 50.94
657.82 236.48 155.87 166.66 105.83 104.97 103.08 51.35
731.35 266.96 155.32 174.68 117.35 137.99 110.58 55.20

1

10

100

1000

8 16 32 64 128 256 512 1024 2048

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

100

8 16 32 64 128 256 512 1024 2048

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

8 16 32 64

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0

200

400

600

800

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

16 64 256
MPI+GASNet

MVAPICH
GASNet

133 143 154

107 109 115
26 34 39

0

50

100

150

200

16 64 256

39
34

26
115109107

Chart 5

M
ap

pe
d

M
em

or
y

Si
ze

 (M
B)

Number of processes

MVAPICH
GASNet

CAF-GASNet CAF-MVAPICH
Communication (AllToAll)
Local computation

17.92 6.1
7.94 8.3

0

6

12

18

24

30

CAF-GASNet CAF-MPI

8.31

7.94

6.06

17.92

Analysis of FFT

Ti
m

e
(s

ec
on

ds
)

All-to-all
Computation

FFT Analysis Percentage Time Percentage
29.4 100.00% 14363.8 11.4 100.00% 25865.4

Before
Permute comp

alltoall
PhaseI
TransposeI packf

TI-alltoall
PhaseII
TransposeII packf

TI-alltoall
ALLTOALL
COMPUTATION

0.5 1.70% 244.28 Before 0.1 0.88% 226.88947368
2.9 9.86% 1,416.84 Permute comp 0.4 3.51% 907.55789474
3.3 11.22% 1,612.26 alltoall 2.5 21.93% 5,672.2368421
8.1 27.55% 3,957.37 PhaseI 1.8 15.79% 4,084.0105263
0.5 1.70% 244.28 TransposeI packf 0.1 0.88% 226.88947368

6.20 21.09% 3,029.10 TI-alltoall 2.8 24.56% 6,352.9052632
4.4 14.97% 2,149.68 PhaseII 1.0 8.77% 2,268.8947368
0.6 2.04% 293.14 TransposeII packf 0.1 0.88% 226.88947368
2.9 9.86% 1,416.84 TI-alltoall 2.6 22.81% 5,899.1263158

6,058.2013605 17,924.268421
8,305.5986395 7,941.1315789

RA MPI Percentage Time RA GASNet Percentage Time
Computation
event_notify
event_wait
calc_put
Total

1.316 11.43% 81.974704134 Computation 12.44331 9.11% 46.360558574
AMRequestShort 3.517 30.56% 219.07677389 event_notify AMRequestShort 0.9671 0.71% 3.6031647686

4.1056 35.67% 255.74114384 event_wait 108.904 79.72% 405.74817078
2.57 22.33% 160.08737813 calc_put 14.3 10.47% 53.278105875

11.5086 100.00% 716.88 Total 136.61441 100.00% 508.99

CAF-GASNet CAF-MPI
Computation
coarray_write
event_wait
event_notify

46.36 81.97
53.28 160.09

405.75 255.74
3.60 219.08

0

200

400

600

800

CAF-GASNet CAF-MPI

219.08

3.60

255.74
405.75

RandomAccess

Ti
m

e
(in

 s
ec

on
ds

) Computation
coarray_write
event_wait
event_notify

Figure 8. Time decomposition of FFT on 256 cores on
Fusion.

plementation solely uses all-to-all operation for data move-
ment.

Figures 6 and 7 show the performance of the FFT bench-
mark on Fusion and Edison, respectively. The CAF-MPI ver-
sion consistently outperforms CAF-GASNet on both plat-

FFT 16 32 64 128 256 512 1024 2048 4096
CAF-MPI
CAF-GASNet
IDEAL-SCALE

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

6.2971 9.9241 17.9998 32.8323 74.2554 152.9704 305.3309 585.6462 945.5121
3.9050 7.2703 11.7259 20.4787 37.9913 66.6050 121.6078 233.8628 419.6483
6.2971 12.5942 25.1884 50.3768 100.7536 201.5072 403.0144 806.0288 1612.0576

16 32 64 128 256 512 1024 2048 4096
0.1 0.2 0.2 0.5 0.6 1.1 1.4 2.0 2.7
0.2 0.3 0.4 0.6 1.1 1.1 1.9 3.8 8.0

0.1231 0.2462 0.4924 0.9848 1.9696 3.9392 7.8784 15.7568 31.5136
16 64 256 1024 4096

0.113494752 0.4315327371 1.5640185942 5.4019310091 17.931944405
0.1153884087 0.4306770224 1.6010092905
0.113494752 0.4539790081 1.8159160323 7.2636641294 29.054656517

24 72 120 168 216 264 312 360
2373.33 800.57 483.73 481.15 325.18 323.59 324.06 166.37
2369.46 799.63 482.89 480.68 325.57 323.66 323.87 167.70
2367.96 794.29 482.83 477.60 322.41 321.47 320.01 162.31
2362.99 793.70 483.45 478.40 322.98 321.74 320.30 162.44

1

10

100

1000

10000

16 32 64 128 256 512 1024 2048 4096

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 32 64 128 256 512 1024 2048 4096

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 64 256 1024 4096

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0

750

1500

2250

3000

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

FFT 8 16 32 64 128 256 512 1024 2048
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

2.5360 3.5693 7.0194 13.9231 23.0590 50.3071 96.1904 152.0733 263.9797
2.3927 3.3042 4.9530 8.6560 15.3140 27.2440 43.8779 79.2683 118.1791
2.536 5.072 10.144 20.288 40.576 81.152 162.304 324.608 649.216

2.4315 3.5079 4.9294 8.4172 15.2665 26.5122 43.4191 77.4317 117.2695
8 16 32 64 128 256 512 1024 2048

0.1 0.1 0.1 0.3 0.4 0.6 0.9 1.3 1.5
0.1 0.1 0.2 0.4 0.2 0.3 0.4 0.7 1.0

0.06092 0.12184 0.24368 0.48736 0.97472 1.94944 3.89888 7.79776 15.59552
0.1 0.1 0.2 0.3 0.5 0.7 0.9 1.4 2.2

16 64 256 1024 0.4439374185
0.0350152743 0.1311492785 0.4805325189 1.7443695111
0.0330905247 0.122221024 0.4467551121 1.5327417036
0.0350152743 0.1400610971 0.5602443884 2.2409775535
0.0330424331 0.1254319838 0.4453462682 1.560673607

24 72 120 168 216 264 312 360
656.47 251.96 157.64 148.37 102.76 109.36 104.04 50.98
654.98 250.94 155.62 150.68 108.40 121.16 110.47 50.94
657.82 236.48 155.87 166.66 105.83 104.97 103.08 51.35
731.35 266.96 155.32 174.68 117.35 137.99 110.58 55.20

1

10

100

1000

8 16 32 64 128 256 512 1024 2048

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

100

8 16 32 64 128 256 512 1024 2048

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

16 64 256 1024

HPL
TF

lo
ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0

200

400

600

800

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

16 64 256
GASNet-only
MPI-only
Duplicate Runtimes

26 34 39
107 109 115
133 143 154

0

50

100

150

200

16 64 256

154
143

133
115109107

393426

Chart 5

M
ap

pe
d

M
em

or
y

Si
ze

 (M
B)

Number of processes

GASNet-only
MPI-only
Duplicate Runtimes

CAF-GASNet CAF-MVAPICH
Communication (AllToAll)
Local computation

17.92 6.1
7.94 8.3

0

6

12

18

24

30

CAF-GASNet CAF-MPI

8.31

7.94

6.06

17.92

Analysis of FFT

Ti
m

e
(s

ec
on

ds
)

All-to-all
Computation

FFT Analysis Percentage Time Percentage
29.4 100.00% 14363.8 11.4 100.00% 25865.4

Before
Permute comp

alltoall
PhaseI
TransposeI packf

TI-alltoall
PhaseII
TransposeII packf

TI-alltoall
ALLTOALL
COMPUTATION

0.5 1.70% 244.28 Before 0.1 0.88% 226.88947368
2.9 9.86% 1,416.84 Permute comp 0.4 3.51% 907.55789474
3.3 11.22% 1,612.26 alltoall 2.5 21.93% 5,672.2368421
8.1 27.55% 3,957.37 PhaseI 1.8 15.79% 4,084.0105263
0.5 1.70% 244.28 TransposeI packf 0.1 0.88% 226.88947368

6.20 21.09% 3,029.10 TI-alltoall 2.8 24.56% 6,352.9052632
4.4 14.97% 2,149.68 PhaseII 1.0 8.77% 2,268.8947368
0.6 2.04% 293.14 TransposeII packf 0.1 0.88% 226.88947368
2.9 9.86% 1,416.84 TI-alltoall 2.6 22.81% 5,899.1263158

6,058.2013605 17,924.268421
8,305.5986395 7,941.1315789

RA MPI Percentage Time RA GASNet Percentage Time
Computation
event_notify
event_wait
calc_put
Total

1.316 11.43% 81.974704134 Computation 12.44331 9.11% 46.360558574
AMRequestShort 3.517 30.56% 219.07677389 event_notify AMRequestShort 0.9671 0.71% 3.6031647686

4.1056 35.67% 255.74114384 event_wait 108.904 79.72% 405.74817078
2.57 22.33% 160.08737813 calc_put 14.3 10.47% 53.278105875

11.5086 100.00% 716.88 Total 136.61441 100.00% 508.99

CAF-GASNet CAF-MPI
Computation
coarray_write
event_wait
event_notify

46.36 81.97
53.28 160.09

405.75 255.74
3.60 219.08

0

200

400

600

800

CAF-GASNet CAF-MPI

219.08

3.60

255.74
405.75

RandomAccess

Ti
m

e
(in

 s
ec

on
ds

) Computation
coarray_write
event_wait
event_notify

Mira 16 32 64 128 256 512 1024 2048 4096
CAF-GASNet READ
CAF-GASNet WRITE
CAF-GASNet EVENT_NOTIFY
CAF-MPI READ
CAF-MPI WRITE
CAF-MPI EVENT_NOTIFY
CAF-MPI AlltoAll
CAF-GASNet AlltoAll

272479.56 266666.66 263852.25 256410.27 266666.66 256410.27 265957.47 247524.75 266666.66
221729.48 217864.92 216919.73 203665.98 213675.22 209205.03 211864.41 207039.33 206611.58
99304.867 97560.977 96993.211 95969.281 96432.023 96899.227 97465.883 96711.797 96899.227
76745.969 61614.293 61614.293 61614.293 61274.512 61274.512 60642.813 60569.352 60716.457
61087.355 51177.074 52273.914 50864.699 51229.508 50226.016 51733.059 51334.703 49358.340
100704.94 89847.258 89605.727 88967.977 88888.891 87489.063 89525.516 88809.945 89766.609
24096.387 21186.441 16778.523 11494.253 7087.1724 4071.6611 2230.1516 1166.3168 602.73645
3716.0906 1979.4141 984.83356 475.48856 221.75407 102.36043 45.536510 20.609421 9.9222002

0E+00

6E+04

1.2E+05

1.8E+05

2.4E+05

3E+05

16 32 64 128 256 512 1024 2048 4096
1E+00

1E+01

1E+02

1E+03

1E+04

1E+05
Mira Microbenchmarks

of

 p
oi

nt
-to

-p
oi

nt
 o

ps
 /

se
co

nd

of cores

of

 a
ll-

to
-a

ll o
ps

 /
se

co
nd

CAF-GASNet WRITE
CAF-GASNet READ
CAF-GASNet NOTIFY
CAF-GASNet AlltoAll
CAF-MPI WRITE
CAF-MPI READ
CAF-MPI NOTIFY
CAF-MPI AlltoAll

Edison 32 64 128 256 512 1024 2048 4096
CAF-GASNet READ
CAF-GASNet WRITE
CAF-GASNet EVENT_NOTIFY
CAF-MPI READ
CAF-MPI WRITE
CAF-MPI EVENT_NOTIFY
CAF-MPI AlltoAll
CAF-GASNet AlltoAll

445434.3 385951.4 324570.0 390930.4 293083.2 232342.0 264550.3 252079.7
579038.8 500250.1 490436.5 500000.0 256607.7 274499.0 364564.3 308261.4
674763.8 665779.0 655308.0 655308.0 655308.0 582411.2 654878.8 521920.7

207555 209205.0 205465.4 206996.5 176398.0 201612.9 201369.3 143082.0
210172.3 210305.0 206313.2 208159.9 177273.5 202880.9 200964.6 142227.3
700770.8 700770.8 700770.8 696864.1 696864.1 693962.6 686341.8 619962.8
12396.18 5767.345 2727.917 1272.507 514.6469 268.2957 112.9217 29.40790
24177.95 7081.150 2399.923 911.6103 258.6646 87.81258 44.26492 19.71037

0E+00

1.6E+05

3.2E+05

4.8E+05

6.4E+05

8E+05

32 64 128 256 512 1024 2048 4096
1E+00

1E+01

1E+02

1E+03

1E+04

1E+05
Edison Microbenchmarks

of

 p
oi

nt
-to

-p
oi

nt
 o

ps
 /

se
co

nd

of cores

of

 a
ll-

to
-a

ll o
ps

 /
se

co
nd

CAF-GASNet WRITE
CAF-GASNet READ
CAF-GASNet NOTIFY
CAF-GASNet AlltoAll
CAF-MPI WRITE
CAF-MPI READ
CAF-MPI NOTIFY
CAF-MPI AlltoAll

Edison 16 32 64 128 256 512 1024 2048
CAF-GASNet READ
CAF-GASNet WRITE
CAF-GASNet EVENT_NOTIFY
CAF-MPI READ
CAF-MPI WRITE
CAF-MPI EVENT_NOTIFY
CAF-GASNet AlltoAll
CAF-MPI AlltoAll

2.81E+05 2.75E+05 2.48E+05
3.73E+05 3.70E+05 3.14E+05
1.07E+06 8.02E+05 7.08E+05
1.75E+05 1.77E+05 1.69E+05
1.83E+05 1.74E+05 1.74E+05
7.99E+04 4.73E+04 9.77E+04
2.82E+04 7.96E+03 2.76E+03
5.41E+04 3.10E+04 1.97E+04

Figure 9. Performance of HPL benchmark on Fusion.

forms at different scales. To analyze the performance dif-
ference of the two versions of FFT, we use HPCToolkit to
profile the benchmark run on 256 cores on Fusion. Fig-
ure 8 illustrates how much of the execution time of FFT
is spent in local computation and communication (all-to-
all to be specific). We can see that the performance differ-
ence in two versions of FFT is caused largely by the per-
formance of all-to-all operations used in CAF’s runtime sys-
tem. Because GASNet currently does not have collectives,
CAF-GASNet implements alltoall operation with GASNet’s
PUT, GET, and Active Messages. This is not as well tuned as
MPI ALLTOALL, which has been used and well-optimized
for many years on most computing platforms today.

4.3 HPL Benchmark
The High-Performance Linpack (HPL) [1] benchmark mea-
sures the ability of a system to deliver fast floating point
execution while solving a system of linear equations. HPL
is one of the most common implementations of parallel LU
factorization for distributed memory systems. HPL has been
previously ported to CAF 2.0 by Jin et. al. [12]. HPL differs
greatly from the RandomAccess and FFT benchmarks de-
scribed earlier because its performance is mostly dominated
by computation rather than communication.

Figures 9 and 10 show the performance of HPL on Fusion
and Edison, respectively. Between the two CAF implemen-
tations, HPL’s performance difference is hardly noticeable.
Because the performance of HPL benchmark is mostly com-
putation bound, the performance difference of using differ-
ent communication library has little effect on HPL’s overall
performance.

4.4 The CGPOP Miniapp
The CGPOP miniapp is the conjugate gradient solver from
LANL POP 2.0, an important multi-agency code used for
global ocean modeling and is a component within the Com-
munity Earth System Model. CGPOP is the performance
bottleneck for the full POP application; it implements a ver-
sion of conjugate gradient that uses a single inner product

FFT 16 32 64 128 256 512 1024 2048 4096
CAF-MPI
CAF-GASNet
IDEAL-SCALE

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

6.2971 9.9241 17.9998 32.8323 74.2554 152.9704 305.3309 585.6462 945.5121
3.9050 7.2703 11.7259 20.4787 37.9913 66.6050 121.6078 233.8628 419.6483
6.2971 12.5942 25.1884 50.3768 100.7536 201.5072 403.0144 806.0288 1612.0576

16 32 64 128 256 512 1024 2048 4096
0.1 0.2 0.2 0.5 0.6 1.1 1.4 2.0 2.7
0.2 0.3 0.4 0.6 1.1 1.1 1.9 3.8 8.0

0.1231 0.2462 0.4924 0.9848 1.9696 3.9392 7.8784 15.7568 31.5136
16 64 256 1024 4096

0.113494752 0.4315327371 1.5640185942 5.4019310091 17.931944405
0.1153884087 0.4306770224 1.6010092905
0.113494752 0.4539790081 1.8159160323 7.2636641294 29.054656517

24 72 120 168 216 264 312 360
2373.33 800.57 483.73 481.15 325.18 323.59 324.06 166.37
2369.46 799.63 482.89 480.68 325.57 323.66 323.87 167.70
2367.96 794.29 482.83 477.60 322.41 321.47 320.01 162.31
2362.99 793.70 483.45 478.40 322.98 321.74 320.30 162.44

1

10

100

1000

10000

16 32 64 128 256 512 1024 2048 4096

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 32 64 128 256 512 1024 2048 4096

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 64 256 1024 4096

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0

750

1500

2250

3000

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
im

e
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

FFT 8 16 32 64 128 256 512 1024 2048
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

2.5360 3.5693 7.0194 13.9231 23.0590 50.3071 96.1904 152.0733 263.9797
2.3927 3.3042 4.9530 8.6560 15.3140 27.2440 43.8779 79.2683 118.1791
2.536 5.072 10.144 20.288 40.576 81.152 162.304 324.608 649.216

2.4315 3.5079 4.9294 8.4172 15.2665 26.5122 43.4191 77.4317 117.2695
8 16 32 64 128 256 512 1024 2048

0.1 0.1 0.1 0.3 0.4 0.6 0.9 1.2 1.5
0.1 0.1 0.2 0.4 0.2 0.3 0.4 0.7 1.0

0.06092 0.12184 0.24368 0.48736 0.97472 1.94944 3.89888 7.79776 15.59552
0.1 0.1 0.2 0.3 0.5 0.7 0.9 1.4 2.2

16 64 256 1024
0.0350152743 0.1311492785 0.4805325189 1.7443695111
0.0330905247 0.122221024 0.4467551121 1.5327417036
0.0350152743 0.1400610971 0.5602443884 2.2409775535
0.0330424331 0.1254319838 0.4453462682 1.560673607

24 72 120 168 216 264 312 360
656.47 251.96 157.64 148.37 102.76 109.36 104.04 50.98
654.98 250.94 155.62 150.68 108.40 121.16 110.47 50.94
657.82 236.48 155.87 166.66 105.83 104.97 103.08 51.35
731.35 266.96 155.32 174.68 117.35 137.99 110.58 55.20

1

10

100

1000

8 16 32 64 128 256 512 1024 2048

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

100

8 16 32 64 128 256 512 1024 2048

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

8 16 32 64

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0

200

400

600

800

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
im

e
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

16 64 256
MPI+GASNet
MPI
GASNet

133 143 154
107 109 115
26 34 39

Figure 10. Performance of HPL benchmark on Edison.

FFT 16 32 64 128 256 512 1024 2048 4096
CAF-MPI
CAF-GASNet
IDEAL-SCALE

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

6.2971 9.9241 17.9998 32.8323 74.2554 152.9704 305.3309 585.6462 945.5121
3.9050 7.2703 11.7259 20.4787 37.9913 66.6050 121.6078 233.8628 419.6483
6.2971 12.5942 25.1884 50.3768 100.7536 201.5072 403.0144 806.0288 1612.0576

16 32 64 128 256 512 1024 2048 4096
0.1 0.2 0.2 0.5 0.6 1.1 1.4 2.0 2.7
0.2 0.3 0.4 0.6 1.1 1.1 1.9 3.8 8.0

0.1231 0.2462 0.4924 0.9848 1.9696 3.9392 7.8784 15.7568 31.5136
16 64 256 1024 4096

0.113494752 0.4315327371 1.5640185942 5.4019310091 17.931944405
0.1153884087 0.4306770224 1.6010092905

0.113494752 0.4539790081 1.8159160323 7.2636641294 29.054656517
24 72 120 168 216 264 312 360
2373.33 800.57 483.73 481.15 325.18 323.59 324.06 166.37
2369.46 799.63 482.89 480.68 325.57 323.66 323.87 167.70
2367.96 794.29 482.83 477.60 322.41 321.47 320.01 162.31
2362.99 793.70 483.45 478.40 322.98 321.74 320.30 162.44

1

10

100

1000

10000

16 32 64 128 256 512 1024 2048 4096

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 32 64 128 256 512 1024 2048 4096

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 64 256 1024 4096

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0

750

1500

2250

3000

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
im

e
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

FFT 8 16 32 64 128 256 512 1024 2048
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

2.5360 3.5693 7.0194 13.9231 23.0590 50.3071 96.1904 152.0733 263.9797
2.3927 3.3042 4.9530 8.6560 15.3140 27.2440 43.8779 79.2683 118.1791

2.536 5.072 10.144 20.288 40.576 81.152 162.304 324.608 649.216
2.4315 3.5079 4.9294 8.4172 15.2665 26.5122 43.4191 77.4317 117.2695

8 16 32 64 128 256 512 1024 2048
0.1 0.1 0.1 0.3 0.4 0.6 0.9 1.2 1.5
0.1 0.1 0.2 0.4 0.2 0.3 0.4 0.7 1.0

0.06092 0.12184 0.24368 0.48736 0.97472 1.94944 3.89888 7.79776 15.59552
0.1 0.1 0.2 0.3 0.5 0.7 0.9 1.4 2.2

16 64 256 1024
0.0350152743 0.1311492785 0.4805325189 1.7443695111
0.0330905247 0.122221024 0.4467551121 1.5327417036
0.0350152743 0.1400610971 0.5602443884 2.2409775535
0.0330424331 0.1254319838 0.4453462682 1.560673607

24 72 120 168 216 264 312 360
656.47 251.96 157.64 148.37 102.76 109.36 104.04 50.98
654.98 250.94 155.62 150.68 108.40 121.16 110.47 50.94
657.82 236.48 155.87 166.66 105.83 104.97 103.08 51.35
731.35 266.96 155.32 174.68 117.35 137.99 110.58 55.20

1

10

100

1000

8 16 32 64 128 256 512 1024 2048

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

100

8 16 32 64 128 256 512 1024 2048

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

8 16 32 64

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0

200

400

600

800

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
im

e
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

16 64 256
MPI+GASNet
MPI
GASNet

133 143 154
107 109 115

26 34 39

Figure 11. Performance of CGPOP on Fusion.

to iteratively solve for vector x in the equation Ax = b.
The algorithm consists of a number of linear algebra com-
putations interleaved with two communication steps. The
GlobalSum function performs a 3-word vector reduction,
while UpdateHalo function performs a boundary exchange
between neighboring sub-domains. The CGPOP miniapp
was ported to CAF for evaluating the performance gains
of using a PGAS programming model for the performance
critical part of POP. It is a hybrid MPI+CAF application
that uses CAF coarray primitives for data exchange and
MPI REDUCE for reduction operations.

Figures 11 and 12 show the performance results of CG-
POP on Fusion and Edison, respectively. On Edison, we can
hardly see a difference in the performance of CGPOP be-
tween the two CAF implementations. On Fusion, the perfor-
mance of the two CAF implementations only differs slightly
when running on a small number of cores. Since both CAF
versions of CGPOP use MPI REDUCE, the only possible
cause of performance difference in two versions of CGPOP
is the use of PUT and GET operations used by CAF-MPI
and CAF-GASNet. The lack of a performance difference in-
dicates that both implementations are equally efficient in the
raw MPI PUT and MPI GET operations.

FFT 16 32 64 128 256 512 1024 2048 4096
CAF-MPI
CAF-GASNet
IDEAL-SCALE

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

6.2971 9.9241 17.9998 32.8323 74.2554 152.9704 305.3309 585.6462 945.5121
3.9050 7.2703 11.7259 20.4787 37.9913 66.6050 121.6078 233.8628 419.6483
6.2971 12.5942 25.1884 50.3768 100.7536 201.5072 403.0144 806.0288 1612.0576

16 32 64 128 256 512 1024 2048 4096
0.1 0.2 0.2 0.5 0.6 1.1 1.4 2.0 2.7
0.2 0.3 0.4 0.6 1.1 1.1 1.9 3.8 8.0

0.1231 0.2462 0.4924 0.9848 1.9696 3.9392 7.8784 15.7568 31.5136
16 64 256 1024 4096

0.113494752 0.4315327371 1.5640185942 5.4019310091 17.931944405
0.1153884087 0.4306770224 1.6010092905

0.113494752 0.4539790081 1.8159160323 7.2636641294 29.054656517
24 72 120 168 216 264 312 360
2373.33 800.57 483.73 481.15 325.18 323.59 324.06 166.37
2369.46 799.63 482.89 480.68 325.57 323.66 323.87 167.70
2367.96 794.29 482.83 477.60 322.41 321.47 320.01 162.31
2362.99 793.70 483.45 478.40 322.98 321.74 320.30 162.44

1

10

100

1000

10000

16 32 64 128 256 512 1024 2048 4096

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 32 64 128 256 512 1024 2048 4096

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0.1

1

10

100

16 64 256 1024 4096

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE

0

750

1500

2250

3000

24 72 120 168 216 264 312 360

CGPOP
Ex

ec
ut

im
e

tim
e

(in
 s

ec
on

ds
)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

FFT 8 16 32 64 128 256 512 1024 2048
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

RA
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

HPL
CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

CGPOP
CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

2.5360 3.5693 7.0194 13.9231 23.0590 50.3071 96.1904 152.0733 263.9797
2.3927 3.3042 4.9530 8.6560 15.3140 27.2440 43.8779 79.2683 118.1791

2.536 5.072 10.144 20.288 40.576 81.152 162.304 324.608 649.216
2.4315 3.5079 4.9294 8.4172 15.2665 26.5122 43.4191 77.4317 117.2695

8 16 32 64 128 256 512 1024 2048
0.1 0.1 0.1 0.3 0.4 0.6 0.9 1.2 1.5
0.1 0.1 0.2 0.4 0.2 0.3 0.4 0.7 1.0

0.06092 0.12184 0.24368 0.48736 0.97472 1.94944 3.89888 7.79776 15.59552
0.1 0.1 0.2 0.3 0.5 0.7 0.9 1.4 2.2

16 64 256 1024
0.0350152743 0.1311492785 0.4805325189 1.7443695111
0.0330905247 0.122221024 0.4467551121 1.5327417036
0.0350152743 0.1400610971 0.5602443884 2.2409775535
0.0330424331 0.1254319838 0.4453462682 1.560673607

24 72 120 168 216 264 312 360
656.47 251.96 157.64 148.37 102.76 109.36 104.04 50.98
654.98 250.94 155.62 150.68 108.40 121.16 110.47 50.94
657.82 236.48 155.87 166.66 105.83 104.97 103.08 51.35
731.35 266.96 155.32 174.68 117.35 137.99 110.58 55.20

1

10

100

1000

8 16 32 64 128 256 512 1024 2048

FFT

G
Fl

op
s

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

100

8 16 32 64 128 256 512 1024 2048

RandomAccess

G
UP

S

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0.01

0.1

1

10

8 16 32 64

HPL

TF
lo

ps

Number of processes

CAF-MPI
CAF-GASNet
IDEAL-SCALE
CAF-GASNet-NOSRQ

0

200

400

600

800

24 72 120 168 216 264 312 360

CGPOP

Ex
ec

ut
im

e
tim

e
(in

 s
ec

on
ds

)

Number of processes

CAF-MPI (PUSH)
CAF-MPI (PULL)
CAF-GASNet (PUSH)
CAF-GASNet (PULL)

16 64 256
MPI+GASNet
MPI
GASNet

133 143 154
107 109 115

26 34 39

Figure 12. Performance of CGPOP on Edison.

5. Discussion
In this section, we discuss our findings during the process of
redesigning CAF 2.0 runtime system to use MPI. Using MPI
as the basis of a PGAS runtime system, such as CAF, reveals
several advantages of using MPI over a low-level networking
layer such as GASNet. We also discovered several features
that the current MPI Standard lacks which can be useful in
building a PGAS runtime system.

The benefits of MPI’s rich interface. Compared with
GASNet and other low-level networking layers, MPI pro-
vides a much richer set of API functions to support different
high-level libraries, languages, and applications. We found
this rich interface to be immensely time-saving when build-
ing a runtime system that delivers high performance across
various platforms. For example, because GASNet does not
have collectives, collective operations in CAF are hand-
crafted in its runtime system on top of GASNet. Not only
is this time consuming, but also based on our evaluation,
not as performant as the MPI collectives. Because collec-
tives in MPI are well-optimized over the years by different
MPI implementations on different platforms, harnessing the
performance benefits of these fully-optimized collectives in
MPI is valuable for a programming model, such as CAF,
which provides both one-sided and two-sided operations.

The need for Active Messages in MPI. One of the goals
of building an interoperable runtime system for CAF is to
allow the runtime system to make progress for both CAF and
MPI when applications make blocking calls in either one.
The current implementation of CAF-MPI can stay true to
this goal for all parts of its runtime except active messages.
Because we built the AM subsystem on top of MPI SEND
and MPI RECV, the CAF-MPI runtime has to do further
processing of a message to invoke the AM handler. The
MPI runtime itself cannot invoke the handler. Thus, if the
application is blocked inside an MPI call, no progress is
made on such AM handlers.

Having AM support inside MPI can solve this problem.
AMs are essential for building runtime systems for various
programming models, especially for models such as X10,

Chapel, and CAF 2.0 that supports dynamic task parallelism.
Zhao et. al. [33, 34] have made an effort in this direction
to support MPI-interoperable Active Messages, but such a
model is not a part of the current MPI Standard.

The need for non-blocking flush operation in MPI. In
passive target epochs, the MPI Standard provides two rou-
tines: MPI WIN FLUSH and MPI WIN FLUSH ALL for
ensuring remote completion of RMA operations without
closing the access epoch. These routines can be blocking
calls (e.g., if another image is holding the lock). As dis-
cussed in Section 3.3, the blocking MPI WIN FLUSH op-
eration eliminates the potential opportunity for overlapping
the latency of communication with local computation. A
nonblocking request-based version of MPI WIN FLUSH,
such as MPI WIN RFLUSH, can solve this problem. The
MPI WIN RFLUSH operation would start the flush process
and return a request handle. The request handle can be later
passed to MPI completion routines to wait/test for the com-
pletion of the operation.

6. Related Work
CAF and GASNet. CAF has been adopted by the Fortran
2008 committee as the parallel programming model in For-
tran. GASNet [5] is a portable PGAS runtime used not only
by CAF-2.0, but also by UPC and other parallel libraries.
There has been previous work to implement GASNet us-
ing MPI, culminating in a GASNet conduit built on AM-
MPI [4]. However, the AM-MPI implementation is dated
and only uses MPI-1.1, which does not include many of the
more recent MPI features which provide a much higher per-
forming implementation, including RMA.

MPI+PGAS Implementations. There has been previous
work to implement some PGAS-like libraries on top of MPI.
Dinan et. al. [9] implemented the aggregate remote memory
copy interface (ARMCI), the runtime layer for Global Ar-
rays (GA) on top of MPI using one-sided communication.
This work provided portability for GA to new systems which
would previously require significant work to provide both an
efficient one-sided MPI library and an efficient ARMCI im-
plementation. Our work is similar, but with different goals.
In this work, we want to understand the semantics and re-
quirements of a full PGAS language, not just a high-level
PGAS-like library. Specifically, a full PGAS language such
as CAF enforces a large number of requirements on the MPI
implementation, particularly with respect to active messages
and event management, which are not required by Global
Arrays.

Before this work, the same authors had made efforts to
provide a hybrid MPI+UPC programming model [8]. Uni-
fied Parallel C (UPC) [29] is a PGAS library intended to
simplify data sharing between processes by allowing them to
share portions of their address space easily with each other.
With the hybrid model between UPC and MPI, Dinan et. al.

demonstrated how applications could take advantage of both
the large amount memory which becomes available when
using UPC and the portability and existing libraries of MPI.
As an example, an application could be written primarily in
UPC, but could use an MPI library, such as ScaLAPACK
to perform optimized, domain-specific work. However, that
work only dealt with the semantic interactions between the
two programming models and did not improve the runtime
infrastructure of the models. That is, it still relied on each
programming model using its own runtime system.

More work was done in this area by researchers at the
Ohio State University [14] which was specific to MVAPICH.
For this work, the authors unified the runtime systems of
MVAPICH and UPC to create a single runtime which sup-
ported both programming models. While this work provides
similar results to the work presented here, it is not portable
across many MPI implementations and therefore requires
that MVAPICH be available on the system, something which
is not always possible given its reliance on InfiniBand.

Work to unify programming models has existed outside
of purely PGAS languages. In 2011, Preissl et. al. [23] ex-
amined a communication model that integrated MPI, For-
tran 2008 (Coarray Fortran), and OpenMP [21]. This work
was specific to the Gyrokinetic Tokamak Simulation code
but demonstrated the use of many communication libraries
to implement different algorithms within the code. They fo-
cused on how PGAS/OpenMP combined could improve over
a more traditional MPI+OpenMP algorithm.

Other MPI+X Hybrid Models. The MPI+OpenMP paradigm
is just one example of a more classical hybridization of
parallel libraries. It has been specifically targeted to im-
prove on-node communication performance by taking ad-
vantage of shared address spaces with OpenMP, then switch
to MPI when off-node communication is necessary. More
recently, accelerators have entered the hybrid program-
ming model space by introducing MPI+CUDA [20] or
MPI+OpenCL [15] and allowing an MPI application to of-
fload work to the GPU which can take advantage of the
highly parallel architecture available on GPUs.

7. Conclusions and Future Work
In this paper, we demonstrated how MPI-3 can act as a run-
time layer for CAF 2.0, thereby providing a basis for in-
teroperability between the MPI and CAF, and reducing the
runtime overhead introduced by having independent runtime
systems. We demonstrated the new features introduced by
MPI-3 and their applicability within a PGAS runtime sys-
tem. We demonstrated that changing the runtime layer from
GASNet to MPI introduces minimal overhead in some cases,
and a performance improvement in instances where the CAF
operations better map to MPI native operations. Finally, we
outlined some improvements which could be adopted by fu-
ture MPI Standards which would allow work like this to use

more optimized MPI operations than what was necessary for
this work, such as Active Messages and MPI WIN RFLUSH.

As future work, we plan to look into several additions to
our proposed CAF-MPI framework. One of the short-term
goals that we plan to tackle are the performance issues that
we identified within the MPI implementation, particularly
with respect to the scalability of MPI WIN FLUSH ALL.
This would improve the performance of operations that rely
heavily on CAF events, such as the RandomAccess bench-
mark.

As a slightly longer term goal, we plan to study the
ability of MPI WIN RFLUSH and its applicability to CAF-
MPI. We believe that such an implementation would allow
us to move away from MPI SEND and MPI RECV almost
entirely within the CAF-MPI runtime, except within active
messages. We also plan to use this study as a motivating
example to encourage the standardization of such a routine
in the next MPI Standard.

Finally, we plan to investigate several applications that
can benefit from a hybrid MPI+CAF framework. Two of the
first applications we are planning to look at are QMCPACK
and GFMC. As described in Section 1, these are existing
MPI applications that have a tremendous potential to benefit
from using coarrays that would allow their “local” data to be
distributed across a small number of processes.

Acknowledgments
This work was supported by the U.S. Department of En-
ergy, Office of Science, Advanced Scientific Computing
Research, under Contract DE-AC02-06CH11357. We also
thank Scott K. Warren and Dung X. Nguyen from Rice
Group for porting CGPOP to CAF 2.0 and allowing us to
use it for the evaluation of CAF-MPI.

References
[1] A. Petitet and R.C.Whaley and J.Dongara and A.Cleary. HPL

- A Portable Implementation of the High-Performance Lin-
pack. http://bit.ly/JtavrU, Sept. 2008.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin,
J. Mellor-Crummey, and N. R. Tallent. HPCTOOLKIT:
tools for performance analysis of optimized parallel programs.
Concurr. Comput. : Pract. Exper., 22(6):685–701, 2010.

[3] R. C. Agarwal, F. G. Gustavson, and M. Zubair. A high
performance parallel algorithm for 1-D FFT. In Proceedings
of the 1994 Conference on Supercomputing, pages 34–40, Los
Alamitos, CA, USA, 1994.

[4] D. Bonachea. Active Messages over MPI. URL
http://bit.ly/14VZNOs.

[5] D. Bonachea. GASNet specification, v1.1. Technical Re-
port UCB/CSD-02-1207, University of California at Berkeley,
Berkeley, CA, USA, 2002.

[6] D. Bonachea and J. Duell. Problems with using MPI 1.1 and
2.0 as compilation targets for parallel language implemen-
tations. Int. J. High Perform. Comput. Netw., 1(1-3):91–99,
Aug. 2004. .

[7] B. Chamberlain, D. Callahan, and H. Zima. Parallel Pro-
grammability and the Chapel Language. Intl. J. of High Per-
formance Computing Applications, 21(3):291–312, 2007. .

[8] J. Dinan, P. Balaji, E. L. Lusk, P. Sadayappan, and R. Thakur.
Hybrid Parallel Programming with MPI and Unified Parallel
C. In 7th ACM International Conference on Computing Fron-
tiers, Bertinoro, Italy, Apr. 2010.

[9] J. Dinan, P. Balaji, J. R. Hammond, S. Krishnamoorthy, and
V. Tipparaju. Supporting the Global Arrays PGAS Model Us-
ing MPI One-Sided Communication. In Proc. 26th Intl. Par-
allel and Distributed Processing Symp. (IPDPS), Shanghai,
China, May 2012.

[10] R. Gerstenberger, M. Besta, and T. Hoefler. Enabling Highly-
scalable Remote Memory Access Programming with MPI-
3 One Sided. In Proceedings of Intl. Conf. for High
Perf. Computing, Networking, Storage and Analysis, SC
’13, pages 53:1–53:12, New York, NY, USA, 2013. URL
http://bit.ly/1dCbxe2.

[11] HPC Challenge Benchmark. HPC challenge benchmark, July
2010. URL http://icl.cs.utk.edu/hpcc.

[12] G. Jin, J. Mellor-Crummey, L. Adhianto, W. N. Scherer III,
and C. Yang. Implementation and Performance Evaluation
of the HPC Challenge Benchmarks in Coarray Fortran 2.0.
In Proceedings of the 2011 IEEE Intl. Parallel & Distributed
Processing Symposium, IPDPS ’11, pages 1089–1100, Wash-
ington, DC, USA, 2011. .

[13] S. L. Johnsson and R. L. Krawitz. Cooley-Tukey FFT on the
Connection Machine. In: Parallel Computing. Volume, 18:
1201–1221, 1991.

[14] J. Jose, M. Luo, S. Sur, and D. K. Panda. Unifying UPC and
MPI runtimes: experience with MVAPICH. In Proceedings of
the Fourth Conference on Partitioned Global Address Space
Programming Model, page 5. ACM, 2010.

[15] Khronos OpenCL Working Group. The OpenCL
Specification, Version 2.0, July 2013. URL
http://bit.ly/15tR61M.

[16] J. Kim, K. P. Esler, J. McMinis, M. A. Morales, B. K. Clark,
L. Shulenburger, and D. M. Ceperley. Quantum energy den-
sity: Improved efficiency for quantum Monte Carlo calcula-
tions. Physical Review B, 88(3), 2013. .

[17] E. Lusk, S. Pieper, and R. Butler. More SCALABILITY,
Less PAIN. SciDAC Review, (17):30–37, 2010. URL
http://bit.ly/163sZtd.

[18] J. Mellor-Crummey, L. Adhianto, W. N. Scherer, III, and
G. Jin. A new vision for Coarray Fortran. In Proceedings
of the 3rd Conf. on Partitioned Global Address Space Pro-
graming Models, PGAS ’09, pages 1–9, New York, NY, USA,
2009. ACM. .

[19] Message Passing Interface Forum. MPI Report 3.0, Sept.
2012. URL http://bit.ly/Ul0wY2.

[20] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable
Parallel Programming with CUDA. Queue, 6(2):40–53, Mar.
2008. ISSN 1542-7730. .

[21] OpenMP Architecture Review Board. OpenMP Appli-
cation Program Interface Version 4.0, July 2013. URL
http://bit.ly/13LNHtI.

[22] S. C. Pieper and R. B. Wiringa. QUANTUM MONTE
CARLO CALCULATIONS OF LIGHT NUCLEI. Annual
Review of Nuclear and Particle Science, 51(1):53–90, 2001.
. URL http://bit.ly/143fd6u.

[23] R. Preissl, N. Wichmann, B. Long, J. Shalf, S. Ethier, and
A. Koniges. Multithreaded Global Address Space Commu-
nication Techniques for Gyrokinetic Fusion Applications on
Ultra-Scale Platforms. In Proceedings of 2011 Int. Conf.
for High Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 78:1–78:11, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0771-0. .

[24] J. Reid. Coarrays in Fortran 2008. In Proceedings of the Third
Conference on Partitioned Global Address Space Programing
Models, PGAS ’09, pages 4:1–4:1, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-836-0. .

[25] V. A. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and
D. Grove. X10 Language Specification, Version 2.2, Sept.
2011. URL http://bit.ly/1431tse.

[26] W. N. Scherer, III, L. Adhianto, G. Jin, J. Mellor-Crummey,
and C. Yang. Hiding latency in coarray fortran 2.0. In Pro-
ceedings of the 4th Conf. on Partitioned Global Address Space
Programming Model, PGAS ’10, pages 14:1–14:9, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0461-0. .

[27] A. Stone, J. Dennis, and M. M. Strout. The CGPOP Miniapp,
Version 1.0. Technical Report CS-11-103, Colorado State
University, July 2011.

[28] D. Takahashi and Y. Kanada. High-performance radix-2, 3
and 5 parallel 1-D complex FFT algorithms for distributed-
memory parallel computers. J. Supercomput., 15(2):207–228,
2000.

[29] UPC Consortium. UPC language specifications v1. 2. Techni-
cal report, Lawrence Berkeley National Laboratory, Berkeley,
CA, USA, May 2005.

[30] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active messages: a mechanism for integrated com-
munication and computation. SIGARCH Comput. Archit.
News, 20:256–266, Apr. 1992. ISSN 0163-5964. .

[31] C. Yang. Function shipping in a scalable parallel program-
ming model. Master’s thesis, Department of Computer Sci-
ence, Rice University, Houston, Texas, 2012.

[32] C. Yang, K. Murthy, and J. Mellor-Crummey. Managing asyn-
chronous operations in coarray fortran 2.0. In Proceedings
of the 2013 IEEE International Symposium on Parallel Dis-
tributed Processing, pages 1321–1332, 2013. .

[33] X. Zhao, P. Balaji, W. D. Gropp, and R. S. Thakur. MPI-
Interoperable Generalized Active Messages. In IEEE Inter-
national Conference on Parallel and Distributed Systems (IC-
PADS), Dec. 2013.

[34] X. Zhao, D. Buntinas, J. A. Zounmevo, J. Dinan, D. Goodell,
P. Balaji, R. Thakur, A. Afsahi, and W. Gropp. Toward
Asynchronous and MPI-Interoperable Active Messages. In
CCGRID’13, pages 87–94, 2013.

